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A Hamiltonian formulation of linearized topologically massive three-dimensional gravity is
presented.

There are very few pathology-free wave equations
which are of order higher than two in derivatives. Only
two examples are known to the author: the singleton di-
pole, ' which has four, and topologically massive three-
dimensional gravity, which has three. Presumably, there
are further examples, but it is clear that they are unusual,
and hence they may deserve some attention.

Here we will give a Hamiltonian analysis of the linear-
ized limit of the latter example, which will enable us to
see at a glance how the number of degrees of freedom
rises from zero (in the massless case) to one, due to the
extra time derivative.

A Hamiltonian treatment of this system was actually
given recently by Evens and Kunstatt|. 'r, starting from a
reduced form of the action given in Ref. 2. This is excel-
lent if one's primary interest is to reach the reduced
Hamiltonian quickly, but it has the drawback that the lo-
cality properties of the theory are obscured, and the
overall view of the initial-value problem is lost (the same
goes, mutatis mutandis, for the light-front approach of

Refs. 4 and 3).
Anyway, the local action is

S =SH+Scs,

where

S„=f d x(r-,r'..—r'.r .,),
S = „d're ~~I1

CS vy oPa &

2p

where the linearized Christoffel symbol is defined as

'epv= p(hop, v+hav, p hpv, )o

(Greek indices run from 0 to 2, latin indices from l to 2,
and we use a spacelike metric. Derivatives are denoted
by commas. )

From now on, we will set the mass term p=1. After a
modest amount of manipulation, the action can be
brought to the form

s=fIK, K, K+I, kI"k,"—rkkr ;+ ,'n(h—kk, , "h—k,k)+e)[Kk—Kko+ ,'Nkl p,, ;t+ ,'—Kk(hk tt h—j(kt
—2n k )]—I, (3)

where n, lV; are the linearized version of the lapse and
shifts, i.e.,

h =boo, Ni. ="io (4)

K,) =T'(N, +N~ h,) o)

and E," is the linearized version of the extrinsic curva-
ture, which is defined in terms of the dynamical variables
by

We are now ready to perform the canonical analysis.
The action involves time derivatives of order higher than
one, but it is well, although perhaps not widely, known
how- to deal with this. We will proceed without too much
comment, and refer the reader to Ref. 5 for clarification
of the procedure. It is instructive to check it out on
something simple, such as the two-dimensional point-
particle action

S =f dr( ,'x x"+e„—x"x) .

K is the trace of K; . The following "momenta" are defined:
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1~a
pmn =

gI 2 i(m n)i
mn, 00

mn
mn, 0

=6 „E—K „+g,.(
- ~„),0

4 j (m( n)j, iihj'l, ln) 2n, n)j ) r

= a —1
pm ~ 2&miKik, k+ 26) iaX,O

=0.

Note that p „ is automatically traceless. The canonical
variables in the naive phase space obey the naive brackets

[here and elsewhere, [ A, B j is shorthand for
[ A (x),B(Y) j]

[q;, P., j =-,'(5;k5jl+5il5jk 5' 5kl )5(x y)

[hj'~kl j (5'k5jl+5'l5jk»(x —y»
[N;,p, j =5; 5(x —y),
[n,p j =5(x —y) .

Here, q,, = the traceless part of h . o (and is hence a
canonical variable).

The canonical Hamiltonian density is defined as

h—oop +h. 0~;j+Ni()p

and turns out to be

&&,=q; ir,&+N~;m "—,'(m;;+ 'e—;h l
—l;) —;.~; +I;kkI ";—I'; kI k;.

+ ,'n (h—j;j h;; jj )—+ ,'ej[kk(—2n kj+hj, ,k —
hjk ll ) Nk1';kj—;i], (10)

where E,j=the trac. eless part of K,".
By inspection, we find the primary constraints

0'mn Pmn +
p ~i(mKn)i

4m Pm 7~i m ik, k 2 ij mi,j

They obey a naive Poisson-brackets algebra whose only
nonvanishing brackets are

[q;j,qki j
*= ,'e;—)5—„5(x—y)+ (k~l)+(i~j ),

[q;,p„j*=—,'(5;„5.+5 a; —5;.a„)5(x —y),

[ h 'j ~kl j ( 5 'k 5jl +5il 5k; »(x —»
(14)

[p, ,p, j'= ,'(ek, a—ka—, ek, aka—, +&,, akak)5(x —y),
[n,p j*=5(x—y),
[N;,p j*=5;5(x —y) .

[(t);,Pk, j
= )e;)5 k5(x —y—)+(i.~j )+(k~1),

[P;,Pj j
= ejakak5(x ——y),

[P, , (t)k, j = ——„'[ek;a, +ok 5,,a +(k 1)]5(x —y) .

(12)

Q= hii, kk hij, ij 2Elj Kik, kj 0
(15)

Finally, some secondary constraints are needed for
consistency of the time evolution:

X[y „,y, j=o. (13)

The Dirac brackets among the remaining phase-space
variables turn out to be

(Here and elsewhere, the derivatives on the right-hand
side are derivatives with respect to x. )

So there are second-class constraints in this model.
There is some freedom in the choice of which ones we re-
gard as second class, however. P is a possible choice, but
it leads to nonlocal Dirac brackets, and also it precludes
the later use of the gauge N; =0 (the linearized version of
Gaussian coordinates). For this reason we prefer to re-
gard P;.—which is traceless, so this is again two
constraints —as second class. Hence p, is removed from
phase space, which is natural since the action is linear in
the second-order time derivatives. Computing the Dirac
brackets of the remaining primary constraints, one finds
that they are zero, so that only two second-class con-
straints are present:

[~„~,j*=[~„~,j —[~„~kl j [~kl, d..j-'

27rijj +4Ekj(hjl'lk, hj, kll ) 0 .

These are the linearized versions of the Hamiltonian and
vector constraints in the nonlinear theory. The most
economical way to compute the secondary constraints is
to take the naive Poisson brackets of the canonical Ham-
iltonian with the first-class combination

and to implement the second-class constraints afterwards.
At this point, we have all the constraints, and one checks
that their Dirac-brackets algebra is Abelian.

To sum up, the phase space of the model under study is
spanned by the eight variables h;. , m;, and q;. (plus the
lapse and shifts), subject to the three first-class con-
straints in Eq. (15). The Dirac brackets are given in Eq.
(14) and the canonical Hatniltonian in Eq. (10). The
number of first-class constraints is the same as in the
massless model without the extra term Scs in the
action —naturally, since the gauge in variance is the
same —but the presence of double time derivatives in the
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action has led to two new dynamical variables q; =the
traceless part of h; 0. The latter also have to be specified
before one has a well-defined initial-value problem. Qne
can check in various ways that these extra degrees of
freedom in fact describe a massive excitation.

We have not studied the interacting model, although it
has some very interesting properties for a toy model. In
particular, one expects the mass p to be quantized in a

Riemannian space, but not in a Lorentzian space-time.
Figuring out how this hangs together in the quantum
theory might teach one something about the signature of
our world.

This work was done while I was a guest at Imperial
College and I am grateful for the hospitality. Special
thanks go to Victor Aldaya for discussions.
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