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Mass splittings and the finiteness problem of mass shifts in the type-II superstring at one-loop order
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The on-shell two-point amplitudes in the type-If. superstring are constructed for some states in
the NS-NS (where NS denotes Neveu-Schwarz) sector in the old covariant formalism. The result in-
dicates that the second and higher mass levels split at one-loop corrections. Also it is noted that the
integral representations do not readily give on-shell amplitudes and there is some difficulty in
demonstrating the finiteness of the two-point amplitudes despite their on-shell modular invariance.

I. INTRODUCTION

Loop corrections in two-point amplitudes lead to the
divergence of on-shell N( ~ 3)-point amplitudes in string
theories in the same manner as in particle theories. The
divergences caused by one-loop corrections seem to be re-
movable by renormalizing vertices by infinite amounts
under the unitarity condition. In superstring theories,
one-loop two-point amplitudes, or mass shifts in the
lowest order, vanish for massless states, but not for mas-
sive states. ' In Ref. 3, examples are calculated in the
SO(32) type-I open superstring for the bosons lying on
the leading and the next-to-leading Regge trajectories
and there the mass shifts were found to be the same at
each mass level for the two trajectories, suggesting the
tree mass degeneracies being maintained to one-loop or-
der.

In this article, we take the type-II theory and deal with
two problems concerning two-point amplitudes. (I) Mass
degeneracies. The free string spectrum, determined by
the conformal invariance of tree amplitudes, is highly de-
generate; the number of states at a mass level grows ex-
ponentially as we go to higher levels. In the absence of
general arguments as to what aspects of the string spec-
trum should remain to loop orders, we ask if any of the
mass degeneracies are lifted at loop corrections. In Sec.
III we show that the second and higher mass levels split
at one-loop order. This means the spectrum receives a
substantial change. In particular, the mass shifts cannot
be absorbed in the string tension as formerly noted for
the type-I open string based on the apparently nonlinear
dependence of the mass shifts on the mass level. Also we
must say the mass degeneracies observed in Ref. 3 for the
examples in the type-I theory are not a general
phenomenon in strings. From a practical point of view,
the splittings add some complexity to the evaluation of
mass shifts (Sec. IV) and so to the application of the re-
normalization procedure. (2) Finiteness of mass shifts
(Sec. V). If we are to employ the vertex renormalization,
the finiteness of mass shifts is essential for massive ampli-
tudes to be obtainable within the present framework of
on-shell theory. We try to demonstrate the finiteness by a
direct analysis of one-loop two-point amplitudes. The
finiteness arguments based on the on-shell modular in-
variance are only of heuristic value because the naive

on-shell integral representations are not by themselves
proper amplitudes. The imaginary part of the transition
matrix should be obtained by the analytic continuation in
the external momenta from somewhere off shell and we
need proper o6'-shell extensions to demonstrate the finite-
ness.

II. CONSTRUCTION OF AMPLITUDES

Here the integral is over the loop momentum, the sum is
over the cyclic ordering of j = 1, 2, . . . , M and over the
sector A B=NS-NS, N-S-R, R-NS, R R(where R-
denotes the Ramond sector). Under the trace for each
sector are
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with the G-parity operator G and the vertices V (0), for
which we temporarily substitute
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We first sketch the construction of one-loop amplitudes
for the bosons in the Neveu-Schwarz (NS-NS) sector. We
work in the old covariant operator formalism and get
around proper treatments of ghosts by adjusting the
power of the partition functions by hand. We shall study
later only the amplitudes that receive no contributions
from the parity-violating part, so we omit that part from
the beginning. We follow the notation in Ref. 5
throughout unless noted otherwise.

We start with the sum of traces:
'M

AM= — g g Jdp Tr sr„@.tt + [VJ(0)b, ~tt]
A, 8 cyclic j=l

ordering

1989 The American Physical Society



566 KAORU AMANO AND AKIHIKO TSUCHIYA 39

VL (o+)=:exp g (P ) B+ XL"
m~0

+ y (eJ. )„a,-y ~:,
m ~0

(5b)

where we have introduced vector-valued parameters P,
(c numbers) and 8J, 8 J (Grassmann numbers). We

take the right- and the left-moving parts of the operators
to be independent, including the zero modes of Xz,XI,
and impose the relation ao=czo as a constraint on states.
Accordingly we set go=go (:ik—J ), and the traces in (1)
are actually over the states on which ao=ao=p/2. We
can carry out the trace easily by the coherent-state

I

8 +i(olr)f (r)=2 ( —1)
e;(olr)

methods because of the exponential form of the operators
(5). After the momentum integration, the result is writ-
ten in the form

77K
AM =i

2

M

Id'r d'v, d'v
Imv.

5

3 3
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Here the ~ integral is over the region where Irn~&0 and
lRerl (—,', and each v. integral over the parallelogram
spanned by 1 and r in the complex plane. The f and
S & are given by

M M
S p(v, r)= g g Pig+ g g [g' P G; "+g'' P( —1) +"G; "+8' gJ P;J+8' 8J( —1) +"Pp;"]

i=1 j=1 m ~0 n &0

where

GOO 0
' m+n

(9a)

string coordinate fields from the vertices using the corre-
lation functions defined by S &. In this work we concen-
trate on the physical states written

1G" "=——'( —1)"
4 -~Bv lny

V—V V ~

J

(i &j ), (9b)

with
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In Eqs. (10) and (11), 8 (a=1,2,3,4) are the Jacobi theta
functions and we omitted the definition of the coefficients
in (8) with i =j except for m =n =0. In Eq. (9b), X is
differentiated as a function of independent variables v, v.
Equation (6) is interpreted as a sum (integral) over the
torus with the complex Teichmuller parameter ~ and the
spin structure designated here by two numbers a,P.
Then the v 's denote the locations of the fields on the
torus and each term in S & defines a correlation function
on it. In our construction, the correlations of the deriva-
tives of the fields do not have 5-function terms since we
treated the right- and left-moving parts as independent in
the beginning. We note, however, that the right movers
X~, 8 X~ and the left movers XL, , 0+XL, have nonzero
correlations arising from the closed-string constraint
eO ao

To obtain a string amplitude, we have to replace the Vj
in Eq. (1) with the Fl-picture vertices for the external
lines. This can be achieved by applying an appropriate
differential operator on AM and set the parameters
g, g', 8, 8 equal to zero except p~= g Jo =ik, where kJ
denotes the momentum carried by the external state j.
The process is equivalent in effect to contracting the

(13)

where I is an arbitrary non-negative integer, k = —8l,
and the polarization tensor g is transverse and traceless
symmetric in the first half of the indices (right-moving
part) and in the latter half (left-moving part) separately.
So the state lg) is the tensor product of. two open-string
states of level l on the leading trajectory. The F2-picture
vertex to emit (or absorb if kJ )0) the state lg) is

JY=:P~(Q,B X~,Q+, B+XL )exp[ik(X~+XL )]:, (14)

gJ ~gJ +gJ QJ gJ ~gJ ——gJ PJ

gJ ~jJ+gJ QJ gJ ~gJ ——gJPJ
(15)

(2) Then apply

where P& is the general polynomial (13). We have to su-
pertransform the vertices WJ (j=1,2, . . . , M ) into V.
(Fl-picture vertices) before using the formula (6). Opera-
tionally, the whole process of obtaining an M-point am-
plitude of states of the type (12) can be summarized as
follows.

(1) Introduce new Grassmannian parameters P,P J and
make the following change of variables in Eq. (6):
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ae,
'

ay~
'

ae J ' g~

and set +~=go=ik and other parameters zero.
Below we study the two- and three-point amplitudes

obtained by the method described here. The expressions
I

are considerably simplified upon the summation over the
spin structure by using the Riemann theta formula.

III. MASS SPLITTINGS

The two-point amplitude of incoming states ~g&, k ),
~gz,

—k ) (k = —81) is

2 5

A2(gz, k—;g„k)=i fd rd v y(v~r)
2 Imw

p+q+r=l —1

(, )
lf

p+2g&

2
1

4m Im~
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1 1 a
2 '1T BV

Iny(v~r)
2p

(17)

We have put v=vl —v2. The sum runs over all the non-
negative integers p, q, r satisfying p+q+ r =1—1 and we
used the following notation for scalars made out of $2, gi
by contractions:

+/+1 ~1 I $+1 ~ 1 I —lp I g 1+1

XB 1 l —lg ig I +I
(

~

1 2)

52&51 p, q, r =52~1~0 r 51 ~q pp
(18) (21)

where the symbol aP stands for p indices, say, n&
. a

collectively; similarly, oq=o.
&

. 0. , p'=pl . p„and
so on. The mixings of the right- and left-moving parts in
the contractions of the indices are due to the correlation

(a xga x;)...„,=
1 ~pv

4m Im~

As noted in Ref. 3 for open-string two-point amplitudes,
the amplitude (17) apparently has a nontrivial (nonlinear)
dependence on tree mass level l. Here we shall deduce
from Eq. (17) that the mass shift varies with the state at a
fixed l for l ~ 2. Suppose the mass shifts are the same for
all the states on a level l, then the A2 is proportional to
the inner product ( ~

) on that level: with some 5m,

A2($2, —k;g„k)= 2(2~)—' i5m ($2k~gik) (19)

1 1 2 2
1. . . g ng n+l. . . g I —1

1 —I
1 I —1 ~ ~ n=Y. i

n!( l n —1)!—
(20a)

X 3 3 4 4
l. . . g ng n+l. . . g I —1

and then tensors g&, $2 by

(20b)

for any states ~haik ), ~/2k ) of level l. Apparently this is
not the case with the amplitude (17) for I )2 if we note
(/2k~/, k) =($2,gi)I+, oo in our notation. We shaH now
establish the nonproportionality by giving for each l( )2)
a pair of states which are mutually orthogonal but have a
non vanishing two-point amplitude. Using a Lorentz
transformation if necessa~r, we take the time in the k
direction so that k =&8l, k'=0 (i = 1,2, . . . , 9). We
define (i —1)-rank symmetric traceless tensors B„B2by
the components

I —1
1 I —1 ~ ~ n= Y. i

n!(l —n —1)!

IV. MIXINGS AND DIAGONALIZATION

In Sec. III we gave examples of amplitudes mixing or-
thogonal states. The existence of mixings at a mass level
is equivalent to the splitting of the level. For possible
mixings in a larger scale than implied by the previous
two-point amplitudes, we now turn to the three-point am-
plitude with one massive and two massless states and
consider its factorization. The three-point amplitude for
a massive state (state 1, with arbitrary 1) and two massless
states (states 2,3) is

3 5
KK

A3 —l f d 'rd v)d vp (22)

with

In Eqs. (20) and (21), the parentheses enclosing the in-
dices denote symmetrizations. The tensors g„gz define
physical states ~g, k ), ~/2k ) with Eq. (12). We easily see
that (gp gl)20 I I) 0 but g'2, $, )~+2 ~ „=0 for other
p, q, r )0. So, if l )2, then (/2k ~g, k ) =0, but
A2((2 —k;glk)&0 from Eq. (17). Since the inner prod-
uct ( ~ ) is not identically zero on the states at each mass
level, the above examples show that Eq. (19) cannot be
true for l ~2, proving that the levels split by one-loop
corrections. As for the first excited level (1=1) there is
no splitting as far as the NS-NS sector is concerned. All
the independent physical states in this sector are account-
ed for by the states (12) and the ones obtained from them
by replacing one or both of the right- and the left-moving
parts by open string states on the next-to-leading trajec-
tory. The relation (19) is confirmed by calculating ampli-
tudes with the replacements in the external states, and
comparing the results. In fact, such replacements do not
affect the general form of the integral (17), corresponding
to the mass degeneracies observed for the leading and the
next-to-leading trajectories in the type-I super open
string.
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l! 1f (V, V2V3~r) =
rt( t)2 4m Imr

1
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where y;. =g(v; —v ~r). In the sum, q =0, 1, . . . , 1 —1, and for q=0 we set 1I'i, ( )—:1. The tensors it:'~' are
defined by

pao. ;ao. 1 rp PPp y;y
A, ;pi p ~ 2~ 3~ 2~ 3 9a[p9p][~9y]o.9a[p9p][~9y]ob 1 kl. . . A. ~1 a„p1 . p, 52 b3

where the indices in each set of square brackets are an-
tisymmetrized. Note that all the indices of K' ' come
from the massive polarization tensor g, and that a larger
q means fewer contractions between the indices in g, .

To factorize the three-point amplitude into a massive
two-point amplitude and a coupling, we consider the in-
tegral over a region where v2 and v3 are close to each oth-
er, or ~v2

—
V3~ &E for some e) 0. We introduce vari-

ables vo—= (vz+v3)/2 and 5:—v32=V~ —vz, and expand f
ln 6 and 5 with vio —v1 vo fixed:

(25)
m, n~1

Integrating the expansion over 5( ~5~ & e), we obtain
5

(k +8I)/4

k'+sl Im7

where we evaluated the integral by an analytic continua-
tion in k1 from the Euclidean region and left only the
part with a pole at k1= —Sl, dropping some numerical
factors and the coupling constant. (The on-shell propa-
gator makes the three-point amplitude divergent, ' but we
shall not linger on this subject. ) By the factorizability of
string amplitudes, the residue must be the two-point am-
plitude for state 1 and the state obtained by superposing
the physical states coupled to states 2,3 using the tree
couplings as the weights in the superposition. If we carry
out the expansion (25), we see hii can involve the deriva-
tives of lny of even orders high up to the l —1 or lth or-
der, not counting mixed derivatives

g2 g4
lny, 2 2 lng, etc.

BvBv trav Bv

The maximum order derivatives come from the terms
with q =0 or 1 under the sum in (23). For q ) l —2, the
derivatives are only of second order (note that IC'~' vanish
when contracted with —k, =k2+k3). So, if l is large

(l )4) and the massive polarization tensor is such that
E'~' is nonvanishing for some small q (q & l —3), then the
hI& is different in form from the integrand of the two-
point amplitude (17). To reproduce the integrand with
high derivatives of lny by the correlations of vertices, we
shall have to think of vertices with high derivatives of X"
(or maybe of Q, with F2-picture vertices). Thus, if we
leave out the possibility of the high derivatives vanishing
or reducing to the terms with only the second-order
derivatives by integrations, the residue of (26) has non-
trivial contributions from the amplitude for state 1 and
some other state that corresponds to a vertex with high
derivatives and so not of the type (14). Then the states
(12) can mix not only with states of the same type but
with states of some other types.

As suggested by the examples of mixings, the two-point
amplitude will have off-diagonal elements if we choose
the "wrong" basis for the states on a mass level splitting
at the loop corrections. So the diagonalization of the
two-point amplitude is necessary for the evaluation of the
mass shifts in much the same way as the diagonalization
of the perturbing Hamiltonian is necessary for the evalua-
tion of the energy levels in the perturbation method for
degenerate states in ordinary quantum mechanics. Since
mass shifts are scalars, the diagonalization is partly done
by decomposing the states into the bases for irreducible
representations of the little group. Especially the totally
symmetric traceless tensors form at each mass the unique
irreducible representation with the highest dimension and
so do not mix with other states. The highest spin states
are protected from mixing by the angular mornenturn
conservation. The absence of rnixings can be checked in
the factorization of the three-point, amplitude discussed
above. (If we are only concerned with the order of
derivatives, we only have to note that K'q'=0 for
q & l —1.) Thus, for a totally symmetric traceless g„Eq.
(19) holds whatever the state 2 is. From Eq. (17) the mass
shift in this case is found to be

1
5m 2

tot sym 2(2 )to
7TIC J'd2 d2 2
2 Im7

!p+q=l —1

1

4m Irn7

2q 2
1 1

ln8, (v~r)+ 1

4 m. Bv 4~ Im7

Zp

(27)
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Generally, the decomposition into irreducible representa-
tions will not complete the diagonalization. If it does, the
states of type (12), which themselves form a basis for a
representation, cannot mix with the states belonging to
other representations. The mixings suggested by the
three-point amplitude factorization would then be impos-
sible. The free string spectrum allows equivalent irreduc-
ible-representations at excited levels, and those represen-
tations may have different mass shifts at loop corrections.

V. FINITENESS OF TWO-POINT AMPLITUDES

e m Imv( i —Imv/I mr)

P

X (1—w p)(1 —w +'/p)
(28)

where w=e ', p=e "' . The third factor is unimpor-
tant as Imr~ oo (w~0) because it approaches 1(unity)
uniformly with respect to v (recall that 0(lmv(1m' in
the integration region). The exponent in the first factor is
positive and becomes large in the region where Im~ is
large and Imv is comparable to but appreciably smaller
than Im~. And in the same region the second factor is
comparable to 1. So the v integral of y ' (I )0) grows
exponentially as Irn~~ ~. A little more analysis shows
that other ingredients in the integrand of (17) do not
change this exponential behavior. So the integral
diverges.

Part of the reason for the divergence may be traced to
the propagator (2). The parameter representation is valid
only when Lp —ag Lp a~ &0, and to secure this in a
loop amplitude, we resort to the Wick rotation of the
loop momentum, which in turn forces the external mo-
menta off shell by the momentum conservation. So it is
illegitimate to set the external rnomenta on shell before
the integration is completed. We should also note that a
Wick-rotated self-energy-type amplitude is purely irnagi-
nary as can be seen by setting V2(0)= Vi(0)t in the gen-
eral construction (1) for M =2: the traces are real since
the Hermitian operators m„5.&6~~ commute with each
other, and the integral is purely imaginary after the Wick
rotation. This means that the corresponding diagonal
element of the transition matrix has no imaginary part.
The imaginary part required for the unitarity of the

We shall now discuss the finiteness of the two-point
amplitudes. If we set k on shell in the amplitude (17) be-
fore integration, the v. integral converges and for the
remaining ~ integration the integrand has the right
modular weight to make the amplitude modular invari-
ant. In other words, our on-shell amplitudes have the
two properties that are believed to guarantee the finite-
ness of massless one-loop amplitudes. So we expect they
should be finite. The fact is, however, the integration of
the on-shell integrand gives an infinity even if we restrict
the ~ integral to one fundamental region of the modular
group. To see this, we take the fundamental region to be
the one extending to i ~ and note that the 4lth power of
y comes in the integrand of (17) when k is on shell. Then
we look at g written

k Imv
X exp — m. Imv 1—

2 Imw

(29)

On the right-hand side we segregated the part corning
from the exponential in Eq. (28) and denoted the rest by
R. We take the fundamental region F to be the one ex-
tending to i ~. We omit the proof here, but the integral
R converges for k: —8~Rek &4, where the upper—Ic /2bound is due to the singularity of y at v=0. Furth-
ermore the function R(k ) defined by the convergent in-
tegral is continuous, and analytic in the interior of the
domain. So the divergence of the on-shell integral solely
comes from the latter part in the right-hand side, which
is the loop integral of a massless particle in the ten-
dimensional field theory except for the ultraviolet cutoff
brought by the restriction of the ~ integral to the funda-
mental region F. Therefore, the integral is apparently
divergent for Rek &0, but by the analytic continuation
from the Euclidean region defines a function of k with a
branch point at k =0. It gives a finite complex value at
k = —8 (on shell) with an imaginary part of the right
sign for the unitarity if we approach the real axis from
the lower plane. So, with our unbounded F, the two-
point amplitude defined by the integral IF(k ) with the
analytic continuation in k is finite. If we change F in IF
for a bounded fundamental region, the integral never
converges at real k, or equivalently, never converges ab-
solutely at any point in k plane. The analysis is most
conveniently done noting the formula

'5

f d2r f d2v ~(v~r)
—k

~

/2+cdr~(k 8)/2
F Irn~

(30)

where F is the image of F by the modular transformation

a~+6 a b
ESL(2,Z) .

cw+d

We take an unbounded F as before. For k &0, the in-
tegral IF- diverges for the reason noted for the on-shell in-

(31)

scattering matrix can only be gained in the continuation
in the external momentum to the mass shell. The ampli-
tude should have branch points on the real axis in k
plane. So the divergent on-shell integrals do not
represent string amplitudes by themselves and the proper
interpretation will involve analytic continuations in k .
The same comment applies to the open-string amplitudes
in Ref. 3 and similar situations are encountered in parti-
cle theories if parameter representations similar to Eq. (2)
are used in calculations.

Let us take a close look at the case l =1. The ampli-
tude is essentially the integral

5

I~= f d ~f d v y(v~r)
2

F Imv
'5

=R+ f d'r fd'v,
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tegrals. For k )0, the contributions from the region
where Imv-Im~ or -0 add up to be infinite unless c =0;
i.e., the F also extends to i ~. To justify the restriction of
the ~ integral to a fundamental region, we will have to
show that the integral gives the same value for any choice
of the region, but now it seems difficult to achieve this
with analytic continuation alone. Instead of investigating
for what k the integral converges (conditionally) for
each choice of F, we read Eq. (30) the other way: take F
to be the region extending to i (x), then the integral can be
defined with an analytic continuation as we have seen,
that is, for any F the insertion of the function

(k +8)/2g(r;k )= cr+d~'" + ' (r&F) makes the integral
finite. ReAecting the on-shell modular invariance, g be-
comes 1 as k comes back on shell, so g tells how we
should extend the integrand towards the Euclidean re-
gion for the definition of the amplitude by analytic con-
tinuation. By definition g depends on F, but defines a
unique amplitude.

For I ) 1, it becomes more difficult to find the region in
k plane where the integral (17) converges. Every term
under the sum diverges for k &0 and the terms with
nonzero p diverges also for k ~ 0 for any choice of F be-
cause of the singularities of the integrands at v=0. Gen-
eralizing the procedure for I =1, we may introduce a
function, which we again denote by g(r;k ), to be insert-
ed in the integral to make it finite and define a function of
k which allows a continuation to the mass shell.

We suggest that the factorization of massless N( ~ 4)-
point amplitudes might be used to justify the continua-
tion scheme and determine the class of functions to
which g should belong. For instance, if we consider the s
channel of the four-point amplitude and follow the can-
ventional factorization procedure as we did for the mas-
sive three-point amplitudes, we will restrict the v in-
tegration to the region where ~v, z~, ~v34~ (e(r), and re-
place the integrand with some of the first terms in its ex-
pansion in v&2 and v34 which will develop into the desired
double pole after integration. Factoring out the trees and
propagators& we will have the integrand in Eq. (17) multi-
plied by e'" + "~ (Ref. 6), which we identify as g(r;k ).
So the problem is now replaced with the one of finding
the right e(r) for the factorization procedure. We have
not fully investigated the problem yet, but one thing for
certain is that the e should be chosen so that the integral
converges for k in some region. The reason is that its

role in the factorization is to determine what part of the
integral is segregated to study the double pole by a con-
tinuation in k from somewhere the integral converges al-
though the segregated part is not necessarily required to
converge in the same region where the original integral
converges since we can continuate the latter step by step
as we segregate other divergent parts. Obviously we can
adjust E(r) to define an off-shell extension equivalent to
the insertion of g(~;k )

(k +8)/2=~cr+d~'" + ' for l=1. And for a general I, we can
choose e(r) so that the integral is convergent in some re-
gion where —81(Rek (—81+12. We assumed in the
factorization that the integral representation found in the
literature converges for some configurations of the exter-
nal momenta and defines the massless amplitude after all.

As noted earlier, the divergence of the two-point am-
plitudes is hardly conceivable in the context of the finite-
ness argument for massless one-loop amplitudes. The
string amplitudes with the ~ integral restricted to a fun-
damental region of the modular group should have no
more divergences than the particle field-theoretic ampli-
tudes in ten dimensions with an ultraviolet cutoff. What
we have found is that the demonstration of this notion is
nontrivial in conventional calculational methods since
the proper definition of the string amplitudes requires
something more than simple continuations in the external
momenta from the Euclidean region, unlike the particle
counterparts calculated with the parameter representa-
tions similar to Eq. (2). Finally, we comment on the as-
sumption we made in the proof of mass splittings (Sec.
III). In the examples of mixings we assumed the terms
with r =l —1 under the sum in Eq. (17) do not vanish
when integrated, and obviously there are no mixings if all
the terms vanish except the ones with p =I—1. Since our
continuation scheme is incomplete, we are not ready to
prove the nonzeroness. However, each of the terms is
divergent when, (wrongly) integrated with the external
momentum on-shell and, as suggested by the l=1 case,
the apparent divergence is related to the imaginary part
of the integral, so it is unlikely that the integral of each
term vanishes altogether with its imaginary part.

ACKNO%"LED GMENTS

We would like to thank Professor N. Sakai for discus-
sions and reading the manuscript. We are also grateful to
Professor C. Iso for encouragement.

'S. Weinberg, in Proceedings of the Oregon Meeting, Annual
Meeting of the Division of Particles and Fields of the APS,
Eugene, Oregon, 1985, edited by R. C. Hwa (World Scientific,
Singapore, 1986), p. 850; see also N. Seiberg, Phys. Lett. 8
187, 56 (1987);A. Sen, Nucl. Phys. 8304, 403 (1988).

20. Foda, Phys. Lett. B 191,75 (1987).
H. Yamarnoto, Prog. Theor. Phys. 79, 189 (1988).

4See, for example, S. Yahikozawa, Nucl. Phys. B291, 369 (1987).

5M. Green, J. H. Schwarz, and E. Witten, Superstring Theory
(Cambridge University Press, Cambridge, England, 1987),
Vols. 1 and 2.

6Weinberg, in Proceedings of the Oregon Meeting (Ref. 1). The
factorization in Sec. IV is not rigorous enough by the stan-
dard required in Sec. V for the definition of two-point ampli-
tudes.

7For example, Superstring Theory (Ref. 5), Sec. 9.2.


