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We show that the kinematical properties of any supersymmetric gauge theory may be obtained by
mapping a geometric group structure of loops in superspace into some particular Lie group. The
underlying group structure of the usual constrained supergauge theories turns out to be the group of

even (bosonic) loops.

I. INTRODUCTION

The relevance of the group of loops as the basic under-
lying geometric structure of gauge theories has been em-
phasized by many authors.!”® It has been explicitly
shown that the kinetic content of any Yang-Mills theory
is a direct consequence of the geometric structure of the
group of loops.* A conventional Yang-Mills theory may
be obtained by mapping this structure into a specific
compact Lie group. Following this view, it was shown’
that the gauge theory of the Lorentz group provides in a
unique way all the necessary kinematical elements for a
local description of a general four-dimensional manifold
with torsion.

Loops have been used at the quantum level, typically in
nonperturbative work. The investigation of the equations
of motion for the loop functionals was initiated by Po-
lyakov,®® Nambu,'®© Neveu and Gervais,!! and further
developed by many others.!>” !¢ During the last year,
loops are becoming popular as the more natural gauge-
invariant description of the Hilbert space in Hamiltonian
lattice gauge theories.!” 1

The extension of these ideas to supersymmetric gauge
theories has little been explored.?>?! Any program of ap-
plication of the loop-space techniques should start by
identifying the basic underlying geometric structure of
the supersymmetric gauge theories. In this paper we
shall consider the extended group of loops in superspace
and show that it leads naturally to the maximal®?* (not
constrained) supersymmetric gauge theories. This exten-
sion is rather obvious because the maximal approach to
supersymmetric gauge theories is, up to torsion, formally
identical to the usual gauge theories.

It seems more interesting to recover the usual minimal
(constrained) formulation of the super-gauge-invariant
Yang-Mills theories?*?* which involves only a single real
superfield.

We shall see that it is possible to define in superspace a
more restricted geometrical structure, the group of even
loops. Minimal supersymmetric Yang-Mills theories will
be obtained as representations of this group.

This paper is organized as follows. In Sec. II we intro-
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duce the group of loops in superspace. We study its local
structure and show the relation between the infinitesimal
generators of the group and the field strengths and poten-
tials of the super-gauge-invariant theories. In Sec. IIT we
analyze the usual minimal formulation and show that it
arises as a real representation of the group of even loops.
Conclusions and some further perspectives are left for
Sec. IV.

II. THE GROUP OF LOOPS IN SUPERSPACE

Flat superspace is a vanishing curvature manifold with
torsion. A closed polygonal path in superspace may be
described in an intrinsic way following a procedure first
introduced by Mandelstam.? One starts by considering a
frame of reference at some point O, taken as the origin of
the paths. The first step of the path is given by a vector
of components u {! in that frame. Next, one considers the
parallel-transported frame at the point O-+ui{. The
second step of the path is described by its components in
the new frame. One proceeds until the last vector of the
chain is introduced.

In flat superspace, the frames of reference obtained by
parallel transport are path independent. A natural basis
at the point x(x*,6% 6%) is defined by the covariant
derivatives

.~ _ 0
e”(x)—D#——‘—ax# 8
I = d
e, (x)=D,= 367 +i6 aaa"—ax# , (2.1)
e (x)=D, =2 +tigeg n9
a aea aa axy

which satisfy
[D4,Dp}=iT 45D . (2.2)

Capital indices denote any element of the set (u,a,¢) and
the nontrivial components of the torsion are

T”aB=20'#aB= T#Ba . 2.3)
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We shall describe an open path with origin at some point
0 with coordinates (xy*, 8,% 6,%) by the chain

(uu, 4, uy ). (2.4)

We suppose that each vector has a definite parity in the
Grassmann algebra. The end point of the open path will
be at the point X with coordinates

~ N N
B=yx B B igh 9.4y . a, a
xXP=xg +‘21 ufitio¥,, 21(01 u"+0;%u;%) ,
i= j=

N
0"=0,"+ 3 u;*, (2.5)
j=1
_d e N .
0°=0,"+ 3 u;*,
j=1
where
j—1
“=0,"+ > ou”. (2.6)

i=1

A closed polygonal path with origin O is given by a chain
of vectors such that

N -_— .
> [ut+iot (6,%u;%+6,u;%)]=0,

i=1
N N 2.7
> u*=0, 3 u;*=0.
j=1 ji=1
The product of two closed paths may be defined as
(ul’ . o ,uN)(vl, .« ,UM)=(u1, e UNLU, e ,UM) .
' (2.8)

This operation is associative and has an identity element,
the empty chain. However, there is no inverse. In order
to give a group structure to the set of closed paths, some
identification between paths is required.

We define the contraction of a chain

(U, .. upy), 2.9)

as the operation which replaces any two collinear adja-
cent vector in the chain by its resulting displacement.
Thus, if u, = —u; and u,=Au,, one has

(U, uy,uz,ug,us,ug), =(u;+uy,us,ug) . (2.10)

Let us now define a loop as any chain that is equal to
its contraction. The product between loops will be given
by
,UM):(ul,.. ’UM)L‘ .

(2.11)

(g, o uydog, ... CSUNSULy -

The inverse of the loop (u;,...,uy) is now given by
(@y, ...,u,) where ;= —u;. It is immediately seen that
the set of loops forms a group under this operation. We
shall denote by L, the group of loops with origin 0. One
can easily prove that groups corresponding to different
reference points are isomorphic and then one may fix the
origin at will. For convenience, we shall fix the even

coordinates of the origin at the spatial infinite. v

By following the same procedure, open paths may be
defined as contracted chains of vectors.

The local structure of the group of loops may be ob-
tained as usual by considering its infinitesimal generators.
As we shall prove they are simply related with the physi-
cal quantities of the supersymmetric gauge theories.

Let us start by considering the infinitesimal loop

8,L(P,u,v)=PuvavwP , (2.12)
where
wA=iT.ub€ . (2.13)

This loop is obtained by following some path P starting at
the origin O, then an infinitesimal loop wv#vw, and finally
going back to the origin along P. Because of the torsion,
the last step @ is required in order to close the path.
When u or v vanish, or when u =Av, §,L reduces to the
null loop PP. It may be immediately seen, by using the
defining property of the group of loops, that there is a
differential operator which satisfies

WOL,L)=[1+u"3A ,5(P)]¥(L)

with

(2.14)

€ €egtl

The path-independent differential operators A, (P) are
noncommutative and generalize the ‘“area derivative”
first considered by Mandelstam.?®> The quantities €, are
such that €u=0’ €,—€;,=1.

A second class of infinitesimal loops will be considered:

8,L =PuP:u , (2.16)

where P is an open path with origin at spatial infinite and

* P:u is the chain P followed in the opposite sense after the

step u. The differential operator associated with this ele-
ment satisfies

WO, LL)=[1+u "8 ,(P)JY(L) . (2.17)

Both operators A 45 and 6 ;, may be considered as defor-
mation generators of a path. When acting on open paths
they do not move their end points. In order to induce
end-point motions we are going to introduce two
differential operators.

The first one is the Mandelstam?® derivative, which
measures the effect on any path-dependent object of a
linear extension of the path from the end point x to x +u:

#(Pu)=(14+u "V . )¢(P) . (2.18)

The second differential operator measures the effect on a
path P with end points r of a parallel translation of the
path P:u through the end point:

r+u‘e,(r). (2.19)
It satisfies
S(P:u)=(1+u’D ,)p(P) . (2.20)
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We shall call this operator the parallel derivative.

These differential operators obey a set of restrictions
which arise from the geometric properties of the group of
loops and reproduce the kinematical relation of the su-
persymmetric gauge theories.

The first equation results from the following identity:

Pu=PuP:uP:u (2.21)
which may be written in terms of the generators
(1+u1V )¢(P)=[14+u 48 ,(P)](1+u 1D ,)$(P) .
(2.22)

Therefore,

V,=D,+8,(P). (2.23)

Thus, Mandelstam’s derivative which plays the role of a
covariant derivative in any gauge theory may be written
as the sum of the parallel derivative and the deformation
derivative. A relation between the “area derivative” A 45
and the deformation derivative 8, may be derived by
considering the somewhat elaborated form of the identity
loop :

I=P,uivwP ,P,wPsPsvP,P,uP,P,0P,P,uP, , (2.24)

where u and v are infinitesimal vectors, w is given by
(2.14), and P,,...,Ps are paths obtained by parallel
transport of P,.

When written in terms of the differential operators this
relation takes the form

d(c)=[14+uwBA p(P)][1+w%s.(P)]
X[1+vB85(P:w)[1+u 48 ((P:wv)]

X[1—0B8,(Puv)][1—u 48 ,(P:u)lplc)  (2.25)
that leads to the identity
Az (P)=(—1) (D ;85(P)—(—1)*Dy5 ,(P)
+[54(P),85(P)}
—i(—1)4BTC 1 8.(P)) (2.26)

which reproduce the relation between field strengths and
potentials of the maximal (nonconstrained) supersym-
metric gauge theory.

It is important to remark that this equation arises from
geometric considerations, without any mention to a par-
ticular gauge group or a specific gauge theory.

Finally, the path-dependent version of the Ricci identi-
ties may be obtained from Egs. (2.23) and (2.26):

[V.4, Ve }(P)=(— D *P[A 45 (P)+iT 5V I$(P) .
(2.27)

The differential operators A, and 6, are path-
dependent objects. We shall derive the restrictions on the
path dependence of these operators. Let us consider a
general deformation of the path going from P to LP
where L is an arbitrary loop.

For convenience, we introduce the operator U (L)
defined by its action on loop-dependent functions

O(LW(C)=y(LC) . (2.28)

When L =8§,L =PuviivwP, U(8,L) may be written in
terms of the differential operator A p:

O8,L)=14u“BA ,,(P) . (2.29)
The group structure of the loop space ensures that

Ow)o(L,)=0(L,L,) (2.30)
and

0-\L)=0(L) . (2.31)

The path dependence of the operator A 4 results from
1+u “BA 45(CP)=U(CPuvavwPC)

=0(C)U(PuvivwP)O(C) ; (2.32)

that is,

A p(P)=0(C)A PO () . (2.33)

An analogous procedure allows us to obtain
5,(cP)=0(C)8 PO O+ 0(C)D, O (C).
(2.34)

Once more, these geometrical relations recall the gauge
transformation laws of the field strength and the poten-
tial.

Let us now show how the conventional gauge-
dependent fields arise from the path-dependent
differential operators.

As in any gauge theory, the point-dependent formula-
tion must be obtained by ““freezing” the path dependence
of the generators. A convenient way to achieve this is to
choose some arbitrary reference path R from infinity to
some fixed point, say the origin of coordinates. Let us
denote R, as the path parallel to R with end at x. Point-
dependent operators may be obtained from the corre-
sponding path-dependent objects by

AAB(x)=AAB(Rx ), 8A(x)=8A(Rx) .

It is evident that the above path fixing process maps the
parallel derivative into ordinary derivatives and therefore
it holds that

A p(x)=(—1D*B(D ,85(x)—(—1)*Dy8 ,(x)
+[8 4(x),65(x)}
—i(—1DBTC p8c(x)) . (2.35)

Once a reference path is fixed, the differential operators
are uniquely defined, but a change of reference from R to
R’ produces a change in the generators given by

84(x)=8,4(R;)=8(R.R,-R,)
=0(x)8 ,(R)HT (x)

+0(x)D .0 (x) (2.36)
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with

O0(x)=0(R/R,) . (2.37)

Therefore, the point-dependent generators of the group
of loops transform as the potentials under a gauge trans-
formation.

The maximal approach to the supersymmetric gauge
theories now arises as representations of the group of
loops. Let us consider the loop functional U (L) given by

UL)=U%L)I+U%L)X*°, (2.38)

where U° U? are elements of a Grassmann algebra and
X“ are the generators of certain Lie group G, and let us
suppose that they are a representation of the group of
loops

U(L)U(L,)=U(L,L,), UWLYUL)=I. (239
Then it holds that
U(R,uR, ,L)=[14+u"8 ,(x)]JU(L)
=U(R,uR, ., )U(L)
=[1+uB4,x)]U(L) (2.40)
because U(R, uR, . ,) is near to the identity. Therefore
Sp(x)U(L)=iAg(x)U(L) . (2.41)
An analogous procedure leads to
Ay (X)U(L)=i(—1)4PF ,p(x)U(L) , (2.42)

where the factor (—1)°4“® has been introduced for con-
venience in order to recover the usual relation between
the field strength and the potential. In fact, Eq. (2.35)
can be brought to the well-known relation

Fp(x)=D Ag(x)—(—1)**Dy 4 ,(x)

+i[ A, Ag)+Hi(—DABTC L A(x) . (2.43)

Finally, a change of the reference path from R, to R, in-
duces via Egs. (2.36) and (2.41) a gauge transformation of
the potential. Thus, we have proved that the kinematical
properties of any maximal supersymmetric gauge theory
may be obtained by mapping the group of loops into the
particular group G being gauged. With this representa-
tion we have associated a matrix generator to every loop
differential operator, and the kinematics of the super-
gauge theory associated with G was recovered as the in-
duced image of the kinematics of the group of loops.

III. THE MINIMAL APPROACH

In order to get us back to the minimal scheme we need
to impose super- and gauge-covariant constraints on the
theory. We are going to show that they have a simple
geometrical meaning. In fact, as a consequence of these
constraints the group of loops turns out to be restricted
to its even (bosonic) part.

The geometrical form of the conventional and repre-
sentation preserving constraints is

Aggh(C)=A,$(C)=A _;$(C)=0 . 3.1)

Because of this set of equations, functions ¢(C) depend
on certain equivalence class of loops. In fact, two loops
that differ by a chain of odd vectors are equivalent.

In order to define the factor group associated with this
equivalence relation we are going to modify the notion of
contraction of a polygonal path. We define

(g, oo osupy)e

as the operation which replaces (i) two adjacent odd vec-
tors of a chain

i
udp4 by ?TABCquC,uA+vA 5

and (ii) two adjacent collinear even vectors
ud At by (1+M)u“.

We define an even loop as a closed polygonal chain that is
equal to its contraction. By definition, the odd parts of
an even loop are always substituted by a single vector.
Thus an even loop is uniquely determined by the position
of its even parts.

The product between loops will be given by juxtaposi-
tion and contraction of their chains and once again it
may be easily seen that they form a group.

Let us study the local structure of this group.
Infinitesimal loops

PuvavwP

with u,v,0dd, are equivalent to the identity loop. There-
fore the nontrivial components of the ‘“‘area derivative”
are

Ag,(P), A (P), A,(P).

ap
The differential operators & ,(P) associated with the
loops PuP:u are not independent. In fact, one may ob-
tain from the identity (2.24) the relations

D, 85+Dgd,+{6,,85} =0,

D 8;+Ds8,+(8,5;)=0, (3.2)

i .
8,(P)=— Za““ﬁ[paaﬁ+pﬁaa+ {8a:8511 -
The general solution of the first two equations may be
written in terms of the deformation operator o (¢), in fact
taking into account (2.34) one gets

8,(P)=U(PP%)D,0(PP)
and (3.3)
8,(P)=U(PP§)D U(P§P) .

Paths P§, P going from infinity through the point x are,
respectively, parallel to the reference paths P, Py,

The conventional gauge-dependent fields arise from the
path-dependent operators in the following way. We start
by “freezing” the path dependence in order to obtain
point-dependent operators. A natural choice is fixing
P=P§ or P=Pg. The usual supersymmetric choice of
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gauge corresponds to P =P, then deformation deriva-
tives take the form

8,x)=0(PyPZ)D, 0P PY) ,
o (3.4
8,(x)=0, 8,(x)==-0,MD8(x).

The usual superfields arise from a representation of the
group of even loops into a supersymmetric extension of
some Lie group

UL)=U%AL)I+UXL)X*.

As was shown in Sec. II, to each relation between
differential operators corresponds a relation between
superfields. Then, there exist reference paths P§ and Py
such that the gauge potentials take the form .

A, (x)=—iU(PyP§)D U(PPS) ,
. (3.5)
A, (x)=0, A,(x)=—40,"D;4,(x).

Reference paths will, in general, not be unique. If R and
R " are a new set of reference paths, then
URIR)=e " "NUP B )e's (3.6)
where A is a chiral superfield and A’ antichiral.
Therefore, any representation of the group of even
loops may be written in terms of a single point-dependent
superfield

U(x)=U(PIPy

The reality constraint remains to be imposed. To do that
we are going to define a real representation of the group
of even loops. A representation of the group of even
loops will be real if there exist reference paths P§,Pg
such that U (P3Pg") is real for all x. That is

Ux)=U'(x)

and, consequently, the usual minimal supersymmetric
gauge theories arise as real representations of the group
of even loops.

IV. CONCLUSIONS

In this paper we have shown that the kinematical prop-
erties of any supersymmetric gauge theory may be ob-
tained by mapping a group of loops into some particular
Lie group. While the maximal formulations are related
with the general group of loops in superspace, the usual,
minimal, constrained formulations, result from the group
of even loops. In a recent paper, Sazdovic?® observed the
relevance of the even paths in superspace for the study of
a supergauge theory of electric and magnetic charges.

Our analysis suggests that even loops should be con-
sidered as a key geometrical structure for the study of
any minimal gauge theory in superspace. In particular, it
seems that the extension of the loop space methods to the
supersymmetric case will be simple and suitable for non-
perturbative work.

Here, we have restricted ourselves to the N =1 super-
symmetries. It is reasonable to expect that the well-
known difficulties?”?® to have a fully supersymmetric
(off-shell) gauge theory for more than two supersym-
metric charges,” N >2, will manifest in some geometric
obstruction to define the underlying group of loops.

ACKNOWLEDGMENTS

One of the authors (R.G.) would like to thank Profes-
sor Abdus Salam, The International Atomic Energy
Agency, and UNESCO for hospitality at the Internation-
al Centre for Theoretical Physics, Trieste.

*Permanent address: Instituto de Fisica, Facultad de In-
genieria, C.C. 30, Montevideo, Uruguay.

Y. Ya. Arefeva, Lett. Math. Phys. 3, 241 (1979).

2L. Dolan, Phys. Rev. D 22, 2018 (1980).

3L. Dolan, Phys. Rev. D 22, 3104 (1980).

4R. Gambini and A. Trias, Phys. Rev. D 23, 553 (1981).

SR. Jackiw, Phys. Rev. Lett. 41, 1635 (1978).

6B. Durhuus and J. M. Leinaas, Phys. Scr. 25, 504 (1982).

7X. Fustero, R. Gambini, and A. Trias, Phys. Rev. D 31, 3144
(1985).

8A. M. Polyakov, Phys. Lett. 82B, 247 (1979).

9A. M. Polyakov, Nucl. Phys. B164, 171 (1979).

10y, Nambu, Phys. Lett. 80B, 372 (1979).

11A. Neveu and J. Gervais, Phys. Lett. 80B, 255 (1980).

12yy. M. Makeenko and A. A. Migdal, Nucl Phys. B188, 269
(1981).

BR. A. Brandt, A. Gocksch, A. M. Sato, and F. Neri, Phys.
Rev. D 26, 3611 (1982).

14G. *t Hooft, Nucl. Phys. B153, 141 (1979).

158, Mandelstam, Phys. Rev. D 19, 2391 (1979).

16R. Gambini and A. Trias, Nucl. Phys. B278, 436 (1986).

17R. Gambini and A. Trias, Phys. Rev. Lett. 53, 2359 (1984).

18W. Furmanski and A. Kolawa, Nucl. Phys. B291, 594 (1987).

195, P. Tonkin, Nucl. Phys. B292, 573 (1987).

203, L. Gervais and A. Neveu, Nucl. Phys. B155, 75 (1979).

21§, Marculescu and L. Mezincescu, Nucl. Phys. B181, 127
(1981).

22Martin F. Sohnius, Phys. Rep. 128, 39 (1985).

233, Wess and B. Zumino, Nucl. Phys. B78, 1 (1974).

248, Ferrara and B. Zumino, Nucl. Phys. B79, 413 (1974).

258. Mandelstam, Ann. Phys. (N.Y.) 19, 1 (1962).

26B. Sazdovic, Phys. Lett. B 200, 335 (1988).

27R. Grimm, M. Sohnius, and J. Wess, Nucl. Phys. B133, 275
(1978).

28M. Sohnius, Nucl. Phys. B136, 461 (1978).

29V. O. Rivelles and J. G. Taylor, Phys. Lett. 104B, 131 (1981);
J. G. Taylor, J. Phys. A 15, 867 (1982).



