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The highly accurate Kadanoff lower-bound renormalization group for spin systems is generalized
to models with local gauge symmetry. As an example it is applied to the Z, gauge-Higgs theory.
The two critical exponents of the model are, respectively, predicted exactly and with 0.1% accuracy
by a simple analytic calculation. The application of the generalized method to more complicated
gauge groups in arbitrary spacetime dimension is described.

The Kadanoff lower-bound renormalization group
(LBRG) predicts! critical exponents of spin systems with
a precision not achievable by any other simple RG
method (see Ref. 2 for a review). The LBRG gives
dv=2—a to 0.1% accuracy in the d =2 and 3 dimen-
sional Ising models, and to 1% accuracy in four dimen-
sions. For ¢* field theory it yields a one-dimensional in-
tegral equation whose solution gives v correctly to first
order in the € expansion. It is also a direct approxima-
tion to an infinite system, so true finite-size effects are ab-
sent.

This amazing precision, coupled with the present level
of interest in the renormalization-group structure of
gauge-Higgs systems (see, e.g., Ref. 3), provides motiva-
tion to generalize this simple technique to systems with
local gauge symmetry. The generalization presented here
is applicable to all gauge groups in arbitrary spacetime
dimension, and reduces to the Kadanoff method for spin
systems in the limit where the gauge coupling vanishes.

The crux of the LBRG is the observation that [since
(exp(AS)) = exp({AS ))] the addition to the action of an
operator with vanishing expectation value lowers the free
energy f. Interaction-moving operations satisfy this cri-
terion by translational invariance. Variational parame-
ters are introduced and are (easily) optimized at a fixed
point to give a best lower bound for f. Critical exponents
then follow directly from the recursion relations.

The application of the original LBRG to gauge
theories is complicated by the fact that its block lattice
points lie in the centers of hypercubes, while the gauge
links { U} are only defined along its edges. It is therefore
first necessary to use a prefacing transformation to map
the original “plaquette” system to a ‘“‘subsumed” model
which allows parallel transport to the center of a hyper-
cube. The blocking then yields a plaquette model with
larger lattice spacing, ready for the next iteration.

An example facilitates explanation. Consider (Fig. 1) a
single plaquette in a two-dimensional Z, gauge theory
with vertices labeled (1,2,3,4) and action Sg 534
=—PBU,Up;3 U3 Uyy where U; =U;==*1. Place a point
¢ in the center of the plaquette. The corresponding sub-
sumed model action is

§G,1234= —B( VieUpVoe v Vo Ups Vi + V3 Uy Ve
+VicUVa)—Cp 5 (n

39

where each of the V;,==1 is an element of Z, which
runs between points ¢ and i=1-4.  Since

Tryy[exp( —S)]=exp(—S) it follows that (B)"=PB and
Csz=—2(B)—B—Inl6, where x""=(x')’ and tanhx’
=tanh?x. In higher spacetime dimensions, the point ¢ is
placed in the center of a hypercube. The prefacing trans-
formation can be performed analytically for discrete
groups. For larger groups more interactions [e.g.,
(VUV)2, (WUV)(VUV), etc.] must be included. Note that
the prefacing is underconstrained —many subsumed mod-
els correspond to the one-plaquette model.

The machinery of the generalized LBRG can be illus-
trated using a Z, gauge theory in d =2 dimensions. Fig-
ure 2 defines the notation. The original lattice fields (e.g.,
Ug;) run between the original site points, denoted by
numerals 1-16. The new fields of the subsumed model

(e.g., Vg.) go between the original site points and new

points labeled by letters a through i. Block points are
denoted by crosses, and block fields (e.g., U;g) connect
these. Thus (a,c,i,g) is the boundary of a typical block of
side length b =2, which is the RG scaling factor.

A gauge-invariant projection operator P can be defined
for the subsumed model. The projection operator deter-
mines the renormalized action S » via

exp(—Sg g )=Try P exp(—S;) .

Here P is a taken to be a product over all block links
{U'} of terms such as

~

S _— S

FIG. 1. Schematic diagram of prefacing transformation.
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Py =exp[p1Use (Vs VeaVioaViog
T VsaVsaVoaVog)—Nggl, 2)

where p, is a variational parameter. The requirement
that the free energy remain invariant under the RG
transformation implies that the trace of P, over U,, is
unity, and thus

Noe=p1) Ve VeaVsaVsa X Vipa ViogVog Voa ) +Cy

with C; =(p,;) +In2.

So far the RG transformation is exact (and intractable).
The LB approximation consists of moving all interactions
from the VUV terms and from the normalization terms

(e.g., N,g) in the product P exp( —8§;) into the shaded re-

gion (b, f,h,d), and equally to its counterparts in other
blocks. The result for the contribution from block
(a,c,i,g) is

FIG. 2. Definition of notation for LBRG.

[P exp( _§G )]LB,acig =exp[2ﬁ[ Ue1(Vep Vap T Vee Vi )t Ug 11 (V7o Vi V2 Vine)
+ U1§,11 (V10e Vite T Vion Vitn )+ Us 100V 6 Vioe T Vea Vioa)1—4Cp
+P1lUse(VeaVeaVioa Viog) T Ugi(Viog Vion Vitn Vini)
UV ViV Vi) F U (Ve Ve Vap Ve )l
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The interaction-moving separates the original system

FVeaVeeVioa Vioe (V7o V7f Vite Vllf)]“zcx } . 3)
[
so that
tanhf, =tanh?[p} —(25)" Jtanh?p . (7d)

into blocks within which the summations over {U,V}
can be performed independently. The renormalized cou-
plings Bz and Cy are found from

exp[Br( U, Uy U, U, )+ Cr ]

ag Ygi
=[exp( _SG,R )]acig
:Tr{U,y![P Cxp(_ﬁsvg)]LB,acig . (4)

The summations over the {U} and {V} are then per-
formed. The block renormalized couplings B and Cy
are found from the partial partition functions Z, and

#r ;j : (52)
=77 | (5b)
where
Z,=2eP'(42+B?), (6a)
Z_=4¢P'(4B), (6b)
and »
A ze2p;+ye72p" , (7a)
B=1+y, (7b)

v =cosh[2(2/3)' =exp[2(2B)"'], (7¢)

The variational parameter p,; is determined from the
extremum condition

- (8)

where a=1,...,n; Kz ,=Cg. This can be solved easily
at a fixed point,’ for there 3f /3K ,=e,, is a left eigenvec-
tor of the matrix D, ;=0Ky ,/0K; with eigenvalue b?
(=2%). In fact, Eq. (8) is then a determinant, since e, is
proportional to cof(A,, ), Ag, =D .5 — b8 5.

For a system with two coupling constants (8 and C),
the extremum condition at a fixed point is

oCg 0Br 0Cy |3Cr 9By
— =0, (9a)
o8 dp, ap, aC ap
where here
=b=4 .
aC (9b)
The solution of Egs. (9) is
pi=g¢lny (10a)
=1(2B)" . (10b)

When Egs. (10) are substituted into Eq. (7d), the result is
the RG flow equation
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Br =[+(28)"]" (11)

which can be compared (cf. Fig. 3) with the exact result
Br=[(B)']"=p". [Note however that the extremum
equation Eq. (9a) is strictly valid only at a fixed point.]

The critical exponent for the fixed point at infinite 8
can be easily calculated:

. Br
b}er:O B 1=b". (12)
The fixed point is therefore predicted to be marginal
(y =0) as per the known result. The critical exponent for
the pure Z, gauge theory is thus given exactly by the
LBRG.

Scalar “Higgs” fields are easily included in the formal-
ism. Consider for simplicity fixed-length Z, fields
o, ==1 (variable-length scalars are treated in Ref. 1).
The Higgs terms in the original action S as well as in the
renormalized action Si can be written entirely in terms
of gauge-invariant objects such as hg,=04Uq,0, and
h, =o,U,.o., respectively. For scaling factor b =2 in
two dimensions nothing larger than a plaquette can be in-
cluded. Thus the allowable Higgs terms for plaquette
(6,7,10,11) are

Op]aq Eh6,7h7,11h10,11h6,10 ’

O,=3lhesthy i thionthei),

035%}’6,7(’17,11+h6,10)(1+0plaq) ’ (13)

0,=20,,,0, ,

O; E%h(mh 10,11(1 +Oplaq) >
and their contribution to the action is —3¥7_,K,;0;. The
Higgs contribution to the full action is the sum over all
plaquettes of this quantity (note that =K, and likewise
Br =Kpg 1; Cr=Kpg, etc.). The projection operator Q

for the scalars is a product over all block fields of terms
J
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FIG. 3. Plot of LBRG recursion relation (solid line) and ex-
act recursion relation (dashed line) for a pure Z, gauge theory
in two dimensions.

such as this for o:
Q, =exp[p20;2—-%L2(22—4)
—M,0,0,0506V1aV2aVsaVea—Ca2l,
3=V,,0,1tVy3,0,+Vs,05+Vg,06,

(14)

where the normalization Tr,.Q =1 implies that
4L,=(2p,), 2M,=(2L,) ,
—C,=—2L,+M,—In2 .

.The LB approximation of moving all interactions
equally into the region (b, f,h,d) and its counterparts in
other blocks is made as before. The LB contribution to
exp(—Sg) from block (a,c,i,g) is the sum over all con-
tained { U, V'} of

[PQ exp(—8)]1p aeig =€xp{4(2K,0, + K303+ K,0,+K505)—1L,[(04Vs, + 07V, +0 10V 10, H 01, Vi1 ) —4]

—M,(0607010011¥V6e Ve Vioe Viie ) —C2

+p,(o, V6a06+0'cV7c07+U;V11i011+0; VlOgalo)][P exp( _gG)]LB,acig . (15)

The six block couplings {Kz } are evaluated analytical-
ly in terms of the {K }, and the p; are determined by Eq.
(8). The familiar! Ising fixed point is recovered at
p»,=0.76 and infinite B and p;, yielding dv=2—a=1.998
to 0.1% accuracy. No distinct new fixed points appear at
finite B [ always decreases when Eqgs. (8) are applied].

Thus it is seen that by the use of a prefacing transfor-
mation the accurate Kadanoff LBRG can in fact be ap-
plied to systems with local gauge symmetry. The method
can be applied to gauge-Higgs systems with arbitrary
gauge group in any spacetime dimension, though in gen-
eral numerical techniques* may be needed. It should be
noted, however, that invariant subspaces of coupling con-

f

stants often exist and can vastly simplify the calculation.?
The (marginal) critical exponent for two-dimensional Z,
gauge theory was predicted exactly, and good qualitative
agreement with the flow equation was found. When Z,
scalars were also included, the good results (0.1% accura-
cy) for the Ising limit were recovered as expected. No
unexpected additional spurious fixed points appeared,
and again a good flow diagram resulted.
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