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A suggestion that the theory of the interacting open bosonic string be reformulated as a general-
ized Yang-Mills theory is further elucidated. Moreover, a serious reservation regarding the order-
ing of operators in the earlier "proof" of equivalence between the new and standard formulations is
now removed.

I. INTRODUCTION

String theory has one unusual and somewhat unsatis-
factory aspect. Although it is supposed to contain as spe-
cial cases both relativity and gauge theories, ' both of
which are founded on geometry, one is still uncertain on
what physical principles string theory is based. As an
attempt toward more understanding in that general direc-
tion, it has been suggested that string theory be con-
sidered as a generalized Yang-Mills theory of an extended
object. The purpose of this paper is to elucidate further
the relationship between these two theories, and to make
more precise the conclusions obtained in the earlier work.

Suppose we consider generalizations of basic gauge
theory concepts in two directions.

First, let us take as fundamental objects not points, but
strings having a linear extension, which are to be de-
scribed by wave functionals @[X],where X are functions
X(o ), say, with o =0~m. . Because of its extension in ac-
tual physical space, a string possesses "intrinsic" internal
degrees of freedom in addition to and different in nature
from the usual "extrinsic" internal degrees of freedom
dealt with in standard Yang-Mills theory, which are in a
separate internal space having nothing to do with the
original physical space. One ought therefore to general-
ize for strings the gauge concepts so as to incorporate
these "intrinsic" internal degrees of freedom into the
theory as part of an extended gauge invariance.

Second, standard Yang-Mills theory is in a sense a de-
generate case in that the base space (namely, space-time)
is both the space over which the wave functions P are
defined and also the translation group space over which
the gauge potential A„provides a criterion for parallel
transport. One normally thinks of a wave function P(x)
as assigning to every point x in space-time a value for the
state vector P. Alternatively, however, one can also think
of it as a prescription of how P changes under translation,
or in other words, as an assignment of P to a representa-
tion of the translation group. The gauge potential A„
then is what gives the additional change in the "phase" of
P through parallel transport under translation. Such a
dual interpretation of the base space in standard Yang-
Mills theory is possible because the group space of

space-time translations is the same as space-time itself.
However, one can easily imagine a situation where the
translation group is generalized to some other group of
transformations acting on P, whose group space bears no
obvious relation to the space over which P is defined.
Indeed, for string theory, it appears that one has to take
as base, in place of the translation group, the conformal
group, which is of course not the same as the space of
functions X(cr), over which the functionals @[X] are
defined.

We cannot claim to have understood any deep physical
reason why one should generalize gauge theory in the
directions indicated, especially the second. However, it
seems that once these generalizations are made, then one
gets very close to standard string theory. In what follows
we shall attempt to formulate a theory incorporating
such generalizations of the Yang-Mills concepts by devel-
oping the analogy with the standard theory. It will ap-
pear then that the theory of interacting open bosonic
strings in the form proposed by Witten will emerge as
the pure Yang-Mills theory of the new version in which
the open-string functional plays the role of the general-
ized Yang-Mills gauge potential. The equivalence be-
tween the new formulation and standard string theory
was established only formally in our earlier work where
ordering of operators has not been taken into account.
This serious shortcoming is now removed through the in-
troduction of an operator formalism with proper order-
ing criterion, giving us a better understanding of the rela-
tion between this new formulation and the conventional
one. When fully developed, this operator formalism will
allow us, we hope, to go in the future beyond the stan-
dard string theory, which corresponds only to the pure
Yang-Mills case here, to a string theory with sources,
opening thus perhaps new possibilities for the construc-
tion of more realistic models.

II. IDENTIFICATION OF THE GAUGE GROUP
AND BASE

Yang-Mills theory has two fundamental ingredients: a
gauge group and a base. By developing the analogy with
particles along a particular line we are led to specific
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choices for both as the appropriate generalizations to
strings. Our arguments here will be heuristic, and will
use a functional formalism, which though less rigorous
mathematically, seems to us to give one a much clearer
physical picture.

Consider first a classical free particle. The system is in-
variant under shifts in both position and momentum as
well as in time. The generators of these shifts, say t;, t~,
and t' together form a closed algebra. When the system
is quantized, however, the generators t are replaced by
operators T on a Hilbert space. Then, T~ and TI' no
longer commute,

[TP, Tf]=i5,, (2.1)

although all the other commutators remain the same.
In parallel now consider a classical free string de-

scribed by x"(o ) and its conjugate p "(o ), or equivalently
by their Fourier modes x„"and p„". The system is invari-
ant under conformal reparametrizations generated by l„
satisfying

[l„l ]=(n —m)l„+

Alternatively we may choose as generators

r&0,
m„=l„+(—1)"l „, r )0,
mo =2lo .

They satisfy the commutation relations

[k„,m, ]=(r —s)m„+, +( —1)'(r +s)m„

[k„,k, ]= (r —s)k„+,—( —1)'(r +s)k„

[m„,m, ]=(r —s)k„+, +( —1)'(r +s)k„

[k„,mo] = [1+( —1)"]rm„,

[m„,m 0]= [1+( —1 )"]rk„.

(2.2)

(2.3)

(2.4)

When this system is quantized in the standard fashion by
replacing x and p with operators X and P on the Hilbert
space of wave functionals such that

[X",P„]= i5— (2.&)

the generators l„are replaced by the Virasoro operators

r n=p ~::~k~n —k::
k

(2.6)

[L„,L ]=(n —m)L„+ + (n n)5(n +m)—, -
d

(2.7)

diff'ering from (2.2) by an anomalous central charge term
depending on the space-time dimension d. Equivalently,
in terms of the combinations

(where:::: denotes normal ordering with respect to the
mode creation-annihilation operators a„) which satisfy
the commutation relations

K„=L„—( —1)"L

M„=L,+( —1)"L

Ma= 21.O,

(2.8)

one finds that of the commutation relations in (2.4) only
the first oge is changed, giving

[K„,M, ]=(r —s)M„+, +( —1)'(r +s)M„

+ (
—1)'—(s —s)5(r —s)

6
(2.9)

which acquires the anomalous central charge term. All
other commutation relations are left unaltered. Thus the
eff'ect of quantization is similar to that in (2.1) for parti-
cles, in that (apart from m o- t ') the generators separate
into two sets in such a way that quantization only adds a
c-number term to commutators between members of
difFerent sets.

Suppose that we are minded to take the conformal gen-
erators l„as the analogues for the string of the shifts t for
the particle, as was suggested in the Introduction; we
would be tempted to take mo as the analogue of t', and
either k„or m, as corresponding to t,~ or t~. The opera-
tors m„however, do not form a closed a1gebra. We are
thus led to the choice of k„as the generators of the base
group for string which is to be the analogue of the group
of spatial translations for particles generated by t, . A
major difFerence between the two cases, of course, is that
the generators k„ in (2.3) do not commute, in contrast
with the generators t;~ of the Abelian group of spatial
translations.

Next, we attempt to advance from the free theory to a
gauge theory and try to identify the gauge group for a
string by drawing again on the analogy with a particle.
Take a standard Yang-Mills theory with unitary syrnme-
try, say, for example, SU(2). This is described by a field
P', i=1,2, belonging to the fundamental (doublet) repre-
sentation, and a gauge potential A'~, i,j=1,2, belonging
to the adjoint (triplet) representation of the gauge group.
To what classical system does it correspond? The ques-
tion was answered by Wong —one obtains in the classical
limit in place of g a particle in an isotriplet (adjoint) rep-
resentation interacting with the gauge field.

Consider now the string. We wish to construct a gauge
theory in a similar fashion by treating the string exten-
sion itself as the gauge degree of freedom. In other
words, we want the coordinates X(o ), cr =0 +sr, to play-
the role of internal indices. By analogy with Wong's re-
sult we shall put the classical string in the "adjoint" rep-
resentation of the gauge group. Suppose we were to in-
troduce a 4 field in analogy with f above: on what in-
dices should 4 depend? %' should be in the "fundarnen-
tal" representation and depend on only half the number
of indices which label the classical string: namely, X(cr ),
o.=0—+~. One simple solution is obviously that we take

to be a functional of only half a string: namely,
%=%[X],X =X(o.), cr =0~sr/2.

In standard Yang-Mills theory an inner product be-
tween two fields t/ii and g~ is defined as
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(2.10)

The gauge group is the group of unitary transformations
preserving this inner product. In analogy, let us define
the inner product between the 4 functionals also as a
sum of %'& %2 over all internal indices, thus,

L + (T

6
l 7T +X'"(cr )

5X~(o )

Finally, the "translation" generators (2.15) act on "ad-
joint" representations; how do they act on 4? Define L
as

2

(e„e,) =f5x e', [x]e,[x], (2.11)
0~ cT ~ n. /2, (2.19)

and define also the gauge group as the group of all uni-
tary transformations,

+[X,] %[X,]=f 5X, U[X„X,]+[X,],
which preserve the inner product (2.11): namely,

f 5X2 U [X„X2]U [X2,X3 ]=5[X,—X3],
where, by definition, as usual for a matrix,

U [X„x~]=U*[X2,X, ] .

(2.12)

(2.13)

(2.14)

K+ =L+ —L+(„), a=O~m. /2,
where L is the Fourier transform of L„,

2

(2.15)

1 . 5
L+ =—.. in+X—'(o .

)
2 5X(o )

cr =O~rr, (2.16)

and write A [Xi,x~]= A [X„X2], cr=O~n/2. Fur-
thermore, the gauge group being unitary, A [Xi,X2]
must therefore be Hermitian: thus,

A [X„X2]=A [X„X2]. (2.17)

In terms of the full-string notation when A is considered
as a functional A[X] of the full string X(o ), o. =O~n. ,
(2.17) is the same as

A*[X]= A[X], X(o ) =X(rr o), —.(2.18)

which is the reality condition imposed on the string func-
tional by Mitten and others in the standard formulation
of string theory. Here in our case, (2.18) appears as a
unitarity condition in half-string space.

Next, the gauge potential is what defines parallel trans-
port of the "phase" of 4 under a displacement induced
by an element of the "translation" algebra, and belongs
to the adjoint representation as the classical string. It
should thus be a matrix and carry twice the number of
indices as ql. Thus A = A [X„xz], X;=X,(a ),
o. =0~m. /2. Alternatively, one can consider the poten-
tial to be a functional A.[X] of the full string X(o ),
cJ=O~m, with X(n —o )=X2(o ), where X2(o ) is the
"column index" of the matrix A [X„xz] introduced
above. Further, like the potential A '~ in standard Yang-
Mills theory, the potential for the string should have as
many "space-time" components as there are generators in
the "translation" group. Thus A [Xi,X2]= A„[Xi,
X2], where the integer r) 0 labels the generators K„
defined in (2.8) of the analogue "translation" group as
suggested above. Alternatively, we can take as genera-
tors of the "translation" group the Fourier transforms of
K„,namely,

where:: means normal ordering with respect to a cri-
terion yet to be specified. The transformation

'Il~(1+iv L )4' (2.20)

on half-string functionals will induce on the matrix ele-
ments (+,~M~+2) of any operator M in half-string space,
the corresponding transformation

~(+, l~lq', ) =(+, liv [L.,~]l+, ) . (2.21)

Using then the definition (2.11)of inner products and per-
forming some simple partial functional integrations,
while ignoring for the moment all questions concerned
with normal ordering, one can easily see that in terms of
the full-string notation this is the same as

EM[X]=iv K M[X] . (2.22)

In other words we have shown that the "translations"
(2.15) are represented by the operators L in (2.19) acting
on

III. FUNCTIONAL FORMULATION OF THEORY

Q = f der([L, ]ri +4in'ri ri' Iri, ]) (3.2)

which are entirely analogous, respectively, to the poten-
tial 1-form A = A „dx" and the exterior derivative
c) = [c)„, ]dx~ of standard Yang-Mills theory, except that
in (3.2) there is an additioiial term due to the fact that the
base group here is non-Abelian.

Using A and Q, one can build other gauge-covariant
quantities such as the field tensor (curvature) 2-form

F=QA+A A, (3.3)

where the dot denotes matrix multiplication. Explicitly,
if we introduce, via bosonization, a matrix representation
of the "ghosts" g; thus,

Having identified the gauge group as the group of uni-
tary transformations and the base group as the group
generated by L, both acting on %[X], one can now
proceed to construct a gauge-covariant theory along fa-
miliar lines. This is the point at which we started in our
earlier work. For convenience we shall continue to refer
to it as the "comma" formulation. Thus, introduce in
analogy to the di8'erentials dx" in standard (point)
theories, the anticommuting differentials g dual to the
"translation" generators L . These are the so-called
Becchi-Rouet-Stora-Tyutin (BRST) ghosts. ' ' From
them one constructs the potential 1-form

A=f der A (3.1)—m/2

and the exterior derivative
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with

(3.4)
b, A[X)=iv K A[X],

where

K =L —L

(3.13)

(3.14)

g(o ) = f do', +i n P'(o') (3.5) and

L =L +L~" (3.15}
treating P(o ) as an additional matrix index, then, for any
two matrices M and X,

M X=f 5X25$~M[X„Q,;X2,$~]X[X2,$2;X3,$3] .

(3.6)

for L as given in (2.16) and

L~ =—.". +imP'(o)
5 cr

2

Furthermore, as usual, by taking traces

TrM = f 5X 5$ M [X,Q;X,P] (3.7)

, . d 5
', i —— +imP'(o )

O~o. &m . (3.16)

of such covariant quantities, one can construct gauge in-
variants to serve as candidate actions. For example, the
trace of the Chem-Simons 3-form

But the Fourier transform of (3.14}is

K„=L„—( —1)"L „, r &0 . (3.17)

A =Tr(A. QA +—', A A ~ A) (3.8)

5A =Qe+ A e —e. A (3.9)

for any infinitesimal Hermitian matrix e, corresponding
to a local change in "phase" under an infinitesimal uni-
tary transformation U = I+i@ of the 4' field as in (2.12).
In addition, (3.8) is invariant under the variations

hA =iv [E,A],
where

=L +L s"

(3.10)

(3.11)

In (3.11), L is as given in (2.19), which generates
"translations" on %[X], and Ls" is the corresponding
generator in the ghost coordinate P (Ref. 11).

apart from some details, such as "ghost insertion factors"
already spelled out in Ref. 3, and the serious ambiguity of
ordering that we shall discuss later, is the same as the
Witten field action for the interacting open bosonic
string.

The action (3.8) is by construction invariant under the
gauge transformations:

So we have deduced that the action A in (3.8) is invariant
under the algebra generated by K„. Therefore, it appears
that the invariance of interacting string theory under K„
first discovered by Witted in Ref. 7, means in our present
language just "translational" invariance.

The requirement of gauge invariance and invariance
under "translations, " though stringent, does not by itself
determine the action uniquely. Instead of (3.8), one could
have chosen as action, for example, the trace of a higher
Chem-Simons form, provided one includes an appropri-
ate ghost insertion factor to make the trace nonvanishing,
as explained in Ref. 3. The result will still keep both in-
variances, although of course, it may be excluded by oth-
er physical requirements. Furthermore, the action (3.8),
as well as the other possibilities with higher Chern-
Simons forms, involves only the gauge-potential 1-form
A. In the standard Yang-Mills language, they are there-
fore pure gauge theories with only gauge bosons and
nothing else. In principle, as far as gauge invariance is
concerned, there seems nothing to stop us from extending
the theory to include the 4 field, as one does in ordinary
Yang-Mills theory.

IV. CHOICE OF BASIS IN FUNCTIONAL SPACE
AND EXPANSION IN OSCILLATOR MODES

ghL sz =—. +i mP'(o).
L

3 . 8 6
2 do 5$(o )

0 ~ cr ~ n /2 . (3.12)

The second term in (3.8), being a trace of a product of
A s, is obviously invariant under (3.10), while the first is
also invariant because L commutes with Q, or in other
words, because the exterior derivative Q is "translation-
al" invariant. Writing (3.10) in terms of full-string nota-
tion and performing some simple partial functional in-
tegrations (ignoring ordering for the moment) similar to
those leading to (2.22), one obtains

The equivalence claimed in Ref. 3 between the action
(3.8) and that of conventional string theory was only for-
mal because, in the "proof" of equivalence, one had to ig-
nore the normal ordering of operators, such as L in
(2.19) and g in (3.4), without which the operators would
be singular and undefined. Actually, the difficulties en-
countered in incorporating ordering in the operators L
and g differ somewhat in significance. Whereas for q,
they appear to be merely technical, for L the problem
runs deeper and has its origin in the fact that one has not
defined the half-string functional space properly. Indeed,
without a more precise specification of the half-string
functional space, one does not even know what ordering
means for such operators as L

To understand the problem better, let us return to the
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X'"(r,o )= X"(~,cr)=0, o =O, m .= a
0

(4.1)

Qne then forms the combination

conventional formulation of string theory. ' There one
usually works with an operator formalism. One starts
with a function X"(~, cr), cr=0—+m, which obeys open
boundary conditions at both ends: namely,

and cannot wander too far from its neighbor. The same
condition, however, does not apply to the zero mode,
which represents the motion of the center of mass of the
string, and is permitted to vary freely.

Let us now turn to the "comma" formulation. Instead
of choosing the coordinates X0 of the center of mass and
the coordinates X„-X'(o ) of all the other points relative
to it as variables to describe the string, we can of course
equally well choose as alternative variables the coordi-
nates of the midpoint

g"(s)=[mX"(r,o )+X'"(r,cr)], s =r+cr, (4.2)
x (r)=X(~,m /2) (4.9)

which, because of (4.1), is periodic for s in the range
[ vr, m

—] O.n quantization, one replaces X(~,cr ) by
i 5—/5X(o ), obtaining

5P(+cr ) = i~ — +X'(cr ), o =0~m . (4.3)5X(o )

and the coordinates of the other points relative to x

XL(r, o ) =X(r, cr ) —x (r),
X~(r, o ) =X(r, m. —o. )

—x(~), o =0~sr/2 .
(4.10)

Taking the Fourier expansion of P(cr ) one has

P(o)= ge '" a„, o'= —m~~, (4.4)

Again, x should be allowed to vary freely, but yL ~
should be restricted in such a way that neighboring
points on the string may not wander too far from each
other. To implement this, introduce for the left half
string the operators

where e„obey the commutation relations
II(+cr ) =P(+o.)+i~, o. =0~~/2,

Bx
(4.11)

[a~,a ]= n5(n +—m)g" (4 5) where

behaving thus as mode creation and annihilation opera-
tors. Using the creation operators a „,n) 0, one then
constructs a Fock space by repeated application on the
vacuum; thus,

P (+cr ) = i ~ +—X'(o ), o. =O'er/2 .6
5X(o )

(4.12)

Being antiperiodic in the range ~/2~sr/2, II(cr—) will

have only odd modes in their Fourier expansions:

(4.6)

Folding in the motion of the center of mass (zero mode)
one has

II(o )= g &2e '"
PI, ,

k odd

o = —m. /2~m/2 .
(4.13)

exp(iP0 Xo)llri r2 (4.7) Furthermore, with respect to the inner product (2.11),
II(o ) is Hermitian so that again

which, for varying P0 and r„, forms a basis for our Fock
space.

The state vector (4.7) can of course be considered as a
functional of X(o ), or equivalently of X„. The vacuum
state ll0) is the Gaussian functional

and they satisfy the commutation relations

[f3~a, I3, ]=—k5(1+k)g~

(4.14)

(4.15)

ll0) =exp
' —g X„

n)0
(4.8)

By repeated application of the creation operators 0.
n) 0, on ll0), one obtains then, as usual, just a bunch of
Hermite polynomials in X„multiplying the Gaussian
functional (4.8), which when considered as functionals of
X„are always strongly damped for large X„. This is true
for all modes except the zero mode, which is represented
in (4.7) by a plane wave exp(iPD. X0). The choice of (4.7)
as a basis for our Pock space is convenient since the
points on a string are held together by the string tension

lr, r3 r1, ) 13 ]P—3
P""p — l» . (4.16)

%'e have two copies of this Fock space corresponding, re-
spectively, to the left and right halves of the string, the
tensor product of which we shall denote by,. matrices;
thus,

analogous to (4.5) of a"„ for the full string. Similar opera-
tors can be introduced also for the right half string lead-
ing to essentially the same mode expansion.

Construct now a Pock space by repeated application of
P 1,(k) 0) on the vacuum; thus,
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&&s&s3 sI I 0 fP 3 0 k I0&«l. 0"I. 13'3P f. (4.17)

exp(ipx)~r, r, . . . r &(s,s, s, (4.18)

Folding in further the motion of the midpoint
x =X(m. /2),

The operators L„=A„, n even &0, together with

Ao= X:13k&-I:
k odd

(5.4)

V. THK "TRANSLATION" GENERATORS L

For operators to be finite in the half-string Fock space
defined in Sec. IV, they have to be normal ordered with
respect to 13k. Thus, for the "translation" generators L
in (2.19), we now specify that, by the symbol::, we mean
normal ordering with respect to Pk. Then using (4.11),
since B/Bx commutes with II(o ), we can write

Notice that since II(o ) is antiperiodic in the range
[ n/2, m/2], the—fir.st te.rm in (5.1) is periodic in the
same range, but I. itself is neither periodic nor an-
tiperiodic. This means that in its Fourier expansion

ln O'L (5.2)

there will be both odd and even integer modes. Explicit-
ly,

L„= g:PkP„k., n even+0,
k odd

a
Lk = —t&2m. 13k, k odd,

Bx
(5.3)

Lo = g:Pklf k:—a'

we have again a basis for the Fock space of our string in
which the overall motion of the string is unrestricted but
neighboring points on the string are not permitted to
wander far from each other.

The change of basis from (4.7) to (4.17) is not a simple
one. The explicit transformations relating them will be
reported in a later paper. ' The commonly used basis
(4.7) has of course the merit of being simple for con-
structing solutions of the free-string equation of motion.
On the other hand, the new basis (4.17) has the advantage
of being more transparent in questions connected with
gauge invariance. Thus, for example, Witten's "star"
products defined in terms of half-string functional in-
tegrals are awkward to express in terms of the basis (4.7),
but are just matrix multiplications in terms of the basis
(4.17). Indeed, although we have not yet done so, one
may hope in the future to avoid altogether the ambigui-
ties associated with functional integrals by defining ma-
trix products such as (3.6) and inner products such as
(2.11) directly in terms of the P oscillator modes. For the
present we shall restrict ourselves to using I3 for defining
the ordering for half-string operators, and to reexamine
thereby the question of equivalence between the conven-
tional and the "comma" formulations of interacting
string theory.

Indeed, the algebra generated is just the standard
Virasoro algebra as can be seen by simply shifting A0 by a
constant; thus,

Ao~Ao+d/4 . (5.6)

We shall call this algebra A.
The odd components Lk, k odd, in (5.3), together with

3 /9x, also generate a closed algebra

[L„,L, ]= —k 5(k + l) —2m. (5.7)

which we shall call A~.
Taking a generator from A and one from A~, we have

[A„,Lk ]= kL„+k— (5.8)

which is in A~. The whole algebra X generated by L is
thus a semidirect product of A and A~. Namely, as a
linear space

X=A&A~

and as an algebra

(5.9)

[A, A]KA, [A~, A~]CA~, [A, A~]C:A~ . (5.10)

The structure of X is vaguely reminiscent of the Poincare
algebra, with A playing the role of the Lorentz algebra,
and A~, which, according to (5.7), is almost commutative,
playing the role of the space-time translations. In the
present context, X represents the algebra of conformal
reparametrizations of the world surface swept out by the
comma with the head of the comma at x =X(m /2), fixed
in both space and time, while A~ represents the effect due
to the change in x.

VI. EQUIVALENCE TO STANDARD STRING THEORY

Having specified the ordering of the operators L, , we
are now ready to reexamine the question of equivalence
between the comma" formulation and the standard for-
mulation of string theory.

One crucial step in the "proof" of equivalence between
the comma formulation and the standard formulation is
the demonstration that the operator Q in (3.2) acting on
the potential 1-form A in the matrix notation of (3.1) is
equivalent to the BRST charge

and the identity, generate a closed algebra. This can be
shown by evaluating the commutators between them us-
ing standard techniques, ' giving

[A„,A ]=(n —rn)A„+ + (n +2n)5(n +I) .d
12

(5.5)
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5Q= J do g L +4ivrri ri'
7T 6g

(6.1)
provided that

ly I
)

I zl ~ (6.4)

operating on the full-string wave functional A in the
standard formulation. Whence it would follow that the
action (3.8) is indeed equivalent to Witten s action. No-
tice however that the operators L occurring in Q of (3.2)
are ordered with respect to the half-string oscillators P&,
while the corresponding full-string operators L occur-
ring in Q of (6.1) are ordered with respect to the full-
string oscillators a„. This fact was ignored in our earlier
treatment because we did not know then what ordering
meant in half-string space, but it has now to be taken into
account.

We proceed as follows. Starting from the expansion
(4.11) for II(o ) we can write

Hence, since c)/c)x commutes with II(cr), one can write
also, for P"(cr) defined in (4.12),

P"(o )P"(o')=:P"(cr)P (o '):+ri" D (o,cr')

and for the "translation" generators L in (2.19):

(6.5)

L = lim [P&(o )P"(cr') dD(o—, cr')]
a ~a (6.6)

so long as cr and cr' are in the range (6.4).
Consider now the operator Q in (3.2) acting on the

gauge potential A. We sha11 encounter in the resulting
expression the commutator

for

11&(~)ll'(~') =:II&(~)ll (~'):+q& D(~, ~') (6.2)
[L,A ]=L A ~

—A -L (6.7)

2yz(y +z )

(y2 z2)2
(6.3) where both L and A - are themselves operators on the

wave functionals %[X]. Thus, using (6.7),

L A ~ 4= lim I5X2[P", (o)P", (o ') . dD (o,o—')] A [Xi,X2]+[X2],a'~a

A L 4'= lim J5X2A -[X„X2][P~2(cr)P~2(cr") dD(o, cr'')]%—[X2],a'~a

(6.8)

(6.9)

where

Pi'(+o ) = i rr—5 +X'"(cr ), 0 ~ cr ~ vr/2 .
5Xf"(cr )

(6.10)

full-string oscillator modes u„we can rewrite the first
term within brackets in (6.13) as an ordered product or-
dered with respect to a„ in accordance with the standard
formulation. Thus,

P2(o')P2 (o )]—A -[X„X2]. (6.11)

Change now to full-string notation as in Ref. 3; thus,

A [X,,X2]~ A [X],
X, (o.)~X(cr), 0~ o ~ m/2,

X2(cr )~X(7r—cr ), 0 ~ cr ~ m. /2 .

We obtain, for o )0 or o. (0, respectively,

[L,A „]= lim [P"(o )P"(o')
a'~a

(6.12)

P(+sr o')P (+m———.o )] A [X] .

(6.13)

Notice that the singular terms proportional to D(o, cr')
in (6.8) and (6.9) are just c numbers in functional space;
they therefore commute with A and cancel in the com-
mutator (6.7). The remaining term in (6.9) involves only
an ordinary product of operators P2(o ) and P2(o') on
which we can perform partial functional integrations
with respect to X2(o ), obtaining for the commutator just

[L,A ~ ]= lim [P", (o. )P", (cr')

P"(o )P'(o')=::P"(o )P (cr'')::+ri" D(o, cr"),
where

(6.14)

D(o.,o")=, y =e', z =e'
(y —z)'

(6.15)

the formula (6.14) being valid again for y and z satisfying
the condition (6.4). For the second term in (6.13) we note
that

lexp[i(+m. —o')]l = ) = lexp[i(+m —cr)]l,1

lyl

(6.16)

so that we can write

P (+sr cr'')P (+rr —o—)=::P(+~ o')P (+~—cr)::—
+g" D(+~ cr', +~ cr) . ——

(6.17)
But, by (6.15),

D(+m cr', +m —o—') =D(o —o') . (6.18)
Hence the singular term in (6.17) cancels with that of the
first term in (6.13), as exhibited in (6.14). We therefore
obtain for the commutator, by (2.16),just

Using next the expansion (4.4) for P(o ) in terms of the [L,A „]=L A „—L+ A- (6.19)
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(cr)= g
n =2

1/2

b„e'", n even, (6.20)

g+(o )= g
n =2

' 1/2
g. 4 —ina.

n even,

and specifying that by:: in (3.4) we mean normal order-
ing with respect to b.

Take now the first term of Q in (3.2) operating on the
gauge potential 1-form A: namely,

f do. I = f do. (L 2) A +AL ri ), (6.21)

where we have used the anticommutivity of q with A.
In comma-matrix notation,

for, respectively, o. )0 or o. &0, which is exactly the same
as that obtained in Ref. 3. Thus here, at least, it happens
that taking proper account of ordering has not changed
our earlier conclusion.

Consider next the ghost operators g . The question of
ordering enters here only in the bosonization (3.4): name-
ly, in the introduction of a matrix representation for the
anticommuting operators g and g . Such a representa-
tion can be achieved by defining the usual expansion of
the exponent g(cr ) in (3.5) in terms of oscillator modes b
of the half-string:

g(cr)=i [Q+P re+/ +(o )+g (cr)],

and g' (o z) as defined in (6.20), we can write the ordered
products in (6.27) as ordinary products. Thus, for exam-
ple,

:g(cr 1 )g(o 2):=g(cr, )P o z) —b, 12,

where

(6.28)

612=[/ (cri), g+(oz)]=in(1 —zi /zz),
the formula (6.28) being valid for

/z, f(/zz/, z, =e' ', z, =e' '.

(6.29)

(6.30)

'4(~14(oz)" Poly(oz) ~12

with

(6.31)

~12 [k—(oi »4+(~2)l=»(1 (6.32)

and similar expressions for all higher products. Al-
though the contraction functions differ in the two cases,

Similar formulas for higher products can be obtained us-
ing the Wick theorem for ordering, treating 6; as the
contraction function. One can thus express the whole
series in (6.27) in terms of ordinary products of the opera-
tors g(cr, ), which a.re the same as the full-string operators
g'(o; ) for 0 ~ o; ~ vr/2. We next rearrange these ordinary
products in terms of products ordered with respect to the
full-string convention, obtaining

—f&{t)2:exp[pi(~)]:~ [&1,{()2]+[{t2],
1

(6.22) A)2= h, i2+ln
Z~ +Z2

Z2
(6.33)

) + f ~02 ~ [{t1 {tz] exp[f2( cr ) 1:+[{t2]
1

(6.23)

where

g, (o )=f do', +in', '(cr')
0 5; o.' (6.24)

Following Ref. 3 we wish to rewrite the first term in
(6.21) in full-string notation as

A=g A. (6.25)

This is not immediate as it was previously since although
has still formally the same expression in terms of P for

both the half string and the full string, .the ordering con-
ventions are different in the two cases, and there is also a
difference in the normalization by a factor of 3/2 due to
the change in the range of o.. Indeed, for the full string,
we have

~o.— ..e g(a). .1

3/2rr
" (6.26)

(6.27)

where:::: means ordering with respect to full-string oscil-
lators a„, not b„as in (6.20). To take account of this we
use a trick simi1ar to that employed above for L, . We
write first

the difference is nonsingular and gives in the limit z& ~z2
just a number, ln2. By collecting all these additional
terms in the series (6.27), it can be seen that their effect is
just to give an overall multiplicative factor 1/3/2, leading
thus to exactly (6.26). This then verifies (6.25).

For the second term in (6.21), we need to perform a
functional partial integration with respect to {t)z so as to
convert g into an operator acting from the left on the
second half of the full-string functional A, analogous to
what we did above for the operator L in (6.11). This was
what we did also in Ref. 3, but had then to ignore the or-
dering. To take account now of ordering, we first express
(6.27) as a series of ordinary operator products as we did
above. We then partially integrate term by term in (6.23)
with respect to Pz. For example,

1 1f ~4'2 —~ [41 Azl 3, [42(o 1%2(crz 42(~3):I'P[02]

(6.34)

becomes, on partial integration,

f &&2 Mz(o3)(2(~2%2(ol) 1242( 3)
vr 31

~1342(~2) ~2342(~1 ]~ [41&42]+[4'2]

(6.35)

Then, using the commutation relations between g+(o 1) where
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$2(o;)= f dcr — +irrg2(o )
0 5 2o. (6.36)

Change now to full-string notation:

A [0i 4'z] &M']
(6.37)

P, (o )~P(o ), $2(o )~P(n.—o ), 0~o ~n/2 ..
We have

First, although we have not here done so explicitly, it
is clear that internal unitary symmetry of the usual "ex-
trinsic" type, such as color SU(3), can be incorporated
into our scheme simply by taking the gauge potential A

to be a matrix, not only in the continuum comma" in-
dices X(o ) and P(o ), but also in the discrete indices cor-
responding to the "extrinsic" symmetry. For example,
color SU(3) can be incorporated by taking A to be a Her-
mitian 3 X 3 matrix, which may be written

$2(cr;) = —f do +in/'(o .
)

A=+A;A, '. (7.1)

=g(m —o;) .

Noting then that

(6.38)

(6.39)

To make the action (3.8) invariant under color SU(3), all
that is needed is to extend the definition of the trace Tr in
there to include a trace over SU(3) indices. For instance,
for the interaction term Tr( A A A) in (3.8), the substi-
tution of (7.1) gives

implies

~exp[i (m —o z)] ( ~exp[i(m —cr2)] ~

& )exp[i(m —o, )]~

and that, for h. &@
=5,(o „o2) as given in (6.32),

b(rr cr2, ~ o—, ) =h(—o „o~)

(6.40)

(6.41)

we can resurn the expression within brackets in (6.35) as
the ordered product:

::g(n o~)j(n —c—r~)g'(rr —crq):: (6.42)

plus terms proportional to ln2, which eventually give just
a factor I/&2 as above. The same can be done for every
term in the expansion (6.27). Then resumrning and tak-
ing the limit o.;~o., we obtain

Ag =g" A.
In other words, for I in (6.21), we have

I =Lg A+L g" A

(6.43)

(6.44)

VII. REMARKS

Apart from the conceptual value of viewing string
theory as a more or less direct generalization of Yang-
Mills theory, which may go some way toward achieving a
final understanding of the theory's geometrical or physi-
cal significance, our considerations here possess some
points of interest which can lead to practical applica-
tions.

which is again the same as in Ref. 3 before we took order-
ing into account.

The same analysis can be repeated for the second term
of Q in (3.2), leading to the desired conclusion that the
exterior derivative Q operating on the gauge potential 1-
form A in the comma formulation is, in fact, the same as
the BRST charge operator Q operating on the string
functional A[X] in the standard full-string formulation.
It appears therefore, at least to the present limited degree
of rigor in our demonstration, that our former reserva-
tion in Ref. 3 about the equivalence being only formal be-
tween the two formulations is now removed.

g Tr( A; AJ A & )Tr(A, 'AQ, ")
ijk

(7.2)

so that the interaction vertex for three strings of colors,
respectively, i, j, and k is proportional to the trace factor
Tr(X'uX").

Now this was exactly how internal symmetry was in-
corporated in the dual model of 20 years ago. ' What is
needed in a vertex to make a theory invariant under
SU(3) is that it should be proportional to a Clebsch-
Gordan coefficient coupling the strings of different colors
together into an SU(3) scalar. The particular virtue of
writing it as a trace is that it can be trivially extended to
n strings in a dual fashion. The interesting point here is
that it seems that history is repeated. In the formulation
of string theory presented here, the basic symmetry is the
invariance under unitary comma gauge transformations,
as exhibited in (2.4). To preserve this invariance, the in-
teraction vertex has presumably to be proportional to a
"Clebsch-Gordan" coefficient of the huge comma gauge
group. The gauge potential A is in the "adjoint" repre-
sentation of this group and is represented as a comma
matrix, just as the potential in SU(3) was represented by
the matrix of (7.1), and again the solution is that we take
the trace with respect to the comma-matrix indices. This
suggests that in coupling n strings together to form a
comma gauge invariant in an explicitly dual fashion, one
may again take the trace with respect to comma indices
of a product of n-string fields. Conceivably, therefore,
the representation of A as comma matrices may facilitate
the evaluation of n-string vertices and hence eventually
also of string amplitudes in general.

Second, as already mentioned in Sec. III, it seems natu-
ral in the present context to consider alongside the pure
Yang-Mills theory embodied in the action (3.8) a theory
involving also the comma field %. In analogy to QCD,
for example, the theory of (3.8) contains only "gluons, "
while the comma field 4 is the analogue of the fundamen-
tal quark matter field. With the covariant derivative

=(L —A ) acting on 4, one can readily construct
comma gauge invariants from + to serve as candidate ac-
tions, as attempted already in Ref. 3. Now that we have
introduced an operator formalism for the comma, giving
thus a more precise meaning to operations on 4', there is
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hope that a concrete theory containing 4 may be formu-
lated. It is possible that the new freedom gained in this
way can be useful in attempts to construct realistic physi-
cal models which have so far proved elusive.

Our considerations above may conceivably also be of
interest in a wider context in that in order to reformulate
string theory in Yang-Mills language we have been forced
to generalize the usual gauge theory concepts in some
rather unfamiliar directions. The extension of the gauge
group to an enormous group of unitary functional trans-
formations is dramatic, but is perhaps not so unexpected
for an extended object. What is more surprising is the
necessity also to generalize the concept of the base; first,
from the usual translation group in space-time to a non-
Abelian group and, second, to working with representa-
tions of such a group on a space other than the space of
functions of the points in the base manifold. It appears

thus that even the concept of locality has to be general-
ized and, as pointed out in Ref. 5, this takes us to the
physically unfamiliar realm of noncommutative
geometry. ' Although one is still far from clear what this
means in physical terms, one may well consider whether
such a generalization of gauge concepts may not be useful
also in other physical systems.
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