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Uniqueness of quark and lepton representations in the standard model
from the anomalies viewpoint
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The uniqueness of the Weyl representations of the standard gauge group is reexamined. We find
that, prior to spontaneous breaking of the electroweak subgroup, the minimal Weyl representations
and their charges are uniquely determined by insisting on all three known chiral gauge anomaly-free
conditions in four dimensions: (1) cancellation of triangular anomalies; (2) absence of the global
SU(2) anomaly; and (3) cancellation of the mixed-gauge-gravitational anomaly. The uniqueness
question for the left-right-symmetric group and the simple (grand-unified-theory) group are dis-
cussed from the anomalies viewpoint.

The standard theory of strong and electroweak interac-
tions has been remarkably successful experimentally'
and mysteriously compliant with the anomaly-free condi-
tions arising from the theoretical requirements of renor-
malizability and self-consistency. Three anomalies have
thus far been identified for chiral gauge theories in four
dimensions: (1) the triangular (perturbative) chiral gauge
anomaly, which must be canceled to avoid the break-
down of gauge invariance and, a fortiori, renormalizabili-
ty of the theory; (2) the global (nonperturbative) SU(2&
chiral gauge anomaly, which must be absent in order to
define the fermion integral in a gauge-invariant way; (3)
the mixed (perturbative) chiral gauge-gravitational anom-
aly, ' which must be canceled in order to ensure general
covariance of the theory. The absence of all three
anomalies for the observed quark and lepton representa-
tions (for each of the three generations separately) has
been demonstrated with satisfaction and relief. In this
paper, with an eye to "going beyond the standard mod-
el," we turn the equation around; we show that the impo-
sition of all three anomaly-free conditions uniquely fixes
the correct minimal set of massless fermion (Weyl) repre-
sentations [and their U(1) z charges] in the standard
group prior to the spontaneous breaking of the elec-
troweak subgroup.

Freedom from the ordinary triangular (perturbative)
chiral gauge anomaly was first noted for the standard
model ' in 1972 for each quark and lepton family. It was
clear that with only the triangular anomaly-free condi-
tion, one could not explain the empirically determined
quark and lepton representations and their quantized hy-
percharges and electric charges. Moreover, the total of
15 Weyl states does not correspond to the simplest set of
anomaly-free representations under SU(3)c X SU(2)t
X U(1)~: e.g. , the set of representations (3, 1,Q ),
(3, 1, —Q), (1,2, q), and (1,2, —q) is even simpler. One
might expect that the condition that no fermion mass

terms can be constructed without breaking the
SU(3)c X SU(2)L XU(1)z symmetries, would help pin
down the representations. In fact, this is not the case
since the minimal set of triangular anomaly-free Weyl
representations would then be (3, 1,Q), (3, 1, —Q),
(3, 1,q), (3, 1, —q) (q&0), and (1,2,0) (Ref. 10), a total
of 14 states rather than 15. One must go beyond the con-
straint imposed by the triangular anomaly-free condition
to establish the uniqueness of the observed quark and lep-
ton representations (and their charges) in the standard
model. "

Fortunately, two other types of chiral gauge-related
anomalies in four dimensions have been identified whose
absence is required for the self-consistency of the theory;
when these anomaly-free conditions are imposed, in addi-
tion to the triangular anomaly-free condition, the Weyl
representations, together with their U(1)~ charges, are
determined uniquely for the standard group and are in
accord with experiment.

The second anomaly that arises in chiral gauge theories
is the global (nonperturbative) anomaly, known as the
Witten SU(2) anomaly. Witten showed in 1982 that any
SU(2) gauge theory with an odd number of (left-handed)
Weyl doublets is mathematically inconsistent. There was
no problem with an odd number of Dirac doublets, since
each Dirac doublet is equivalent to two (an even number
of) Weyl doublets. Mathematically, Witten showed that
the fermion path integral (taken over the Weyl fermions)
for an SU(2) gauge theory with an odd number of Weyl
doublets changes sign (the change of sign is due to the
properties of the chirality operator y5) under a topologi-
cally nontrivial SU(2) gauge transformation. This prop-
erty introduces ambiguities in the evaluation of expecta-
tion values of the quantum field operators and leads to a
mathematically inconsistent theory. The only remedy is
to insist on an even number of SU(2) Weyl doublets.

A third type of chiral gauge-related anomaly has been
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discovered in four dimensions that supplies the additional
relation that enables one to completely fix the U(1)r
charges of the standard group. This anomaly is similar to
the perturbative triangular anomaly but with the three
chiral current vertices replaced by a mixture of one chiral
current vertex plus two energy-momentum-tensor (gravi-
tational) vertices. This anomaly was first pointed out by
Delbourgo and Salam in 1972 and its consequences dis-
cussed by Alvarez-Gaume and Witten in 1983, who con-
cluded that a necessary condition for consistency of the
standard group coupled to gravity is that the sum of the
U(1)r charges of the Weyl fermions, must vanish; i.e.,
Try=0. We shall refer to this anomaly as the mixed
anomaly.

We now show that the imposition of all three
anomaly-free conditions on the standard chiral gauge
group SU(3)CXSU(2)I XU(1)r leads uniquely to the
correct result for the minimal number of Weyl represen-

SU(3)c XSU(2)l XU(1)r

3

Q, (i =1,2, . . . , j)
Q (i =1,2, . . . , k)

Q; (i =1,2, . . . , I)

Q,.
' (i =1,2, . . . , m)

q, (i =1,2, . . . , n)

q, (i =1,2, . . . ,p)

where the integers j, k, I, m, n, and p and the U(1) i
charges are all arbitrary. ' Freedom from the triangular
anomalies then leads to the following equations:

tations of SU(3)c XSU(2)I and their U(1)r charges. We
start by allowing an arbitrary number of (left-handed)
Weyl representations under the standard group: i.e.,

J k I m

[SU(3)]: g 2+ g 1 —g 1 —g 2=0, (2a)

k l m

[SU(3)] U(1): 2 g Q;+ g Q + g Q;+2 g Q =0, (2b)

J m n

[SU(2)] U(1): 3 g Q;+3 g Q + g q;=0, (2c)

j k I m, n p
U(1)'. 6+g,'+3+ g +3+ g;+6+g;+2+q;+gq;=0. (2d)

The global SU(2) anomaly condition is

3j +3m+n =N, (2e)

where N is an even integer.
If we assume that the masses of the Weyl fermions

come only from the spontaneous breaking of the
SU(3)CXSU(2)I XU(1)r symmetries, it is straightfor-
ward to show, from Eqs. (2a) —(2c) and (2e), that the
minimal values for j, k, I, m, and n are, respectively, 1, 0,
2, 0, and 1 or 0, 2, 0, 1, and 1. These two sets of values
become equivalent when chirality is redefined. We use
the first set of values for the remainder of the discussion.
We rewrite Eqs. (2) as

t

not be zero. It turns out that the minimal value is p =1.
We therefore arrive at the well-known result that the
minimal Weyl representations under SU(3)c and SU(2)I
are the standard quark and lepton representations.

However, the triangular and global SU(2) anomaly-free
conditions are not sufficient to completely fix the U(1)r
charges of the Weyl representations for the standard
group. These U(1)r charges cannot be uniquely deter-
mined [since there are four unknown parameters for only
three equations —the fifth parameter is the scale of the
U(1) r charge and can be fixed in a variety of ways]. For-
tunately, there is still one more anomaly-free condition
that has not be used: namely, the mixed anomaly-free
condition

and

2Q, +Q, + Q2 =0,
3gi+qi =0,

(3a)

(3b)
Try=0

that requires

P
6Q, +3Q, +3Q2+2q3+ g q, =0 . (3c)

To determine the minimal value ofp, we first assume that
p =0. For this value, one finds an unphysical equation
from Eq. (3c),

Qi+2gigi+4Qi =0,
unless one accepts the trivial results that the U(1) r
charges of all the Weyl fermions are zero. Hence, p can-

2q1+q1 =0, (6)

Eq. (6) receives no contribution from SU(3)-color triplets
(quarks) because of the triangular anomaly-free condition
(3a), so that combining Eq. (6) with Eqs. (3), one gets

Ql 3'ql Qi 3qi Q2 3'ql ql

It is seen from Eq. (7) that all the U(1)r charges are
determined in terms of a single U(1)i charge, say q„
choosing the normalization q1 = —1—consistent with
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TABLE I. The quantum numbers of the (left-handed) Weyl
representations under SU(3)c X SU(2)L XU(1) & when all three
anomaly-free conditions are satisfied.

Particles

{i=1,2, 3) SU(3)c X SU(2)L X U(1) y

Q

l

QL
4
3

e L

zero electric charge for the neutrino —the resulting Weyl
representations of SU(3)c and SU(2)I and their U(1)r
charges are shown in Table I, in agreement with the stan-
dard model.

We thus find that minimality and freedom from both
the triangular and global SU(2) anomalies yield a unique
set of Weyl representations of the standard group that
correspond to the observed quarks and leptons of one
family. Furthermore, the U(1)r charges of these quarks
and leptons are quantized and correctly determined by
adding the mixed anomaly-free condition. ' Clearly, if
one lifts the minimality requirement, it is possible to ob-
tain as many copies of a quark-lepton family with the
proper quantum numbers as one wishes. However, no
limit is placed on the number of replications and so the
imposition of all three anomaly-free conditions does not
shed any immediate light on the "generation problem. "
It is conceivable that freedom from some as-yet-
unidentified anomaly in four dimensions, possibly for a
larger (but not simple) group in which the standard group
is embedded, would place a constraint on the number of
families.

Apart from the generation problem, it should be noted
that our demonstration, that all three anomaly-free con-
ditions are needed to determine the correct quantum
numbers of one family of Weyl fermions, is based on the
acceptance of the standard group as a starting point. But
the standard group only allows for left-handed neutrinos
and the situation changes if, for example, the standard
gauge is enlarged to the left-right-symmetric (LRS) gauge
group SU(3)c XSU(2)l X SU(2)z XU(1)~ L (Ref. 14).
With this group (and invoking minimality, as we did with
the standard group), it is easily shown that the (left-
handed) Weyl representations are those shown in Table
II. In deriving Table II, it is only necessary to impose the
first two anomaly-free conditions: the triangular and glo-
bal SU(2) anomaly-free conditions; the mixed anornaly-
free condition is automatically satisfied in a manifestly
left-right-symmetric theory such as the LRS model. As
in the case of the standard group, the anomaly-free con-
ditions do not, by themselves, help with the generation
problem.

The situation changes dramatically if one enlarges the

TABLE II. The quantum numbers of the {left-handed} Weyl
representations under SU{3)&XSU(2)LXSU(2}~XU(1)~
when the triangu1ar and global SU(2) anomaly-free conditions
are satisfied.

Particles

(i =1,2, 3) SU(3)~ X SU(2)L X SU{2)g X U(1)~

Zl

d
1

3

l
V

e, L

IL=

standard group or the LRS group to a simple (grand
unification) group. In that case, only the triangular
anomaly-free condition suffices to fix the Weyl represen-
tations and their U(1)r charges. This can be seen as fol-
lows. As is well known, the only candidate grand-
unified-theory (GUT) groups are' SU(N) (Ã )5),
SO(4n +2) (n ) 2), and E6. But is has been shown' that
the absence of the global SU(2) anomaly is guaranteed by
the triangular anomaly-free condition as long as the
SU(2) group is embedded in a simple group G with the
property m4(G)=0 (where m~ is the four-dimensional
homotopy group). Since every one of the candidate GUT
groups mentioned above satisfies the conditions of this
theorem, the global SU(2) anomaly-free condition is
redundant in determining the representations of a GUT
group. The mixed anomaly is also redundant for a GUT
group, albeit for another reason. The point is that free-
dom from the mixed anomaly requires the condition
Tr Y =0 to be satisfied and this follows automatically be-
cause the hyperchange Y is a generator of a GUT group
and therefore must be traceless. This is why the use of
the triangular anomaly-freedom condition alone has
sufficed for the three most studied GUT groups: [SU(5),
SO(10), and E6] with the respective triangular anomaly-
free representations: (5+10, 16, and 27). It is intriguing
that the quantization of hyperchange (and therefore elec-
tric charge) is such a trivial result for a GUT group but
requires the cancellation of the mixed anomaly for the
standard group.

We conclude that the resolution of the question of the
uniqueness of the massless fermion representations and
the U(l) r charges for the standard group, when viewed
from the standpoint of the three known chiral gauge
anomalies in the four dimensions, argues strongly for
some form of quark-lepton unification, ' at least for one
family. This is so unless the absence of the global SU(2)
chiral gauge anomaly and the cancellation of the mixed
chiral gauge-gravitational anomaly are sheer accidents in
the standard model, which seems very unlikely.
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