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Longitudinal modes in classical Yang-Mills plasma
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A classical nonperturbative study of the longitudinal modes in a Yang-Mills [SU(2)] plasma is
carried out. A new periodic non-Abelian mode is found which alternates with the usual Abelian
plasma mode. When the non-Abelian terms in the equations become large, chaotic behavior sets in.

I. INTRODUCTION

Currently, there is much interest in the theoretical and
experimental investigations of the quark-gluon plasma
(for recent overviews of the field see Refs. 1 and 2).

In this paper, we examine the longitudinal (plasma) os-
cillations of a classical Yang-Mills (YM) plasma. Our
prime motivation is to find qualitatively new features that
arise in the plasma due to its non-Abelian character. It
ought to be mentioned that such time-dependent effects
cannot be investigated with the present-day simulations
of QCD on the lattice, and very likely, perturbative
methods may not be adequate for fully exhibiting the
non-Abelian effects. In addition, there are serious
difficulties with finite-temperature perturbative QCD as
emphasized by Nadkarni. We believe therefore that it is
useful to carry out nonperturbative studies of the YM
plasma with the expectation that essential non-Abelian
features that show up in such studies would survive in a
full quantal treatment.

Some preliminary studies of the classical non-Abelian
plasma have been carried out by Kajantie and Mon-
tonen. In their work, the classical particles in the plas-
ma are described by three variables: density n, velocity
V, and color charge I, (a=1,2, 3). Consequently, the
plasma particles generate a four-current density which
acts as a source for the generation of Yang-Mills fields
A,". The authors write down a set of hydrodynamical
equations for the plasma variables n, V, and I, which are
consistent with the classical equations of motion for the
colored particles in external Yang-Mills fields obtained by
Wong. A major difference from an Abelian plasma is
the feature that the color charges I, are also dynamical
variables, since the particles exchange color with the
non-Abelian fields. A limitation of almost all classical
work (for discussion see Heinz ) on YM plasma is that
the (thermodynamic) equilibrium background for the
non-Abelian waves has been ignored. Inclusion of these
"thermal gluons" is difticult and remains an unresolved
problem.

Kajantie and Montonen examine some specific solu-
tions for the Yang-Mills fields in the plasma. In particu-
lar, by assuming a plane-wave-type solution for the fields
obtained by Coleman, they determine the four-current
density that would produce such a solution. Further-

more, they use Wong's equations of motion for the parti-
cles to relate the current density to the non-Abelian
fields. Such a self-consistent determination of the fields
results in nonpropagating oscillatory solutions having fre-
quency co which is the plasma frequency. It should be
noted that their solution is harmonic which can also re-
sult from an Abelian (linear) theory. In addition the solu-
tion is not purely longitudinal as the waves produce both
color-electric and -magnetic fields.

Our interest is in looking for essential1y non-Abelian
(nonlinear) oscillatory modes that are purely longitudinal
(no color-magnetic fields). For simplicity, we study the
Yang-Mills [SU(2)] plasma, governed by the hydro-
dynamic equations of Kajantie and Montonen. We ob-
tain a closed set of equations for the longitudinal color
fields which are derived in Sec. II. It is not possible to
find analytic solutions to these equations and hence we
have solved them numerically. Results of the numerical
calculations are presented in Sec. III. Section IV con-
tains a summary and some conclusions. We also discuss
other questions of physical interest that ought to be ex-
amined- within the classical theory.

II. EQUATIONS FOR LONGITUDINAL
OSCILLATION S

As stated in the Introduction our aim is to describe the
collective longitudinal oscillations of a classical YM
[SU(2)) plasma, using the simplest "hydrodynamic"
description. Equations governing the behavior of such
plasmas in the cold "collissionless" limit (dominated by
long-range encounters) were first written by Kajantie and
Montonen. These authors derived a set of gauge-
covariant equations based on the classical equations of
motion for the gauge fields and the classical equations of
motion for a colored particle in external chromofields
(Wong ). We now briefiy review these equations.

The equations of motion for the Yang-Mills gauge
fields are given by

B„F~ +ge b. A„bF~ =j. .

Here the color indices a, b, c =1,2, 3 and the Lorentz in-
dices p, v=0, 1,2, 3 with the metric (1,—1, —1, —1). g is
the dimensionless coupling constant and e,b, is the com-
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The source current j, is generated by the particles and is
covariantly conserved

a.j.+go.„A.bj, =0 .

Following Refs. 4 and 5, the components of this four-
current are written as

~ 0
Ja =g g iigIga ~

A

g, =g gn„V„I„, ,

(4a)

(4b)

where A denotes a group or a species of colored particles,
n ~ is their number density, and I~, is the associated a th
component of the color vector. Note that the quantities
I„, play a role similar to charge in electrodynamics.
However, unlike electrodynamics, I~, are components of
a vector quantity, the color vector, and are dynamical
quantities, i.e., evolve with time. This is so because color,
unlike charge, is exchanged between waves and particles.
The dynamic nature of I„, forms an important conceptu-
al difference between classical electrodynamic plasmas
and the non-Abelian Yang-Mills plasma being studied
here.

A set of nonrelativistic hydrodynamical equations con-
sistent with Eq. (3) were obtained in Ref. 4. These are

Bng
+V (n„V„)=0,

at
(Sa)

Vg+(V„.V)Vg = I~,(E, +V„XB,), (Sb)
a
Bt " " mz

a + V„.V I„,= ge, b, ( Ab —V„~ Ab )I„,—. (5c)
at

In Eqs. (5a)—(Sc), n„, V„, and I~ denote continuum
functions of (x, r ) and m z denotes the mass of quark
species A. Equation (Sa) is the mass continuity equation
Eq. (Sb) is the force equation, and (5c) describes the dy-
namics of color charge vector I„,. Equations (1)—(5) are
a closed set of equations which may be utilized for a
description of self-consistent collective nonlinear oscilla-
tions of a non-Abelian plasma. These equations are
deficient in that no finite-temperature contributions, ei-
ther from thermal gluons or from finite quark pressure
have been retained here. The former diSculty is well
known and arises because to date one has not been able to
find a gauge-covariant way of writing a kinetic or hydro-
dynamic equation for thermal gluons (Heinz ). The
neglect of quark pressure is a reasonable approximation
for iong-wavelength Auctuations where the thermal
dispersion effects are negligible.

In order to determine the efFect of gauge transforma-
tions on Eqs. (Sa)—(5c) we need to know the gauge trans-
formation properties of the variables n„, V„, and I„,.
Since n~ and Vz do not depend on the internal color de-
grees of freedom they are invariant under the gauge

pletely antisymmetric Levi-Civita tensor. The field ten-
sor F," is given by

F,"'=d" A, BA—,"+g e, , At; A, .

transformations. The color charge vector I„„however,
transforms covariantly under the gauge transforma-
tions —i.e., Iz —+UI& U '. This can be deduced from
Eqs. (1) and (4), knowing that the left-hand side of Eq. (1)
transforms covariantly, and therefore the four-current
density must have the same property due to the require-
ment of covariance for the equation of motion [Eq. (1)].
In view of these gauge properties it follows that Eqs. (5a)
and (Sb) are gauge invariant whereas Eq. (5c) is gauge co-
variant.

Equations (1)—(S) are a set of nonlinear partial
difFerential equations which are difBcult to solve in their
full generality. We shall look for special solutions of
these equations which are nonlinear plane stationary
waves. Thus, we assume that the potential 3" depend
only on the variables xo and x3 (say) and that too only
through the single variable g=x3+Pxo. Mathematical-
ly, this assumption converts partial differential equations
to ordinary differential equations because Bx3=1/dg
and Bxo=Pd/dg. Physically, the crucial assumption
here is that the nonlinear solutions are stationary in a
frame moving with the phase speed P. Such nonlinear
stationary plane-wave solutions are widely discussed in
the electrodynamic plasma literature and have also been
considered for non-Abelian fields. ' The phase velocity P
plays the role of a parameter in the final equations.
Sometimes one may find restrictions on the values that P
can assume for solutions to be real; often, as in the
present case, P turns out to be unrestricted.

In our subsequent discussion, we shall assume that
waves we study are purely longitudina/, i.e., that we may
ignore the coupling to color-magnetic fields. It can be
directly shown from the field equations that if 3 ', 3
and their derivatives are zero at /=0, then their deriva-
tives are zero for all values of g. Physically, this means
that the symmetry properties of the field and plasma
equations ensure that a pure longitudinal disturbance in
the plasma may propagate independently, completely un-
coupled to the color-magnetic perturbations. It is these
nonlinear longitudinal disturbances that we shall study in
the paper.

For a study of the dynamic perturbations, we now
make the gauge choice A =0. The only nonvanishing
field strength may now be written F., =F, = —BoAO
= —Pa,' where A, :—a, and the prime denotes
differentiation with respect to g. One can also write
Ampere's equation in this case from (1). We get

aa= pja.-=1 3 (6)

We next derive an expression for the source current j, in
terms of the fields using the hydrodynamic description of
Eqs. (4) and (5). We consider the hydrodynamic equa-
tions for two species —i.e., A = 1,2. It should be stressed
that we need at least two species to satisfactorily describe
an equilibrium for the plasma. This is necessary in order
that we may have overall color neutrality in the plasma in
equilibrium. We thus assume that, in equilibrium,
n io n 2o

=n o, the velocities v &o
= v zo

=0 and the color
neutrality condition I„o+I2,0=0. Equation (5) on in-
tegration yield the foHowing relations:
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n„=@no/(P+u„),
r

u„=—p+p 1 — I„,Q,
2g

Pl g

1/2

(7a)

(7b)

@no
&gbg abIg (7c)

Equation (7c) may be combined with Eqs. (4b) and (6):

1g(Ig )'= E b Qbj 6 b QbQ
A no no

Integration leads to the conservation law

I„+I2,=(p/nO)e, b, QbQ,
' . (7d)

j,=gn, u, I„=gPno eabcQbQ, '+I„o
no

' 1/2

1 Il oQ
2g

Pl l

which may be substituted in the Ampere's law equation
(6) to give the final nonlinear field equation

We now assume for simplicity of calculation that one
species is much heavier than the other, so that (say)
m2&&m&. In this case we may set U2=0, which in turn
implies that I2a const = +I2ao Iiao We may now
write

x, = —3x, +(e/3/3)(xzx3 x3xi)x»
x 2

= ( e/3/3 )(x3x l x l x 3 )x»
x3 =(e/3/3)(x, x2 —x2x, )x, .

(10a)

(lob)

(10c)

to the condition (gI„o/m, p)Q, «1 which is equivalent
to ~u„~P&&1, i.e., the directed particle velocity in the
wave fields is much less than the wave phase velocity. At
the same time, the retention of non-Abelian terms means
that we must have gQ/~k~) 1 where ~k~ measures the
magnitude of derivative term ~Q'/Q~. A more detailed
discussion of the range of validity of this assumption is
presented in the discussion section at the end. Equation
(9), which treats the plasma in an approximate and linear
manner, may be given a simple derivation (see Appendix
A). The oscillations in this case are interpreted as non-
linear temporal oscillations and have no spatial depen-
dence (d/dx3~0). For finite wavelength perturbations
(d/dx3&0), the correct interpretation is still in terms of
the variable g =x 3+/3xo or its temporal analogue
r=g/P=xo+ (x3/P).

To proceed further we take, for simplicity,
I»o=I,2o=I»o =Io and—also define ro~ =g no(Io) /m, .
We further rewrite Eq. (9) in a neat symmetrical form by
introducing scaled normal-mode variables, which remove
the coupling between a &, a2, a3 arising through the linear-
ized first term. We thus introduce the quantities
Q,*=QoQ, (where Qo is a normalizing scale factor for the
vector potential), x, =Q*, +Qz +Q3, x2=3/3/2(Q",
—

Q3 ), x3=3/1/2(Qi —2Q2 +Q3 ), oi (g/p)=t. The re-
sulting equations are

gno
Qa gEabcQbQc + Il O

X 1 — 1 — I„oQ,2g
Pl l

' —1/2

The assumption of weak plasma nonlinearity corresponds

The neglect of the motion of heavy species m2 is very
similar to description of high-frequency plasma oscilla-
tions in a classical electron-ion plasma where the ions
(heavy quarks) only provide a (color) neutralizing back-
ground of charges.

We observe that Eq. (8) contains two types of nonlinear
terms: those arising from the non-Abelian nature of the
theory (first term in the first set of large parentheses) and
those arising from the hydrodynamic framework used to
describe the plasma (second term in the square brackets).
It is well known that the latter type of terms are also
present for an Abelian (electromagnetic) plasma. Since
our main interest is in the study of non-Abelian effects,
we expand the square root in Eq. (8) and retain only the
terms linear in the field amplitudes a, . We then obtain
the equation

g no
2

g
a 2 laO(IlbOQb ) (6 b QbQ )(IldOQd )

mP Pl

(9)

—(M, +M2+M3 )
—3M, =M,

where

and

M& =x2x3 —x3x2,

M2 =x3x
&

—x &x»
(13)

M3 =x &x2
—x2x i .

Equation (11) describes an energy conservation law.
Note that the first three terms on left-hand side (corre-
sponding to the "kinetic energy" of the effective particle)
actually describe the energy in the longitudinal color-
electric fields. The fourth term, i.e., the "potential ener-
gy" term describes the mean kinetic energy of plasma
particles in the color-electric fields. Equation (11) thus

&n Eqs. (10a)—(10c), the overdots denote a differentiation
with respect to the dimensionless parameter t and
e=g IoQ o /m, Qi is a parameter characterizing the

1 p
strength of the non-Abelian terms.

Equations (10a)—(10c) may be interpreted as the equa-
tion of motion of an "effective particle" with three de-

grees of freedom in a nonlinear potential field. It can be
shown by direct calculation that these equations have the
following conservation laws:

—'(x +x +x )+ 'x =E
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has a clear physical interpretation in terms of exchange
of energy between the color-electric fields and the kinetic
energy of plasma particles. Equation (12) is related to the
conservation of an angular-momentum-like vector in
color space. Note from Eq. (7c) that M& 2 3 are related to
color charge Auctuations being carried by the Yang-Mills
fields. In the absence of matter we have the conservation
law M&+M2+M3 =const. The last term in Eq. (12) is
a consequence of color charge being exchanged between
the chromofield and the material particles. It should be
emphasized that the conserved quantities E and M are
gauge invariant. This is explicitly demonstrated in Ap-
pendix B by making a gauge choice A,"=5 A, and
demonstrating that E and M are independent of 5. Final-
ly, it is worth pointing out that for the exact equations
(Eq. 8) we have a different material particle kinetic energy
term in the energy-conservation law, Eq. (11), but have
precisely the same form for the angular-momentum-
conservation law, Eq. (12).

III. NUMERICAL CALCULATIONS
AND RESULTS

We have obtained numerical solutions of Eqs.
(10a)—(10c) for diFerent initial conditions and difFerent
values of the parameter e. The procedure used for in-
tegrating the equations was the Runge-Kutta method
with variable step size. The results are presented in Figs.
1 —4.

We have chosen to present the results in terms of the
scaled normal-mode variables x &,x2,x3. As emphasized
in Sec. II, the choice of these variables is such that only
genuinely non-Abelian terms couple them to each other.
These variables are therefore just right for displaying the
characteristic features of non-Abelian physics. Physical-
ly, they are related to algebraic combinations of the color
vector potentials A, . These in turn are simply related to
color-electric fields (E, = —Pa,') and color density fiuc-
tuations [through Eqs. (7a)—(7d)]. The choice of the ini-
tial conditions for the numerical computations is such
that it displays most of the general classes of solutions ob-
served by us. A given set of initial conditions is only to
be treated as representative of a typical class of solutions.

It is obvious that when @=0,we have the usual plasma
oscillations for x„with the frequency v 3' whereas
x 2 x 3 increase linearly with t. For e&0 and not too
large, the x1 solutions exhibit two periodic modes. These
are shown in Figs. 1 and 3. In both the cases, we first ob-
serve for small values of e the plasma mode, which is fol-
lowed by a new non-Abelian mode. The non-Abelian
mode is different from the Abelian one both with respect
to amplitude and frequency. This is seen more clearly in
Fig. 2 where the oscillations between t; =250 and tf =500
of Fig. 1 are plotted on an expanded scale. It is easy to
estimate from this figure that the frequency of the non-
Abelian mode is nearly four times the plasma frequency
(&3'~). Although these two types of motion occur
periodically it is not completely clear when the crossover
from the plasma mode to the non-Abelian mode occurs.
It seems to depend upon the phases of x2 and x3. The x2
and x3 motions are for @&0bounded but show no special

1.0

0.5

Xl 0.0

-0.5

-1.0

I I I I I I j I I I I I I I

0 200 400 600 800 1000

FIG. 1. Oscillations of the field variable x &. e/&3=0. 05 and
the initial conditions are x

&
=x& =x3 =0 and x', =2, x 2

= 1, and
x3 =3.

features. For a large value of e (Fig. 4), we find intermit-
tency or chaos in x, motion. The x2 and x3 motions are
also quite irregular.

In order to better understand the non-Abelian mode
seen in Figs. 1 —3, we write Eq. (10) in a form which is
similar to Euler's equations for rigid body rotation. With
the color vector M defined in Eq. (13) and r=(x&,xz, x3)
we can write Eq. (10) as

dM
dt

—ex (r X M) =~, (14)

where the torque a=3co~x, (0, —x3,x2). Euler's equation
for a rigid body rotation is

dL +a) XL=N,
dt

where co is the angular velocity. Very qualitatively, we
therefore think that the non-Abelian mode corresponds
to some kind of precession in color space.

It is worth recalling here that the numerical results
shown in this section do not include the nonlinear plasma
terms [see discussion after Eq. (8) in Sec. II]. We have
found after extensive calculations, however, that the in-

].5 -~I r ~
—

i r-I—r
—r r —g r~r~ i s»» s & s s

1.0
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-1.0

I

250 300 350
t

, !.. . , I. . . , I, ,
-

400 450 500

FIG. 2. Oscillations of the Geld variable x&. The valUes of
the parameter e and the initial conditions are the same as those
in Fig. 1. The scale for the variable t is expanded.
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FIG. 3. Oscillations of the field variable x &. e/&3=0. 05 and
the initial conditions are x& =x2=x3=0 and x& =2, x2=0. 1,
and x3 =0.3.

elusion of these terms does not affect in any significant
way the basic features seen in the four figures.

IV. SUMMARY AND CONCLUSIONS

We have studied the effects of non-Abelian terms on
the longitudinal oscillations of a classical Yang-Mills
plasma. In contrast with earlier work, we have retained
the non-Abelian terms entering through the dynamical
equations for the color charge vector. We find that for
certain ranges of the parameter e, which measures the
strength of the non-Abelian term, there exists a new
periodic mode which alternates with the usual (Abelian)
plasma mode. It is very difficult to see how this novel be-
havior could have been obtained from perturbative calcu-
lations. We have also shown that for large values of e,
these classical modes lead to chaotic behavior.

In carrying out the calculations, we have assumed the
hydrodynamic plasma nonlinearity to be small and have
only retained the non-Abelian terms entering through dy-
namics of the color charge vector. In terms of natural
units, this assumption is justified if pga, /co~ ) 1)gIoa, /mP. In order to get a feeling for these inequali-

ties in terms of physical quantities we rewrite the longitu-
dinal electric field E, -Boa, -~ a, in terms of the wave
energy density e -E, and use a normalizing energy den-
sity e, -n, mc -2—5 GeV/fm (the typical energy densi-
ty in the plasma needed for a deconfining transition). We
may then write the above inequalities as

1/2 1/2
P n

C )le
L

&w10

g(P/c ) Ec
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APPENDIX A: SIMPLE DERIVATION OF EQ. (9)

We start with the approximate-linearized form of the
plasma equations (5b) and (Sc), viz. ,

(Al)

where we have assumed that the phase velocity P/c —1

and the typical wavelength k '-c/roz-few femtome-
ters. From the above inequality we may see that our
treatment is valid for e~/e, as low as 10, i.e., wave en-

ergy density of order hundreth of a percent of the typical
plasma energy density.

Our results show that the non-Abelian plasma is stable
at the classical level. It would be worth investigating
whether this stability persists in the presence of quantum
Auctuations. This is particularly of interest because per-
turbative QCD (bare one loop) results' indicate an insta-
bility for the plasma mode at high temperature.

It ought to be clear from our study that even in the rel-
atively simple case examined by us, there is a great deal
of richness in the observed phenomena. In view of this, it
seems worthwhile to systematically investigate, for the
classical Yang-Mills plasma, other interesting questions,
such as color-electric and -magnetic screening, existence
of different types of collective modes of solitonic solu-
tions, etc.

a Ia, =go,b, (V ~ Ab)I
Bt

(A2)

x l

We have used the gauge condition A —=0. The neglect of
the plasma nonlinearity through (V„.V) terms is fully
justified when B/Bx3~0. Equation (A2) shows that
A, BI~, /Bt =0. Noting that E, = —BOA„we may now
integrate Eq. (Al) to get

I&a+a
P7l g

(A3)

!

0 200 400 600 BOO 1000

FIG. 4. Oscillations of the field variable xl. e/&3=0. 5 and
the initial conditions are x& =x2=x3=0 and x l =2, x2 =0.1,
and x3 =0.3.

Again, noting from Eq. (4b), j,=gnov„I„, and the
Ampere's law a, =j„we may use Eq. (A2) to derive the
equation

a,a, ,
A no
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where an overdot denotes differentiation with respect to
time variable xo =—t. A.ssuming as in the text, that species
2 is heavy such that I&2=const =I&20= —I„jo,we finally
get the field equation

2
g no

a', = — Io, (Io&ab ) — e,&,ab a, (Iod ad ) .
m& 717 (

(A4)

APPENDIX B: GAUGE INVARIANCE
OF CONSERVED QUANTITIES E AND M

The quantities E and M are defined by the conservation
laws, Eqs. (11) and (12), and have been physically inter-
preted in the text. We expect them to be gauge invariant.
To explicitly demonstrate this gauge invariance let us
make a general gauge choice A, =5A, . The parameter 5
is a constant which was chosen to be zero in the text. We

Equation (A4) describes nonlinear temporal oscillations.
If a, (t =0) are independent of space (variable x3), then
Eq. (A4) have similar properties to the ones discussed in
the text. However, if a, (t =0) are x3 dependent, the gen-
eral initial value problem will give complicated solutions
with phase mixing (similar to the ones discussed in Ref.
10). In the special case where the initial conditions are
prepared specially such that P( 8/c}x 3 )

—= ( 8/Bx o ) we
again recover the stationary waves discussed in the text.

X ) + 3'X )— e 5 61+— x, +g—(x2x3 x3x2),
3

X2=

X3—

(Bl)
2

e 5 61+— x, +g—(x3x, —x,x3), (B2)
3

2
e 5 5

p 1 p 1 2 2 11+— x +g—(x x —x x ) . (B3)

For 5=0, we recover Eqs. (10a)—(10c) derived in the text.
From Eqs. (Bl)—(B3) it may be directly verified that

the constants of motion are

X X X X

2 2 2 2
+ + +3 =E,

—(M i +M2+M3 ) —3M, =M

where the M, 2 3 are defined in the text. Thus, we explic-
itly note that the physically conserved quantities E and M
are independent of the choice of the gauge.

now demonstrate by explicit calculation that E and M are
independent of 6.

Following the same procedure as in the text for the
derivation of the field equations and defining variables x &,
x 2 x 3 as before we get the new equations
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