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Spontaneous breaking of Lorentz symmetry in string theory
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The possibility of spontaneous breakdown of Lorentz symmetry in string theory is explored via
covariant string field theory. A potential mechanism is suggested for the Lorentz breaking that may
be generic in many string theories.

The basic bosonic string has a highly constrained
structure that for consistency requires a 26-dimensional
spacetime. Similarly, the superstring requires ten dimen-
sions. A dramatic metamorphosis must therefore take
place if strings are to describe a world with four Hat di-
mensions. One appealing idea is that the extra dimen-
sions compactify. For this to happen, the 26- or 10-
dimensional Poincare symmetry must be broken. In most
approaches, the occurrence of compactification must be
assumed because there is no known mechanism for the
breaking.

In this paper we investigate the possibility that
Lorentz-symmetry breakdown is natural when the pertur-
bative string vacuum is unstable. We present a potential
mechanism for the breaking that may be generic in many
string theories.

The basic idea is that Lorentz invariance can be spon-
taneously broken by the generation for Lorentz tensors of
negative square masses. Whether this happens is most
easily analyzed using covariant string field theory. In this
paper we examine the covariant field theory of open bo-
sonic strings' to determine whether the right couplings
are present for spontaneous Lorentz-symmetry breaking.
Support for this idea also comes from the o.-model ap-
proach.

In a particle field theory, spontaneous symmetry break-
down occurs when symmetries of the Lagrangian are not
respected by the ground state of the theory. This situa-
tion arises if the naive perturbative vacuum, in which all
fields have zero expectation value, is unstable. In a true
vacuum, some fields acquire nonzero expectation values
and any symmetries of the Lagrangian not leaving invari-
ant these values are spontaneously broken,

In covariant string field theory, the same ideas apply.
For spontaneous breaking of Lorentz symmetry, the
fields of interest are ones transforming nontrivially under
the Lorentz group. These are tensor fields. We denote
them generically by T (x), where the composite index
M =pv . - . p consists of one or more Lorentz vector in-
dices. If any quadratic term in T acquires a negative
coefficient in the potential, some of the components of T
obtain nonzero expectation values and the Lorentz group
undergoes spontaneous symmetry breakdown.

Consider the Witten field theory of open bosonic
strings. ' As the tachyon field P(x) has the wrong sign for

its mass squared, the naive perturbative vacuum is unsta-
ble. These are three possibilities: ( P ) is infinite and the
theory is ill defined; ( P ) is nonzero and positive; or ( P )
is nonzero and negative. Below, we suggest that in the
latter case the coefficient of the quadratic term for the
massless vector field 3"(x) in the potential becomes
nonzero and negative, whereupon Lorentz-symmetry
breakdown takes place.

The expectation ( P ) is difficult to calculate even at the
tree level. The minimum of the static effective potential
V(P) for P must be found. Since at the tree level V(P)
receives equally important contributions to all orders in
the coupling and no systematic truncation is known, its
derivation requires knowledge of the arbitrary n-point
off-shell tachyon amplitude. Only recently have the off-
shell four-tachyon amplitude and the four-point contri-
bution to V(P) (Ref. 5) been obtained. At present, the
higher-order tree contributions involve arduous computa-
tion. Nevertheless, we show that the occurrence of spon-
taneous Lorentz-symmetry breaking is both possible and
natural in string theories.

The static potential in the Witten string-field theory
has the form

V( IS'I, I T~ I ) =—,
' g I, S'SJ+ ,"' g M,"—TMTJ

l,J 1J

y g sssS iSjSk1
ijk

i,j , k

+ —,
' g g&k S'TQT" +(TTT term),

i,j,k

where S' denotes a generic scalar field, m; and M;. are
the scalar and tensor mass-squared matrices, and g; k,
g, .

k are coupling constants determined in Ref. 6. The
TTT term involves three tensor fields with tensor indices
appropriately contracted.

In the Siegel-Feynman gauge, the string field
satisfies b0%'=0, where bo is the zero mode of the an-
tighost b (z) (Ref. 8). This yields the expansion

%=[/(x)+a" A (x)+ ]iO)

where ~0) is the first-quantized string vacuum. Equation
(l) becomes
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A2
V(P)= —~ + —P +—'gA 3"Q+2a' 6

(3)

where g is the three-tachyon coupling at zero momentum.
It is related to the on-shell three-tachyon coupling g via

3
3&3

4

n =2

Note that for g & 0 if ( P ) is finite and random values of
U„are assigned then a negative expectation (P) is more
likely than a positive one. This is due to the sign of the

term in Eq. (3), which favors a negative value of (P).
Hence, spontaneous Lorentz-symmetry breakdown is also
favored. The same conclusion holds for g & 0.

The key reason why tensor fields can acquire negative
quadratic couplings in the potential is the presence of
static scalar-tensor-tensor couplings in Eq. (1). This is a
string effect; such couplings are not possible in renormal-
izable particle theories. For example, renormalizable
theories of scalars and vectors in four dimensions are
necessarily gauge theories, as gauge invariance is needed
to remove unphysical degrees of freedom. The trilinear
terms in the Lagrangian are of the form A '"B„P~P";they
do not contribute to the static potential due to the pres-
ence of the derivative. Although these theories also con-
tain scalar-scalar-vector-vector couplirigs, such terms
lead only to positive quadratic coefficients for the vector
fiekls when the scalar s acquire vacuum expectation
values.

The open bosonic string avoids these constraints.
First, the theories are well behaved at short distances be-
cause the string is an extended object. This can be seen in
the string field theory; the fields f(x) that enter in the tri-
linear interaction term are related to the basic local fields
f (x) by

3i/3 f (x);

The perturbative vacuum is unstable because of the
first term in Eq. (3). The expectation (P) must be
nonzero. If (P) is finite, the vacuum is stabilized. Ignor-
ing loop effects and tree-level contributions from other
scalars, the mass Mz of 3"is given by

M =—"g(p)
For the case of negative ( P ), this expression is negative
and spontaneous symmetry breaking of the Lorentz
group occurs.

One way of determining (P) from the functional in-
tegral is to integrate over all fields S' and TQ except P(x).
This generates a tree-level effective potential for P. The
static potential V(P) is then found by setting p=0 in
P(p), the Fourier transform of P(x). An off-shell calcula-
tion is required because p =0 rather than p = I/a'. Via
this procedure, the P term in V(P) was obtained in Ref.
5. To determine (P) definitively, explicit knowledge is
needed of the coefficients v„in

where Q is the Becchi-Rouet-Stora-Tyutin (BRST) opera-
tor, e is the Witten star product, and A is a string field
that contains an infinite number of gauge parameters.
These invariances include 5A"=8"A,+ . , where the
gauge parameter X is the first component in
A=[A(x)b, + . ]~0) and b, is a component of the
antighost b(z) (Ref. 8). The other fields in A generate
other gauge invariances. Remarkably, terms such as
A"A„Pin Eq. (3) are compatible with these gauge trans-
formations. The infinite number of particle fields in 4
and the infinite number of trilinear interactions make this
possible.

In summary, the constraints of renormalizability and
gauge invariance rule out spontaneous symmetry break-
ing of the Lorentz group in a particle field theory. How-
ever, this does not apply to string theories even though
they are well behaved at short distances and possess
gauge invariances. Lorentz-symmetry breaking can arise
from static tensor-tensor-scalar couplings that are al-
lowed because strings are extended objects containing an
infinite number of particle modes.

If the Lorentz breaking occurs, it is nonperturbative in
g. Replace

S'S'—+
CX g

TM
~M~

CX g

and set
SS ( TT

lJ s & IJ

SSS SSS— STT STT—
gijk Cijk g~ gijk Cijk g

(10)

Since g;.k and g,k are proportional to g, c k and c. k
are pure numbers. The potential in Eq. (1) becomes

V(IS'I, IT~I )= —,
' g c S'S + ,' .g C" T—MT

i,J f, J

+—g c S'S~S1
IJk

i,j,k

STTSIZ J Z
kM

2 ~ ijk M
i,j,k

+(TTT term)

Equation (11) shows that the breaking is determined in
terms of numerical coefficients independent of the cou-
plings. This means that systematic approximation is
difficult. The equation also implies that if P or any other
scalar field has a nonzeqo vacuum expectation value then
it is of order I/(a'g) and the contribution to the cosmo-
logical constant is of order 1/(a' g ).

that is, they are smeared out over a distance I/&a'.
Second, the presence of tensor fields necessitates an

enormous gauge group. The field theory has such gauge
invariances:
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The above analysis focused on the dynamical effects of
the tachyon. There is another approach to analyzing the
vacuum physics. Instead of using the efFective tachyon
potential, one can find solutions to the equation of
motion. They are obtained by varying Eq. ( I) with
respect to the various fields. A solution in terms of con-
stants corresponds to a set of vacuum expectation values.
If (P)&0 then (S')&0 for the other scalars because
whenever g;~~ &0 a term proportional to (P) S' is gen-
erated. These linear terms in S drive further instabili-
ties. If the open bosonic theory is well defined and (P ) is
finite, the theory is radically different from the first-
quantized approach. Virtually every scalar acquires a
nonzero vacuum expectation value. The resulting mass
matrix for the tensor fields is

u' =M'+ y g'"(S")

If At; has any negative eigenvalues then spontaneous
breaking of Lorentz symmetry occurs.

What are the possibilities for Lorentz-symmetry break-
down in string theories other than the basic open bosonic
one7 The simplest extension is to incorporate internal
symmetries by adding Paton-Chan factors. The above
analysis of Lorentz-symmetry breakdown carries over to
this more involved case. There is now also the possibility
of spontaneous breaking of the internal symmetry, which
was studied prior to the existence of an off-shell forrnal-
ism in Refs. 10. It may be that both Lorentz and internal
symmetries are broken in the presence of the Paton-Chan
factors.

One can also consider the closed bosonic string. Its
Lagrangian in terms of particle fields has not yet been de-
rived but there is no reason to expect that nonderivative
scalar-tensor-tensor couplings are absent. Since there is a
tachyon, the perturbative vacuum is unstable. %'hen the
tachyon acquires a vacuum expectation value, the mass
spectrum changes radically. Scalar-tensor-tensor cou-
plings of the appropriate sign would again generate
Lorentz-symmetry breaking.

This mechanism might also work for the spinning
string. In contrast, superstrings lack a tachyon field.
However, the role of the tachyon might be played by the
dilaton 4. In principle, a nonzero vacuum expectation
value ( N ) and appropriate interactions can lead to nega-
tive quadratic couplings for some tensors resulting in
spontaneous symmetry breakdown. However, in addition
to the three cases enumerated above, a zero value of ( N )
is possible since the first term in Eq. (3) is absent. This
case corresponds to a stable perturbative vacuum in
which Lorentz-symmetry breaking is unlikely.

Other string theories that are good candidates for
spontaneous Lorentz-symmetry breaking include the
heterotic strings with tachyons. " This large subset of
heterotic theories may also have stable vacua. This idea
is made more plausible by the existence of compactified
solutions that do not contain tachyons even though the
parent theories do. ' Internal symmetries may also be
spontaneously broken in this cases.

There remain several interesting areas for exploration.
For example, a nonperturbative argument demonstrating
spontaneous Lorentz-symmetry breaking would be satis-
fying. Another intriguing question concerns the nature
of the breaking. In principle, there might be several
minima of the potential leading to different possibilities
for Lorentz-symmetry breakdown. Even for the attrac-
tive case of only one global minimum, the presence of
higher-energy local minima could affect, for example,
string-based cosmology and the evolution of the
Universe. Finally, it is unclear whether negative quadra-
tic couplings for tensor fields in the potential correspond
to compactification. Presumably, when gravity is incor-
porated certain components of the graviton acquire
masses in analogy with the Higgs mechanism. The effect
of this on the spacetime manifold needs to be investigat-
ed.
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