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We investigate massive supersymmetric (SUSY) Higgs theories with real matter fields in two and
three space-time dimensions. An exact expression for the nonperturbative correction to the vacuum
energy density due to a dilute instanton gas is obtained. The first quantum correction vanishes iden-
tically, whereas the second correction is found to be negative definite for a specific two-dimensional
theory. Consequently in general dynamical breakdown of the SUSY algebra due to vacuum tunnel-

ing takes place in two and three space-time dimensions. It is shown that there exists a nonzero leak-
age of SUSY Aux which is proportional to the volume of space-time. The resulting boson-fermion
mass splitting is calculated.

I. INTRODUCTION

Dynamical supersymmetry (SUSY) breakdown has
been extensively studied in the past few years. '

Whereas perturbative efFects cannot induce SUSY break-
ing because of the nonrenormalization theorems, it may
happen that nonperturbative efFects could induce it. This
possibility was originally suggested by Abbott, Grisaru,
and Schnitzer, ' and later it was pointed out by Witten
that nonperturbative SUSY breakdown could provide a
dynamical mechanism for resolution of the hierarchy
problem in grand unified theories.

To investigate whether SUSY is indeed broken nonper-
turbatively one has to study the role of instantons in
SUSY theories. (We use the term instanton to describe
any topologically nontrivial solution of the Euclidean
field equations. We therefore refer to Auxons, monopoles,
and Yang-Mills instantons in two, three, and four space-
time dimensions, respectively. ) In the semiclassical ap-
proximation instantons do not contribute to the SUSY
partition function due to the presence of the fermionic
zero modes. In view of this fact, several mechanisms for
dynamical SUSY breaking have been proposed. The first
is that under certain circumstances instantons may in-
duce the formation of a fermionic condensate. The
vacuum energy density is then said to become positive
definite, thus indicating spontaneous SUSY breaking.
Another approach is to study the contribution of
instanton —anti-instanton correlations to the partition
function. ' If this contribution is dominant, the vacuum
energy density will again be nonzero. However, one can-
not determine a priori whether it will become positive or
negative. A crucia1 ingredient of both approaches is the
assumption that the quantum corrections to the fermion-
ic determinant in the instanton background vanish to all
orders in perturbation theory.

It has been conjectured by one of us that the latter as-
sumption may be incorrect. Indeed, the existence of fer-
mionic zero modes implies that, to leading order, tunnel-
ing from the perturbative vacuum of a given topological
sector ends up in an orthogonal state of another topologi-
cal sector. Therefore the amplitude to tunnel from one

perturbative vacuum into another is zero in this approxi-
mation, and so the vacuum energy density remains zero.
However, in principle, small fluctuations could mix the
above state with the vacuuID state of the same topological
sector. Under these circumstances the amplitude to tun-
nel from one perturbative vacuum into another would no
longer be zero, and consequently the true vacuum energy
density would become negative definite.

Since a negative vacuum energy density signals a
dynamical breakdown of the SUSY algebra, the physical
motivation for such a conjecture should be explained.
The SUSY generators satisfy an algebra which contains
the Hamiltonian, and consequently the SUSY transfor-
mations mix the canonical fields with their conjugate mo-
menta. As a result one cannot define a supersymmetric
system on a finite domain with boundaries, since no
boundary conditions are compatible with the vanishing
outAow of SUSY current. In a topologically trivial back-
ground the amount of SUSY Aux that "leaks" from the
boundaries depends on the size of the system, and exact
SUSY is restored when the size of the system tends to
infinity. However, when the background topology is non-
trivial one may suspect that a finite leakage of SUSY Aux
will survive even in the infinite-volume limit. If moreover
the contributions of diQ'erent classical lumps to the total
Aux are additive, an explicit dynamical breakdown of the
SUSY algebra will be induced.

This scenario is supported by an examination of the
vector potentials of multi-instanton configurations. In a
regular gauge the vector field of a single instanton falls as
r ' at large distances. As a result, multi-instanton
configurations are we11 defined only in a singular gauge'.
The existence of singular field configurations in the exact
path integral means that the true phase space of a gauge
theory is not the manifold of the canonical fields, namely,
the Lie-algebra-valued vector potentials. Rather, the
correct variables span the gauge group manifold. In par-
ticular, the action is rendered finite in a singular gauge by
defining F„as the limit of a small Wilson loop and not as
the square of a (singular) curl of A„. We may thus anti-
cipate that symmetry relations and operator algebras
might change due to the change in the nature of the vari-
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ables of the theory, and should be reexamined. A strong
indication that SUSY may be broken by such effects is
the lack of success in constructing a lattice version of
SUSY gauge theories. We conjecture that this is due to
the necessity of using group manifolds which do not have
the required Kahler structure. ' The extent to which the
"group" effects persist in the exact spectrum is precisely
quantified by the measure of topologically nontrivial
configurations in the Euclidean partition function.

Finally, we remark that SUSY violation due to topo-
logical effects of gauge fields do occur in quantum
mechanics and follow the pattern described above —the
classical equations of motion are supersyrnrnetric, but the
operator algebra is violated by singular gauge topolo-
gies. " Moreover, the SUSY violation is not due to the
global topology at infinity, but rather depends on the dis-
tribution of "holes" in configuration space. In particular,
the violation due to a well-separated Auxon-antiQuxon
pair is not zero, but twice the violation due to a single
Auxon.

In this paper we prove that dynamical breakdown of
the SUSY algebra takes place in two and three space-time
dimensions by performing a direct calculation of the vac-
uum energy. density. We consider SUSY theories with
real matter fields which are obtained from N = 1 SUSY in
four dimensions through dimensional reduction. It is as-
sumed that all fields are massive. In particular, the gauge
syrnrnetry is completely broken through the Higgs rnech-
anism. As a result, all classical field configurations and
all propagators decrease exponentially, thus rendering
the dilute-gas approximation well defined and reliable in
the weak-coupling limit.

In Sec. II we find an exact expression for the one-
instanton contribution to the SUSY partition function.
We show that the contributions of multi-instanton
configurations factorize and obtain an expression for the
vacuum energy density. In Sec. III we define the Euclide-
ari SUSY Lagrangian and discuss several algebraic rela-
tions among the differential operators that define the
quantum fluctuations of bosons, fermions, and ghosts. Of

special importance is Eq. (3.43) which relates the eigen-
value equations for bosonic and ferrnionic fluctuations.

In Sec. IV we find that the first quantum correction to
the fermionic determinant is a tree diagram. However,
using the identities of Sec. III we show that the tree
correction vanishes identically.

In Sec. V we identify all the one-loop corrections to the
fermionic determinant. Because of the complexity of the
involved expressions we have not calculated the full one-
loop correction. Instead we present a specific massive
SUSY Higgs model in two space-time dimensions, and
prove that the one-loop correction is nonzero for this
model. We then argue that our model is by no means
special, and that explicit SUSY breaking will, in general,
take place in any massive SUSY Higgs theory in two and
three space-time dimensions.

In Sec. VI we show that the SUSY Aux leakage in field
theory follows the same pattern as SUSY violation in
quantum mechanics with topological singularities, narne-
ly, a nonzero amount of flux emerges from the core of
every classical lump, the contributions of many well-
separated lumps to the total Aux are additive, and there is
no cancellation between the contributions of lumps with
opposite topological charges. In particular we find that
the SUSY current continuity equation is violated by non-
perturbative effects, and show that the extra term is not a
total divergence. Using the above properties of the SUSY
Aux we then obtain a formula for the mass splitting be-
tween bosons and fermions.

In Sec. VII we summarize our results and conclude
with a discussion of some open questions, among which is
the possibility of dynamical breakdown of the SUSY alge-
bra in four dimensions. Appendixes A —E are devoted to
the elaboration of several technical points.

II. THK NC)NPKRTURBATIVE EUCLIDEAN
PATH INTEGRAL

The Euclidean SUSY partition function is defined
through

Z =Trt exp( —&t) j

a= J [dA ][d@][d4']5[9'(A, @,4&')] Det ( A, @,4') Det'~ [DF( A, N, @*)]exp[ —Ss( 3,@,@*)]

with periodic boundary conditions for bosons and an-
tiperiodic boundary conditions for fermions.
S~(A, +,N') is the action functional of all Bose fields,
A „',p= 1, . . . ,4, is the gauge field, and @ stands for all
matter fields. 0'(A, C&, N*) is the gauge condition and
Det[59'/5''( A, @,@*)] is the Faddeev-Popov deter-
minant. All the necessary counterterms are lumped into
S~( A, @,@')for notational simplicity. In Eq. (1) the fer-
mions have been integrated out. DF( A, @,N*) is the full
Dirac operator in the background of the bosonic fields.
The —,

' factor is due to the Majorana representation we

employ for the Weyl fermions used in SUSY. The parti-

tion function Z is normalized by the requirement that it
be equal to one for free fields —a normalization which is
preserved to all orders in perturbation theory due to the
nonrenormalization theorems.

We assume the SUSY theory admits instanton
configurations in d space-time dimensions, where d is ei-
ther two or three. The instanton field (a„'(x),y (x)) is
therefore a solution of the Euclidean field equations. [It
is understood that a' (x)=0 for d+ 1 ~ cr ~4.] We label
different classical solutions by collective coordinates
x&,k=1, . . . , d, which describe the instanton's center-
of-mass position. To quantize the one-instanton sector
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N(x)=U(x, x )[y(x —x )+P'(x —x )], (2.2a)

we expand the bosonic fields around the classical solution
in a gauge-invariant way:

non-negative because the instanton minimizes the
(positive-definite) action functional in the relevant topo-
logical sector. We now choose the following gauge condi-
tion [defined directly in terms of pI(x)]:

A„(x)=U(x, x ) ——(3„+a„(x—x )

+a„'(x,x ) U (x,x ),

V(PI ) = —(V a' )'+(e(ytT'P' (tt,—T'y),

V =8 +iea

(2.1 1)

(2.12)

r

U(x, x )=P exp ('e—f dyja~(x —y), (2.3)

U(x, x ) is the (path-ordered) parallel transport along a
path Y(x ) from the origin to x . The precise definition
of Y(x ) is discussed in Appendix A. We recall that on
the quantum level N and N' are treated as independent
variables. Under such circumstances we make the re-
placernent

After imposing the gauge (2.11) the only remaining bo-
sonic zero modes correspond to infinitesimal translations
of the instanton. For gauge theories the appropriate (i.e.,
normalizable) translational zero modes are the eovariant
derivatives of the instanton field. ' The covariant deriva-
tives are orthogonal relative to the inner product (2.9)
and their normalized form is

S, ' (V((p), I=a,
@"~(ct, ) (2.4)

To allow a more compact formulation we now intro-
duce BI as a generic name for all Bose fields. Thus the
capital index I stands for the indices u, a,p, c and explic-
itly

B =B—:(B, ) =@

b, , = S "(V(+).*, I=a*
t

S, ' f;, I=(j,c),

f(J= ——[V( VJ].l

We now expand PI(x) as

(2.13)

(2.14)

B =—B~=—(B„) —=Ct~, (2.5)
pl(x) =br ((x)g(+pl.(x), (2.15)

B(„,) =B'""=(B,—)(„,) —=—A„'

Equation (2.2a) can therefore be rewritten as

BI(x)= bI(x —x )+ PI(x —x ), (2.2b) [dB]5[9'( BI(x +x ) bl(x))]=—[dP]dg( . (2.16)

where g( are the zero-mode amplitudes and PI(x) is or-
thogonal to the zero modes and satisfies the gauge condi-
tion (2.11). After a unitary change of variables the func-
tional measure becomes

where bI(x) is the classical instanton field and pI(x) are
the quantum fluctuations. Upon substituting the expan-
sion (2.2) in S(((B)we obtain

Sg(B)=S,+ ,'(p'IHs(b)l p'-)+ f d "x &',"'(b,p'),
5

Hs(b)1 =
5B 5B~ z=b

S, =S~(b) . —

(2.6)

(2.7)

(2.8)

The inner product on the right-hand side (RHS) of Eq.
(2.6) is defined through

(p'"lp'")=—fd' p""p"'

f d dX (a(1)ca(2)c+y(1)y(2) +y(1)y(2) )P P (2.9)

All indices will usually be omitted from the inner product
(2.9). However, they will be reintroduced if, otherwise,
an ambiguity may arise.

The operator Hs(b) defines the eigenvalue equation for
bosonic Quctuatjons in the presence of the background
field b (x).

H~(b)I pal =A. pI (2.10)

We comment that Hs(b) can be thought of as a
quantum-meehanieal Hamiltonian in (d + 1)-dimensional
Minkowskian space-time. All eigenvalues of H~(b) are

5(C(),

C((x,x )=(B(x)—b(x —x )l b ((x —x )) . (2.. 18)

Equations (2.2) and (2.15) imply that

b(C() =5(g() . (2.19)

The Jacobian factor is calculated in Appendix A. The re-
sult is

0 =S,' Ik((P)+nonlocal terms,
Xk

Ikl(p) ~k(+Sc (p;k lb;()

(2.20)

(2.21)

The nonlocal terms arise because the constraints C( de-
pend on the parallel transport U(x, x ). Nevertheless we
prove in Appendix A that the nonlocal terms do not con-
tribute to the partition function. Substituting Eqs.
(2.15)—(2.21) in Eq. (2.1) and integrating over g( and xk
we find

To construct a well-defiried perturbative expansion of
the one-instanton sector we replace the zero-mode ampli-
tudes g( by the collective coordinates xk using the
Faddeev-Popov procedure. To this end we introduce the
following identity into the path integral:

aC(
'

1= fax„' det (2.17)
ax,'
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Zi =VS," I [dP] det[Ik&(P)] Det (b+P)
5co

rise to a well-defined ghost propagator:

Hg„(b),dGg„(x,y)d, =5„(x—y) . (2.27)

Ga(x, y)1 = X PI(x A)[Pz(y A)]
1

A2) 0

which satisfies

(2.23)

H~(b)l G~(x,y)z =61 (x y) bJ—, (x)—b &(.y).
(x, X, )b'(y, X, ) (2.24)

In the last term of Eq. (2.24) we sum over all eigenstates
which are orthogonal to the gauge condition (2.11). We
next expand the full ghost operator as

XDet' [D~(b +P)] exp[ S—ii(b +P)],
(2.22)

where V is the volume of space-time.
We now wish to perform the functional integration in

Eq. (2.22) and obtain an exact diagrammatic expansion of
the one-instanton sector in terms of interaction vertices
and boson, fermion, and ghost propagators. Having el-
iminated the bosonic zero modes we already have a well-
defined bosonic propagator:

Finally we expand the full Dirac operator in a similar
way:

DF(b+p)i =HF(b)I + V(p)I,

HF( b)l:DF—(b)I

(2.28)

(2.29)

In what follows we assume that HF(b) is a Hermitian
operator. The definition of the primed capital indices
I', J' is given in the next section. Because of SUSY H~(b)
always admits fermionic zero modes g„,n =1, . . . ,N,
which are responsible for the suppression of tunneling in
the semiclassical approximation. (To keep the derivation
general we do not specify their number at this stage. ) As
a result H~(b) is not invertible and a more careful treat-
ment is needed. We first construct the fermionic propa-
gator only from the nonzero eigenstates of K~(b):

J 1
GF(x,y), = g —yl (x, &)yj (y, &),

A,~O
(2.30)

where yl. (x, A, ) are c-number spinor eigenfunctions of
H~(b). Therefore,

6Q' (b+p)=H h(b)„+ V h(p)„,
5co

(2.25)
H+(b)l GF(x,y)& =&I (x —y) —g g„l (x)g„J (y) .

(2.31)
a

H „(b)„—: (b) .
5co

(2.26)

The operator Hsh(b) is always positive definite and gives

I

We next have to extract the zero modes dependence of
the full fermionic determinant. To this end we decom-
pose the full fermionic determinant as

Det'~ [DF(b+p)]=Det' [H~(b)+ V(p)] det' [E „(p)]
=Det'~ [H~(b)] Det' [1+GATV(p)] det' [E „(p)],

'I

(2.32)

E .(P)= X' V(P) y [—G V(P)1' X'.
p=0

(2.33)

The proof of Eqs. (2.32) and (2.33) is given in Appendix
B. The underlines indicate that the functional deter-
minants in Eq. (2.32) are constructed only from
the nonzero eigenstates of HF(b). Notice that
lnDet'~ [1+GFV(p)] is the sum of all connected closed
fermionic loops with bosons on the external legs (see Fig.

I

1), and that upon diagonalizing E „(p) we obtain the
standard expression of degenerate perturbation theory for
the shift of zero eigenvalues'" (see Fig. 2).

Using Eqs. (2.23)—(2.33) the bosonic integration in Eq.
(2.22) can be carried out. The final expression for the
one-instanton sector of the partition function is

Z, =VQ,
Q=S," exp( —S, ) Det '~ [H~(b)] Det'~ [H~(b)] Det[H „(b)](det[Ik&(P)]det'~ [E (P)] ) exp[ —'N(b)] .

(2.34)

(2.35)

Here the angular brackets stand for the expectation value
of the enclosed operators and 'N(b) is the sum of all con-
nected bubble diagrams. Both are constructed using the
propagators defined in Eqs. (2.23), (2.27), and (2.30) and

the interaction vertices defined in Eqs. (2.6), (2.25), and
(2.28). We recall that 0 is essentially the space-time in-
stanton density.

So far we have been considering con6gurations that in-
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( I
)n+I --2

The (n!} ' factor is due to Bose statistics of the lumps.
Now let ~ label the different types of lumps, and as-

sume that there are n, lumps of type ~ in a given
configuration. Equation (2.37) readily generalizes to

(2.38)

FIG. 1. Diagrammatic representation of ln det'~ [1
+G„V(P)] [see Eq. (2.32)].

As a result we can unambiguously identify the class to
which every configuration belongs. In fact, because of
the boundary conditions implied by Eq. (2.1), we have to
sum only over classes that belong to the trivial topologi-
cal sector.

We will now prove that the multilump contributions
factorize. We first consider a background field that con-
sists of n identical lumps. Within the dilute-gas approxi-
mation we now have dn (Nn) bosonic (fermionic) zero
modes. Clearly, zero modes that belong to different
lumps have no overlap. Moreover, any diagram that in-
volves zero modes that belong to more that one lump
vanishes due to the exponential decrease of both zero
modes and propagators. Therefore the term in angular
brackets in Eq. (2.35) factorizes. Similar arguments im-
ply that the contributions of different lumps to 'lH(b) and
to the logarithm of the functional determinants are addi-
tive. In fact, due to SUSY the contribution of interlump
space-time to the above terms vanishes identically in the
dilute-gas approximation. Consequently all terms in Eq.
(2.35) factorize. Introducing dn collective coordinates
and repeating the Faddeev-Popov procedure (2.15)—(2.21)
with dn constraints we obtain

Z„= (VQ)" .=1
n! (2.37)

volved a single instanton. However, if the exact nonper-
turbative measure of any topologically nontrivial classical
lump is nonzero, the vacuum is dominated by a finite den-
sity of such lumps. We therefore have to calculate the
contribution of multilump configurations to the partition
function. To this end we group all configurations into
classes which are characterized by the number of lumps
of each variety. (For example, in two space-time dimen-
sions there exist Auxon and antiAuxon solutions of any in-
teger topological charge. We shall return to this point in
Sec. V.) Notice that infinitely many classes correspond to
a single topological sector, since different lumps may car-
ry opposite topological charges. Nevertheless, the lump's
size is m 0, where m0 is the smallest mass parameter in
the theory, whereas the mean interlump distance is

(2.36)

To calculate the partition function (2.1) we impose the
condition of a globally trivial topology by introducing a
Kronecker 5 of the total topological charge:

Z=+5~ pZ nn, ,. . . n,
p

(2.39)

Here q is the pth lump topological charge. Using a rep-
resentation of the Kronecker 5 we finally obtain

Z= f d8exp Vge '0,
0

(2.40)

Equation (40) exhibits the formation of "8 vacua" out
of the degenerate perturbative vacua, provided the ex-
pression in large parentheses is not identically zero. The
true vacuum energy density is therefore

op= —pe ' '0, , (2.41)

where

ge ' 'Q, =max ge '0,
2m.

0=0
(2.42)

In Sec. V we will employ Eqs. (2.35) and (2.41) to show
that the vacuum energy density is negative definite for a
specific two-dimensional SUSY theory.

III. THE EUCLIDEAN SUSY ACTION

%(G)=Ape C@C . (3.1)

The simple components of %p are real, and the simple
components of C are complex or pseudoreal. Let T' be
the Hermitian group generators in the %(G) representa-
tion. Since A(G) is real there exists a matrix L such that

In this paper we investigate SUSY Higgs theories in
two or three space-time dimensions, which are obtained
from renormalizable X = 1 SUSY theories in four dimen-
sions through dimensional reduction. We assume the fol-
lowing.

(a) All fields are massive. In particular, the gauge sym-
metry is spontaneously broken through the Higgs mecha-
nism.

(b) There exists an R symmetry in the theory. The
reader who is not familiar with the properties of R sym-
metry is referred to Appendix C.

(c) The matter fields belong to a real (in general reduc-
ible) representation %(G) of the gauge group. %(G) can
therefore be decomposed as

FIG. 2. Diagrammatic representation of E „(P) [see Eq.
(2.33)]. The right semicircle represents g and the left semicir-
t:le represents y

L, TaL =( —T~)*=(—T~}T

L =L, L =L
(3.2)

(3.3)
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+o I 0 0
L C = 0 0 I

0 I 0
(3.4)

In every simple component of Ao we can choose a basis
such that the restriction of L to Ao is the identity matrix.
Relative to this basis L is given explicitly by

1

8 =0 for 4+ 1 ~o ~4. We recall that the superpotential
W(N) is an analytic polynomial whose degree is less than
or equal to three.

We now consider the instanton sector of the theory.
We assume that the instanton field satisfies the reality
condition

(3.7)

We further assume that the superpotential W(N ) is in-
variant under the action of L:

and respects R symmetry:

p (x)=0 for Q~(@ )&0, (3.&)

W(L@)= W(4) .

The bosonic Lagrangian is given by

(3.S)
where Qii is the R symmetry charge. The instanton field
is therefore a solution of the following field equations:

W (@)= BR
BN

(3.6)

x, =-,'F„'g„'.+lD, cl'+lw. (e)l'+' [D (e)]',
2

—(V q ) + W*ii(y)Wii(y)=0,

+ie[(VkV» T'V' V'
—T'«ke»l=o.

(3.9a)

(3.9b)

D'(4)=N T'N

In the bosonic Lagrangian (3.6) and in the fermionic La-
grangian [to be defined in Eq. (3.20)] it is understood that

The small Iluctuations operator Hii(b) is defined in Eq.
(2.7). After substituting the gauge condition (2.11) we ob-
tain an alternative form for Hii(b) which is explicitly
given by

—(V P) +W*i3(y)War(y)gr+ W'iirWii(y)P, +2e (T'&p) (p T'P) 2ie(T'Vk—y) ak =A, P

—(V a)k'+2ie[f& ak&]'+e qFI T', ak Iy+2ie[(Vky) T'P (V&y) (T—') P, ]=A. ak, k=1, . . . , d

—(V a )'+e g IT', a Ip=A, a', d+ 1 ~cr ~4 .

(3.108)

(3.10b)

(3.10c)

Throughout this paper we always use the form (3.10) for
H~(b).

The ghost operator H h(b) is defined in Eq. (2.26). For
the gauge condition (2.11) we find

H „(b)„=—V„+e y (T', T'Iy . (3.11)

[5,bl(x)ri'(x, A, )][sf(y, A, )5,b (y )]

=5,bI(x)G,h(x, y)„5,b (y) . (3.14)

Notice that the differential operators (3.11) and (3.10c)
are identical. The ghost propagator is closely related to
the projection over all states which are orthogonal to the
gauge condition [the last term in Eq. (2.24)]. Since these
states correspond to infinitesimal local gauge transforma-
tions of the classical field, they admit the following pa-
rametrization:

tr„r ]=—25„, i. v=1 4.
We define the charge-conjugation matrix through

(3.15)

Consider next the fermionic sector of the Lagrangian.
In this paper we use anti-Hermitian y„matrices which
satisfy the Euclidean Dirac algebra:

bI(x)=5, bl(x)g'(x), (3.12a)
CXpC (3.16)

ie(T'y), I—=a,
5,bi = ie(T'y)*, I=a*,

(Vk)„, I=(k, a) .

(3.12b)

The normalization integral for br(x) is, therefore,

(bib)=(q
I

V'., +"q'I T, T —Isla ) . (3.13)

In Eq. (3.13) we have dropped a surface term, which van-
ishes due to the boundary conditions imposed on local
gauge transformations. Consequently, taking g'(x) to be
eigenstates of H h(x) we find

Choosing chiral representation for the y„matrices, we
have

C=y, y, , C'=C-'=C'= —C . (3.17)

In this paper we also use the notation

[+]= -,
' (1+r5) (3.18)

Let 4' be the fermionic matter fields and A, the gaugi-
no. Similarly to the bosonic case we let yl. be a generic
name for all Fermi fields, where now the primed capital
index I' stands for e and c. Explicitly,

(3.19)

The fermionic Lagrangian is



520 A. CASHER AND Y. SHAMIR 39

,X-'DF(B)''Xg = —'Vysgql+ —'AysgA+ "
(A, ys4~T ~ V—ysT L@*A,)—;~.ysL.pg', (4)qI, ,2 2

(3.20)

4=[+]4+[—]LN* . (3.21) lar representation used for the y„matrices, we have

The reader is referred to Appendix D for the derivation
of Eq. (3.20). Notice that XI. are Majorana fermions with
transformation properties of Dirac spinors. The Majora-
na condition is

X=—X CL. (3.22)

V (P)= —CLV(f3)CL,

V (13)= V(LP') .

(3.23)

(3.24)

Equation (3.23) is a manifestation of the built-in Majora-
na symmetry. Equation (3.24) follows from the use of
real matter fields and in particular Eq. (3.5). The Dirac
operator HF(b) is explicitly given by

The structure of the fermionic field equations and of
the boson-fermion interaction can now be read off Eqs.
(3.20) and (2.28). The interaction matrix V(P) has the
following symmetries:

QsCL =CLQs (3.30)

As a result, nonzero eigenstates of HF(b) appear in quar-
tets:

g, CLg* with eigenvalue A, ,

QsX, Qs CLX* with eigenvalue —
A, . (3.31)

X~y4ysX~ X~ 73 4Ys r

4—+LA*,

a4~ —a4, a ~n, m =1,2, 3 .

(3.32)

Equation (3.29) also implies that we can define the in-
dex of HF(b) relative to Qs in a natural way. In four-
dimensional theories this index is of crucial importance.
However, for the theories discussed in this paper the in-
dex is trivially zero due to the existences of the following
discrete symmetry:

HF(b) =y s[i 7 M(p) ]—, (3.25a)
The invariance of the action under the transformation
(3.32) implies

Jt
M(v»l Xr

L p8'pr(y)
ie&2(q+—T')

ie&2( T'y)
(3.25b)

IHF(b» y4ys I =o

[HF(b»y4QR 1=o

(3.33)

(3.34)

HF(b)CL =CLKF*(b) . (3.26)

Thus, if X is an eigenstate of HF(b), CLX* is another
eigenstate with the same eigenvalue. We comment that y
and CLy* are always different states since charge-
conjugation reverses the sign of the total angular momen-
tum [see, for example, Eq. (5.9)].

Finally, because of Eq. (3.8}, M(y) has nonvanishing
entries only between fermions with opposite R symmetry
charges: i.e.,

Equation (3.24) together with the reality condition (3.7)
imply that HF(b) is a Hermitian operator. (As in the bo-
sonic case, it can be thought of as the fermionic Hamil-
tonian in d+1 dimensions. ) The hermiticity of HF(b)
and Eq. (3.23} imply the existence of charge-conjugation
symmetry:

Therefore if X is a zero mode of HF(b) with definite Qs
chirality, then y4y~y is another zero mode with opposite
Qs chirality.

The global SUSY transformation that corresponds to
the Lagrangians (3.6) and (3.20) is

54 =C'0, 5A„'= —Cy„A, ,
l 2

5% =y s [i@ pL pr @r"—W" (4 )],
5A, = —ys[cr„g„' +2eD'(4)] .1

2l 2

(3.35a)

(3.35b)

Several relations which are consequences of SUSY are
more easily formulated in terms of a matrix I that we
define below; besides the capital fermionic and bosonic
indices (I' and I ), I has a (suppressed) Dirac index, and
its nonzero entries are

Let

[M(V'»QR] =o . (3.27) I..P =[+]5.P,

]L P' (3.36}
Qs=QRys . (3.28)

We readily see that HF(b) anticommutes with generalized
chirality defined relative to Qs ..

(p, c)—r.(~"=
l~2

For example,

IHF(b), Qs I
=0 . (3.29)

Qs chirality commutes with the charge-conjugation
transformation (3.26), since independently of the particu-

I 'Br= (3.37)
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=DF(B)I 5yJ (B) (3.38)

By expanding the bosonic fields in Eq. (3.38) one obtains
four interesting relations. To this end we first expand
5yI (B) as

5~,,(b+p) =S,(/25~0, , +H, (b), ,'r, .'L,„p'
+ ( vI' LLIV p )rK' LKMp

(3.39)

where

Using the above definition one can verify that on the full
field equations SUSY is realized through the identity

5Xs 5%I)r, ,' —a, +
5(B„L B ) 5(L B )

S ' iy5(7(p), QI((N ) =0,
5eo.= —S /2), IV.*(q ), g, (~.) =1,

0 otherwise,

1
5Ac . V 5~ klf k(l2 2

The matrix E(p) in (2.33) is

(4.1)

IV. FIRST QUANTUM CORRECTION

Having defined the Euclidean SUSY Lagrangian we are
now able to calculate quantum corrections to the zero
fermionic eigenvalues. The theories discussed in Sec. III
always admit four zero modes which are given in a ma-
trix form in Eq. (3.40). Taking into account the proper-
ties of the background field (3.7) and (3.8), it is useful to
write down the zero modes explicitly:

5+0 S—) /25+

and VI, is defined through [see Eq. (2.28)]

(3.40)
E(P)= 5y f V(P) y [—G V(P)]P 5y

@=0
(4.2)

V LK'p V(p) (3.41)

HF(b)5y =0,
r, ,'H, (b), 'I., p =H,'(b), ,

M' r, I. P"

+S i/2( V LK'p )5~0

,'r, ,'s,",' p'p—=,'H, (b),,'(v-, , 'p )r, ,'p,
+ ( VI' PQP )HF(b).K' rM™PM

(3.42)

(3.43)

We have applied the gauge condition (2.11) to obtain the
second term on the RHS of Eq. (3.39). We now find that
Eq. (3.38) gives rise to the identities

E(P)=

E6(P) —E4(P)
'

E, (p) E, (/3) E3(—p)
E3(P) E4(P) E2(P)

Es(p) E6(p) 0 E2(/3)

E, (P)
0

(4.3)

and so

det' '[E(p)]=E,(p)E2(p)+E~(p)E, (p)

Majorana symmetry [Eqs. (3.23) and (3.26)] implies that
CE(p) is antisymmetric. Using Eq. (3.17) we find that
E (p) has the following structure:

(3.44)

,'rI, 'Z,",KLPP—P=(V,. 'L„PP )(V,,~ 'P(2)rM™PM,

where

—E3 (/3)E6 (p) .
This result can also be written as

det' [E(/3)]= —,
' trIE(p)[+]j trIE(/3)[ —]j
+ —,', tr I E(p) y„j tr I E(p)y„j .

(4.4)

(4.5)

~(3)
5B 5B 5B

(3.46)

~(4)
SB'SB'SB~SB' (3.47)

Equation (3.42) implies that the matrix 5y is com-
posed of four fermionic zero modes [actually Eq. (3.40)
gives the normalized form of the zero modes]. Equation
(3.43) is of crucial importance, since it implies that the
Schrodinger type operator-s HII(b) and HF(b) involve
diferent scattering potentials. [The only exception arises
when 5y contains a Dirac projection operator. This is
the case of the exact (massless) Yang-Mills instanton in
four dimensions, and of certain SUSY quantum mechan-
ics theories. Notice that in these cases there exist only
two fermionic zero modes. ] We will employ Eq. (3.43)
extensively in the following sections. Finally, Eqs. (3.44)
and (3.45) provide relations between the bosonic and fer-
mionic vertices.

The last expression is manifestly independent of the par-
ticular representation chosen for the. y„matrices. We
comment that Eq. (2.41) for the vacuum energy density
implies that the sign ambiguity in Eq. (4.4) has no physi-
cal consequences.

The leading approximation to the expectation value of
det'/ [E(p)] is obtained as follows [see Eq. (2.35)]: on
the RHS of Eq. (4.5) we replace E (p) by E"'(p) where

E'"(P)=(5y"
I v(P) le') (4.6)

and contract the two bosonic fields in each term. The
first quantum correction c"' to the fermionic determinant
is therefore a tree diagram (see Fig. 3).

We will now show that the tree correction vanishes
identically. First, applying Eq. (3.43) to E"'(P) we find

E'"(P)=S ' (5y I iH (b) ~L P ) (47)

Therefore,
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2 [ —,
' «&5XJ I

I'J'~'[pL(~)]*l5Xx [+I)«(5XP'I r IHa(b4 ILmp (~)[+])
A2&0

+ —,'. «(5xJ'I I'J' [p'(~)]*I5xx y„)«(5xr'I z'IHa(b4'IL~scp (~)yi j ) . (4.8)

Using Eq. (2.24) the bosonic propagator can be eliminat-
ed from Eq. (4.8). If the bosonic partner of 5g. is a sca-
lar field with one unit of R symmetry charge, it is obvious
that a nonzero contribution to c'" is obtained only by ap-
plying the 5~ (x —y) term of Eq. (2.24) to the first row of
Eq. (4.8). We next consider all 5Xz whose bosonic
partners have zero R symmetry charge. (Notice that this
always includes 5A, .) Using Eq. (4.1) we find

l
5Xr"I r'= —

2
ysykb';k+iy„d'„Qit (Ilr ) =o

(4.9)

where

—'S ' (V' y), I=a,
i S—in(~ )*

—,'S, ' 'e„„»ff„, I= (v, c ) .

(4.10)

Now a nonzero contribution to c'" arises only upon sub-
stituting the second term of Eq. (4.9) in the second row of
Eq. (4.8). As in the previous case, only the 5~ (x —y)
term of Eq. (2.24) contributes to c."'. [In three space-time
dimensions one has to apply Bianchi identity in order to
prove that the projection on infinitesimal gauge transfor-

[

mations does not contribute to c~", and to use the ten-
sorial structure of fki(x) in order to prove that the pro-
jection on the translational zero modes does not contrib-
ute to s"' as weil. ]

A straightforward calculation along the above lines re-
veals that up to numerical factors all contributions to c,'"
have the general form

f d'x tr(ys5Xi5X~r5XO~ ) (4.11)

and upon summing all these contributions we find that
the integrand in Eq. (4.8) vanishes identically.

In order to establish an identity that will prove useful
in the next section we will now give an alternative proof
that c.'"=0 for a somewhat more restricted class of
theories. To this end we observe that a term of the gen-
eral form (4.11) does not vanish only if all three bosonic
partners have either zero or one unit of R symmetry
charge. As a result, a third order term of the superpoten-
tial (call it @,C&z@s) may contribute only if say, @, and
@2 have zero charge and 43 has one unit of charge. We
now assume that all third-order terms of the superpoten-
tial have the above structure, and moreover that in every
such term the field with one unit of R symmetry charge is
a singlet of the gauge group. Under these circumstances
it is a straightforward exercise to verify the following
identity:

, [ I' ' [p'(~)]*5x' [+]«(5x"I &'IH, (b), 'IL, p (~)[+])
A~&0

+ —,'VJ [p (A, )]*5x~y„tr(5x~ I r IH~(b)~ ILJ~p (A, )y„)j= S, HF(—b)J (i75x )L y, . (4.12)

Substituting Eq. (4.12) in Eq. (4.8) we find

tr&5x IHF(b)Ii 75x ys) =0 .(1)—
C

(4.13)

V. SECOND QUANTUM CORRECTION

The structure of the second quantum correction to the
vacuum energy density c' ' is much more complicated. It
'consists of 15 types of one-loop contributions to
&det' [E(p)]) (see Fig. 4) and one tree diagram that
arises from expanding det[Ii, i(p)] in Eq. (2.35) (see Fig.
5). We point out that the diagrams in Fig. 6 vanish due
to various conservation laws. Because of the complexity

W(N)=y&o(@+@ —
U ) .

Therefore

(5.1)

of the involved expressions we have not calculated the
full expression for c' '. Instead we will present a specific
SUSY Higgs model in two space-time dimensions and
prove that c' ' is nonzero for that theory.

The basic ingredient of our model is a supersymmetric
version of the Abelian Higgs model (in fact it is the Eu-
clidean analog of the model discussed in detail in Ref.
13). It consists of a U(1) gauge supermultiplet [ A„,Aj
and three scalar supermultiplets [ C&~, 'Pz j with U(1)
charges q =+,—,0. The superpotential is

g I ~,(+)I'+ ' D'(@)=y'I@+@ —O'I'+y'I@+4'Ol'
q

2

+ (la+I' —le I')'. &5.2)

FIG. 3. A tree correction to the fermionic determinant. The bosonic potential (5.2) admits a supersymmetric
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minimum which breaks the gauge symmetry spontane-
ously:

(5.3)

QII (@0)=1 Qit(@+)=0 . (5.4)

The classical mass spectrum consists of a scalar super-
multiplet of mass &2 m where m =yv and a broken gauge
multiplet of mass 2p where p=eU. The R symmetry
charges of the scalar fields are

FIG. 5. A tree diagram which arises upon expanding
det[Iki(p)] in Eq. (2.35). The rectangle source is —S, '~ bI, ,

is the Nielsen-Olesen fiuxon. ' In a regular gauge' the
background fields of the Auxon satisfy the ansatz

The topological Euclidean configuration of our model

C)

( @~(x)) =up+(x) = ue ' p(r),

( Ae(x)):—ae(x)= a(r)
er

(5.5a)

(5.5b)

(5.5c)

I

I~

I :1, a(r) (5.6)

For later convenience we have normalized the classical
scalar fields in Eq. (5.5a) differently from Eq. (2.2). The
asymptotic behavior of the fields is

The functions Ip(r) and a (r) are solutions of the following
nonlinear equations:

I

I

Ir
K

I

I

I

I

I

I

I

I

I

I

I

1 1 Q—a ——a, +
r r

p+m (p —1)g=0,

—I)„+—I)„a+4ItI q& (a —1)=0 .1

(5.7a)

(5.7b)

An approximate solution of Eqs. (5.7) can be found in
Ref. 13. The fermionic zero modes of our model are

5+o= —S, ' ~ u y 5m (y 1), —

5% y=S~ I 1'v75p I+
I

=S, '"u) 5e+" y „(ia,m)+) e

(5.8a)

(5.8b)

4-IO

J
4- l2

/

5A=S, u —y5cr3b,
—I /2

IIM 2

where

t)„a (r)
b(r)=

(5.8c)

is proportional to the magnetic field. We also record the
structure of the total angular momentum in the Auxon
sector:

4 )5

C. )
J 3L +3S +3Q . (5.9)

C )
FIG. 4. One-loop corrections to the fermionic determinant.

Wavy lines represent ghosts' propagators. A convenient pro-
cedure to identify all possible diagrams is the following. First
find all the one-loop contributions to the fermionic four-point
function, and then replace the external legs by fermionic zero
modes.

(
r J

T'
I

I

C) () C )
6-2 6-3 6- I

FIG. 6. Diagrams that vanish identically due to various con-
servation laws.
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Here Q is the U(1) charge.
We now introduce an additional neutral sector which

consists of two neutral-scalar supermultiplets I @i,ql i I
and IC&2, +z]. Their R symmetry charges are

Qz(~'i) =0 Q~(~'z) =1 .

The new superpotential is

W(4)=y@o(C&+4 —
U )+z&Poilii+m, @i@2 .

(5.10)

(5.11)

Thus S, and the zero modes (5.8) remain the same as be-
fore and

6%, =5+2=0 . (5.13)

The original sectors of Hii(b) and HF(b) are left un-
changed as well. +i and +2 form a massive Dirac field
which satisfies the free Dirac equation

'Ys (5.14)
2 2

0 m(

m& 0

The Pz field is a free massive bosonic field, whereas Pi and

P, , satisfy the field equations

—8„———i)„+ P, ,+m, P, , +2mm, (y —1)P,2
I" p'

(S.15)

where

Consequently all fields in the new sector have mass m i.
One can easily verify that the classical solution

(5.5)—(5.7) is left unchanged and, in addition,

(5.12)

by expanding in Born series:

( —8„+m, )6 (x,y)=5 (x —y) . (5.21)

Our next task is to identify all diagrams that have some
m, dependence. Taking into account the preceding dis-
cussion and in particular Eqs. (5.12) and (4.7), we find
that all these diagrams have a common property (see Fig.
7); namely, the fields that run through the loop always be-
long to the new neutral sector, whereas the fields on the
external "tails" always belong to the original sector. This
suggests the following strategy for extracting the m,
dependence of c' ': by using various identities we will try
to eliminate the external tails as much as possible, and re-
place them by local sources. Using Eq. (5.20), diFerent
contributions may then cancel each other, and we will
end up with a relatively simple result.

The first step toward accomplishing the above program
is to apply Eq. (4.7) and the following discussion. After
that there remain tails only in the diagrams of Figs. 7-6,
7-10, and 7-13. We next observe that Eq. (4.12) applies to
our model. Consequently the tail in Fig. 7-13 can be
completely eliminated (see Fig. 8), as well as the fermion-
ic propagator of the tail in Fig. 7-10. The sum of dia-
grams 7-6 and 7-10 now has the structure shown in Fig.
9, where the square source is given by

H~(b)d'+d",

where

(5.22)

=6 g [4m m, ((p —1)6 (tp —1)G ]i',
(5.20)

6, , =G.. ., = —2mm, G (y —1)G,~, .

Here 6 is a free (two-dimensional) bosonic propagator
1

of 111aSS m i .'

m =zv (5.16)
V

2(V y), I=a=+, —,0, 1,2,
C

In what follows we assume that the orders of magnitude
of the mass parameters are related through dI= . (V y)*, I=a*,

C

(5.23a)

m &)p, m& »mm, .2 (5.17)

zm P,P+,y++ H. c., 2zm, PoP, P, +H. c. ,
(5.18)

y 4'i0 *0 *+H 4 '4o0i4', 0,* z'0'14, * ~

The (symmetrized) fermionic vertices are

Our purpose is to prove that under the assumptions
(5.17) the m, dependence of e' ' is nontrivial. This depen-
dence arises from two sources —interaction vertices and
the P, propagator. The bosonic vertices that depend on z
are

d"=

0,

1

4S,
difu,

2p v 1 a
S'

C

2Pv 1 —a
S'

C

2

tp cp, I=a,

)fc (5.23b)

2z(q'iYs@i Po+'PiY8'o'Pi+q'o'Ys@iq'i) . (5.19)
Another application of Eq. (2.24) gives rise to (see Appen-
dix E for our notation conventions)

The m, dependence of the Pi propagator can be extracted (2)+ (2) ) + i(
C6 Eio 6 E (5.24)
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C) C) C)

C) C) FIG. 8. Elimination of the "tai1" in diagram 7-13 using Eq.
(4.12). The triangle source is i [(8S, ) '85@oy&] .

C) C)
where

7-8

C" )
4', &(''3['

7-10 w

I

7- l2

0

mm,
Tr(G, , g+V' p+ ),

2S 7

C

and (see Fig. 10)

X [P~ (A, )]*
2

1 Q

mmzp
p Tr[61,10'0R(~)]

S,

(5.25)

7-6 7- l4

I Q

4(

7- I5

C. ",~.)
( 4, 4)

FIG. 7. Diagrams that have some m, dependence. The vari-
ous diagrams are labeled in agreement with Fig. 4.

(5.26)

,'(e' P—++e '
P +e '

P ++e' P +) . (527)

A detailed list of the final expressions for all diagrams
that have some m, dependence is given in Appendix E.
Applying Eqs. (5.20) and (5.21) to the results given in Ap-
pendix E we are now able to calculate the leading m,
dependence of c.' '. It is found that the contributions of
all diagrams except c" cancel each other. Consequently,

rn m

'2

Id'x d'y[q'(lx I)—1]G' (x,y)It(lyl),
C

(5.28)

I

h(r)=2m g Pz(r, A) Jdr'r'[Pa(r', A)]
A.

2 &0
j3 =0

2

y'(r') . (5.29)

For zero total angular momentum, P~ mixes only with the tangential component of the vector field ae. We thus
define

2

he(r)=2m g a&(r, A, )fdr'r'[P&(r', A, )]*1 . . . , 1 —a(r')
A~) 0
j3 =0

y'(r') . (5.30)

Using the explicit structure of H~(b) for zero total angular momentum, Eqs. (5.29) and (5.30) can be inverted as

0

2 T '2
—t)„——t)„+ +2m qr +rn (y —1)

y
" r

1 —a

h

h@
Q2 Q + +4@2~2

y2

(5.31)
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+
I

I I

C) ()

)

I

I
x

(

I

FIG. 10. Diagrammatic representation of Eq. (5.26).

FIG. 9. Calculation of the sum of diagrams 7-6 and 7-10.
The square source is given in Eq. (5.22).

Since the (ae, as) component of Eq. (5.31) is a positive-
definite operator, it follows that h (r) cannot vanish on
any open neighborhood. Taking into account its asymp-
totic behavior we conclude that h (r) has (at most) a finite
number of zeros. Similar arguments imply that the con-
volution

(5.32)

also has a finite number of zeros. Notice that g(r) is
determined only by properties of the original sector
(5.1)—(5.9), and in particular is completely independent of
m &. We may now rewrite Eq. (5.28) as

r

e' 2=32@ f dr rG (O, r)g(r)
C

= 327T

2
P72m P

dr rKO(m, r)g(r) .
C

(5.33)

Taken as a function of I&, the last expression can be
thought of as a generalized Laplace transform of
g(r)[K (0mr)-ex p(

—m, r)]. Hence Eq. (5.33) vanishes
at most for a finite number of values of m, . [As an exam-
ple, choosing m, »m we can replace g (r) by its leading
power-behavior near the origin, and so the RHS of Eq.
(5.33) will necessarily be nonzero. ] Thus E,

' ', as well as
z

c,' ' itself are in general nonzero.
Consider now Eq. (2.41) for the vacuum energy densi-

ty. Because of the symmetries of our model it is clear
that Qfl„„,„and 0, I fl o are equal (and nonzero). We
now have to estimate the contributions of fluxons with
higher topological charges. One can easily extend the re-
sults of Ref. 13 to obtain

Therefore all fluxons with higher topological charges do
not contribute in the dilute-gas approximation. We final-
ly obtain, for our model,

(5.35)

We now briefly comment on the generality of our re-
sult. First, since there is no generic difference between
the original model (5.1)—(5.9) and the extended one, it
should be concluded that the vacuum energy density of
the original model is negative definite too. Second, since
the derivation of Sec. II depends crucially on the assump-
tion that all fields are massive, it is expected that relaxing
assumptions (b) and (c) of Sec. III or considering three-
dimensional theories, will not affect our result as well.
We therefore conclude that dynamical breakdown of the
SUSY algebra due to vacuum tunneling will take place in
every massive SUSY Higgs theory in two and three
space-time dimensions.

VI. SUSY FLUX LEAKAGE

We have found in Sec. V that tunneling lowers the vac-
uum energy density of SUSY theories in two and three
space-time dimensions. As a result, the nonperturbative
effects necessarily violate the SUSY algebra. Such a viola-
tion can be induced only if there exists a strong enough
leakage of SUSY flux at the boundaries of space-time and
in particular it implies that the SUSY current continuity
equation is violated as well.

In this section W investigate the properties of the
SUSY flux in detail, and obtain a quantitative description
of the above statements. As in Sec. II, we assume a
singular gauge for the background fields. The properties
of the SUSY flux are best illustrated by looking at the
nonperturbative corrections to physical quantities such as
boson-fermion mass splitting. We work in a finite
domain of space-time of volume V. The finite-volume
normalization of the quantum eigenstates is, therefore,

S, '=4m. v q In =qg, . (5.34) Using Eqs. (3.35) and (3.39) we obtain the (linearized)
SUSY Ward identity:

y(x) (t)dry„Sx Sx(y)L) Hr((S ))y(LP"(xi(yx(y=)L ) —(y(x)y(y))I'

=V '[HF((B ) )I G~(x, y) —GF(x, y)I ] . (6.2)

The linearized SUSY current is

Sk =lg'V5) kHF(b)I LP* (6.3)

In.Eq. (6.2) (B ) stands for the full vacuum expectation

values of the bosonic fields, to be evaluated after having
calculated the nonperturbative corrections to the bosonic
potential. Similarly, the full bosonic (fermionic) propaga-
tor G~ (GF) should be considered as a finite-volume
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propagator whose mass matrix Mz (M~) has to be deter-
mined. Obviously,

M~ = (Mo+ 5M~ ), M~ =Mo +5M', (6.4)

X
g(x)=e '~'"+ g e

/Pf
e
, (d —i)x, fi(

'
) '

(pr„' )

(6.5)

Here x '" are the collective coordinates of the nth lumps
aiid

r„'= x —x'", r'„= X X '

where Mo is the classical mass matrix and 5M& (5M~) is
a small nonperturbative correction.

As was explained in Sec. II, the full vacuum is dom-
inated by finite density of topologically nontrivial
configurations. We thus begin with a calculation of ma-
trix elements of the SUSY flux in the background field of
X classical lumps (which we take to be identical for nota-
tional simplicity). A general eigenstate which consists of
an incoming plane wave that scatters off ItI identical (well
separated) centers has the structure

PB PF (6.6)

(b) The fiux is due to bosonic and fermionic waves that
scatter o6'the same lump.

An immediate consequence of property (b) is that the
contributions of difFerent lumps to the total Aux are addi-
tive. Using the above properties we are able to calculate
the LHS of Eq. (6.2):

The additional phase exp( —ip x '") is introduced to
compensate for the position of the nth lump. Equation
(6.5) exhibits the fact, valid within the dilute-gas approxi-
mation, that the scattered waves of difterent lumps are
uncorrelated. Equation (6.5) applies everywhere, except
inside the cores of each lump.

Matrix elements of the SUSY Aux are constructed from
bosonic and fermionic eigenstates whose generic struc-
ture is similar to Eq. (6.5). Because of translational in-
variance only flux portions which are independent of x '"
may contribute to the LHS of Eq. (6.2). A glance at Eq.
(6.5) reveals two necessary conditions.

(a) The incoming bosonic and fermionic momenta are
equal:

(VQ )
(g( ) fd „S P (y)L)= g 5+

p'

X
OO (VQ )

,0 TT

r P

g(x, p) fdokSk(b ';p) f3 (y, p)L
AFAR

, y(x, p) y&p /do kSk(b' ', p) P (y, p)L
p AFAR p

pe ' '0 g g(x, p) /do„Sk(b";p. ) P (y, p)L .
p AFArg

(6.7)

(Ã )
The Ho phase is defined in Eq. (2.42), b ' is the back-
ground field of X lumps of type ~ and b'~' is the back-
ground field of a single lump of type p. The transition
froxn the third row to the last rom is justified, since in the
infinite-volume limit the partition function is dominated
by the true vacuum.

Comparing Eqs. (6.7) and (6.2) we find that the V
dependence cancels. We thus see that additivity of the
contributions of di8'erent lumps renders the total Aux
proportional to the volume of space-time, and that this
phenomenon is indeed necessary in order to obtain any
physical consequences.

So far we have used only the kinematical structure of
the SUSY flux. (In fact, the preceding discussion applies
to any other symmetry. ) What we have learned is the fol-
lowing: the dynamical question is whether there exists a
nonzero leakage of SUSY Aux due to the presence of a
single instanton.

Since we now have to consider a single scattering
center, it is possible (and more convenient) to expand in
partial waves. To simplify the kinematical structure we
limit our discussion to the case of elastic scattering only.
(Consequently our discussion applies without

modifications when one is below the second Euclidean
mass threshold. ) A bosonic eigenstate with a definite to-
tal angular momentum has the general structure

P =[5 e 'i'"+ (4 ) e'~"](pr)" (6.8)

=1Hz(b) =3'5('Yr~. Mo)~ 'Yr = Ykxkr
(6.9)

Consequently one can construct a fermionic eigenstate
from pairs of radial channels (Y5 is diagonal)

I'I (r )

Xl =[gl( )+&Y5Y,bl(r)) ()
(6. lo)

The two-component spinors Yl.(r) are eigenstates of the
total angular momentum. [Strictly speaking, here the
capital indices I (I') label all radial channels of a given

where Sz is the quantum-mechanical scattering matrix.
Here I labels the various channels of a given eigenstate
and J labels di6'erent eigenstates which involve an incom-
ing wave in channel J.

To construct a similar decomposition of fermionic
eigenstates we first notice that, for large r,
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f«ksk(b;pj ) = f«k&)( (pj)y5ykHF(b)rLp, (pj )

a:p "(I SFtr—$2' ) . (6.11)

The proportionality constant in Eq. (6.11) depends on the
particle's mass and on the total angular momentum j.
Note that the dependence on the surface radius
(r )))(Mo '~~) cancels out and the RHS of Eq. (6.11) is
finite. The I matrix merely serves to match the bosonic
and fermionic indices. Hence what we have on the RHS
of Eq. (6.11) is, generically,

fiux ~I SFS~ . — (6.12)

We now recall that, because of Eq. (3.43),

gF~ g~ (6.13)

for every massive field theory, and so the SUSI' jeux
(6.11) is in general nonzero Conver. sely, were $2' and SF
equal, unitarity would have ensured the vanishing of Eq.
(6.12).

bosonic (fermionic) eigenstate, and so their meaning is
somewhat diFerent from previous sections. ] The gI, (r)
channels can now be expanded similarly to Eq. (6.8),
whereas the hl, (r) channels are related to the gI (r) chan-
nels through Eqs. (6.9) and (6.10). Using Eqs. (6.3) and
(6.8) —(6.10) we find

To obtain an explicit expression for the mass splitting
we take the Fourier transform of Eqs. (6.2) and (6.7) and
extract the coeFicient of yyf. The result is

MF(p )I' I —M&(p )=pe ' 'Q, fdoksk(b ';p) .

(6.14)

The analytic continuation of Eq. (6.14) to p = —M
provides the general expression for the boson-fermion
mass splitting which is generated due to the nonperturba-
tive breakdown of the SUSY algebra.

It is interesting to investigate the possible phenomeno-
logical implications of Eq. (6.14). Clearly, before such an
investigation can be carried out in detail, there are
several conjectures which have to be confirmed: first,
that explicit SUSY breakdown due to vacuum tunneling
occurs in four dimensions as well and, second, that the
results of this paper can be extended to partially massless
chiral theories as well. The possibility of explicit SUSY
breaking in four dimensions is discussed in the last sec-
tion. As an illustrative example let us assume that the re-
sults of Sec. V remain valid if we add a massless sector to
the model discussed there. The particularly simple kine-
matics of a massless sector allows further simplification
of the RHS of Eq. (6.14). To this end we first apply Eq.
(3 43) to obtain an expression for B&sk ..

Bksk(b; AF, Aii ) =yt(AF )[ HF(b)+HF(—b)]HF(b)l LP, (A23 )

=(Aii —AF)y () F)I Lp, (iii ) i1 FBk—[)(t(AF)ysykI Lp, (kii )]—S,' y (AF) V(p(A2i ))5y (6.15)

The first term in the last row has no physical consequences since it vanishes for A, F =A,~ [see Eq. (6.6)]. Proceeding
along the lines of Eqs. (6.8)—(6.11) we find that the fiux leakage due to the total divergence term in the last row is pre-
cisely opposite to the flux leakage due to OkSk. Consequently,

fdoksk(b)A. )= ,' fdok[sk(b;—A,)
—iky (A, )y~ykrLP, (A, )]——,'S,' (y (A, )~ V(P(A, ))~5y )

= —
—,'s,'"(y'(x)

~
v(p(x)) ~5q') . (6.16)

Substituting Eq. (6.16) into Eq. (6.14) we find, for the massless sector,

M'I" —I'M' = —
—,
' g (S;)'~ e ' 'A, (y,(p =0)

~ V(p, (p =0))15'', ) . (6.17)

To leading approximation we can assume that the p =0 eigenstates are equal to one over the core of the instanton.
Hence,

(M2r rM2 )
K & y(sw)1/2 ' o&rll V

KJ' f dd 5~0 ( ) (6.18)

We now observe that 5%+ [see Eq. (5.8b)] does not con-
tribute to the RHS of Eq. (6.18) because Vky+ are vec-
torial quantities. [Since we use a singular gauge in this
section, the exp( + i 8 ) factor of Eq. (5.8b) is absent from
Eq. (6.18).] A similar conclusion applies to 5A (5.8c)
after summing the contributions of Quxon and antiAuxon.
(We recall that these are the only important contributions
in the dilute-gas approximation. ) Therefore only 5+o

(5.8a) contributes to the RHS of Eq. (6.18), thus giving
rise to

(M,'r —rM,'),, = —S,'"~n„„„.„~V,, ' Jd'x5e, (x) .

Hence under our assumption the particles of the mass-
less sector have indeed acquired a nontrivial mass matrix
which violates the SUSY algebra.
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VII. DISCUSSION AND CONCLUSIONS

In this paper we proved that dynamica1 breakdown of
the SUSY algebra due to vacuum tunneling takes place in
two and three space-time dimensions. We also identified
the physical mechanism which generates SUSY violation,
namely, the discrepancy between the bosonic and fer-
mionic scattering matrices in an instanton background
induces a nonzero and, in fact, extensive leakage of SUSY
flux. Indeed, the expression for boson-fermion mass split-
ting derived in Sec. VI is directly related to the SUSY
flux leakage. We conjecture that the full expression for
the one-loop correction to the vacuum energy density,
when calculated, will also reveal an inherent dependence
on the SUSY flux leakage.

It should be emphasized that what we actually proved
in Sec. VI is the following: 3. nonzero measure for classi-
cal configurations implies that matrix elements of the
SUSY flux are, in general, nonzero as well. Only because
of technical difficulties have we not established the oppo-
site assertion: namely, that the measure of classical
configurations is nonzero due to the existence of a
nonzero SUSY flux leakage. A more sophisticated calcu-
lation of the one-loop correction to the fermionic deter-
minant should make use of all four identities
(3.42) —(3.45), and would necessarily involve integrations
by parts. These integrations by parts would give rise to
surface contributions proportional to the flux of the full
(nonlinear) SUSY current. We conjecture that it is pre-
cisely those terms that would survive after all algebraic
cancellations have been taken into account, and which
are therefore responsible for the nonvanishing of the
one-loop correction to the vacuum energy density.

In fact, the master identity (3.38), which contains all
the SUSY information and governs all the cancellations
between differential operators and vertices can be rewrit-
ten as

yt[HF(b)+ V(P—)]5y(b +P) =B„S„(y,b+P),
(7.1)

where y is an arbitrary c-number spinor and Sk(y, b+p)
is the full SUSY current. Equation (7.1) is then used to
express the interaction vertex (y+~ V(p)~5y ) in terms of
diagrams in which the adjacent bosonic and fermionic
propagators have been eliminated in turn, higher loop
graphs, and insertions of the SUSY flux. We thus expect
that due to the existence of a flux leakage, the application
of the identities (3.38) and (3.42) —(3.45) which amounts to
using all the SUSY information in the theory, would fail
to ensure the vanishing of the quantum corrections to the
fermionic determinant (see Fig. 11).

It is interesting to investigate whether solitons could
also induce explicit SUSY breaking, being another topo-
logical effect of gauge theories. This possibility was ela-
borated in Ref. 13, where it was found that the one-loop
correction to the soliton-solitino mass splitting vanishes
identically. However, a second look reveals that the

non zero meosure
for classical
configurations

BUSY flux
leakage

boson fermion

moss s plitting

FIG. 11. The physical mechanism which induces the nonper-
turbative breaking of the SUSY algebra.

one-loop contribution to the soliton-solitino mass split-
ting is analogous to the tree correction for the zero fer-
mionic eigenvalues in the instanton background. We
therefore expect that a two-loop calculation will give rise
to a nonzero soliton-solitino mass splitting.

The most interesting question concerning possible ap-
plication of the above phenomenon to the real world is, of
course, whether dynamical breakdown of the SUSY alge-
bra takes place in four dimensions. When dealing with
massive theories there is a qualitative difference between
four and lower dimensions. The reason is that due to the
scale invariance of the underlying massless theory, mas-
sive four-dimensional theories do not admit exact instan-
ton solutions. This has two major consequences: the first
is technical in nature, namely, the integration over scales,
which is a classical symmetry of the massless theory, has
to be replaced by integration over a constraint parame-
ter the second and more crucial consequence is that the
SUSY variation of the classical fields (3.40) no longer gen-
erates fermionic zero modes. Instead, fermionic zero
modes exist in four dimensions due to index theorems.
(For massive theories only recently proved open space in-
dex theorems are applicable. )' A strong indication that
the four-dimensional zero modes are not related to SUSY
in some indirect way is that their number is not equal to
the number of supersymmetries. The number of zero
modes is model dependent, and, in fact, one can construct
explicit examples for which the index is zero.

Obviously, the construction of a massive SUSY theory
with no zero modes at all (and not only zero index) would
prove that explicit SUSY breaking takes place in four di-
mensions. However, even if the index is nonzero (and
this is the generic case) it is still most likely that explicit
SUSY breaking will occur for the following reason: mas-
sive theories admit nontrivial index structure only in the
presence of an R symmetry (see Sec. III). An exact R
symmetry would imply that the index is conserved not
only under classical deformations which respect the R
symmetry, but also under quantum fluctuations. Howev-
er, in four dimensions the R symmetry is always anoma-
lous. In particular, if due to the anomaly, a field with
nonzero R symmetry charge acquires a nonzero expecta-
tion value in the constrained instanton background, the
index will no longer be conserved. Under these cir-
cumstances a nonzero quantum correction to the fer-
mionic determinant will be generated, and consequently
explicit SUSY breaking will be induced. A more detailed
investigation along the lines described above will be
presented elsewhere. We hope that it may also clarify
certain subtleties concerning the SUSY anomaly in four
dimensions. '
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Finally, we comment that if it is proved that explicit
SUSY breaking is generated in partially massless chiral
theories as well, the induced mass matrix for classically
massless particles [see Eqs. (6.17)—(6.19)] may play some
role in resolution of the hierarchy problem in GUT's.
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APPENDIX A

In this appendix we calculate the Jacobian that arises
in replacing the bosonic zero modes amplitudes by collec-
tive coordinates, and prove Eq. (2.22). To this end we
show that the local part of BC

& /Bxk is

(Al)

and prove that the nonlocal part does not contribute to
the partition function.

Before going into details of the proof, it is useful to get
a qualitative understanding of the nonlocal terms by con-
sidering a specific family of paths IY(x )I. We define
Y(x ) as follows: we first go from the origin along a
straight line to the point (x, , O, . . . , 0), then from
(x, , O, . . . ,0) to (x, ,xz, O, . . . ,0) and so on, until we
reach x = (x &,x 2, . . . , xd ). Calculating the derivative of
the parallel transport

U(x, xo) =P exp —ie f dy a.(x —y), (A2)
o~

we find (see Fig. 12)

BUx x ieU(—x,xo)ak(x x) ie —f — dy U(x,y)f k(x —y)U (x,y)U(x, x ),
Y(xo)—T (x )k (k)

(A3)

5(C, ) .

A configuration B (x) that belongs to the one-instanton

where Y~ 1,&(x ) is the path from the origin to the point
(x „x2, . . . ,xk, 0, . . . ,0}. The first term on the RHS of
Eq. (A3) together with the simple fields derivative give
rise to the local part of the Jacobian (Al). The second
term gives rise to a nonlocal contribution.

We will now prove that the nonlocal part of the Jacobi-
an does not contribute to the partition function by show-
ing that its contribution can be made arbitrarily small.
To this end we divide space-time into cubes ICI ) of size

For a point x that belongs to a given cube H we
~o

define a new path Y(x ) as follows: we first go from the
origin to the center of along an arbitrary fixed path.

~o
We then define the path from the center of Up to x
analogous to the definition of the path Y(x ) from the
origin to x (see Fig. 13).

For a11 inner points of the cubes the nonlocal part of
the Jacobian is clearly O(b, ) and hence can be made arbi-
trarily small by choosing a sufficiently small h. However,
the nonlocal part also receives 5 function contributions
from the boundaries of the cubes. Since the boundary
area is O(l/b, ), the total boundary contribution to the
RHS of Eq. (2.17) is 01.

To show that the boundary term is not physical and
does not contribute to the partition function we will now
somewhat modify the Faddeev-Popov procedure: we en-
large each cube to an open cube H~ of size 6+2@ (see
Fig. 13), and replace Eq. (2.17) by

n(B)=g f dxk det (A4)
Bxk

sector can always be constructed from an instanton locat-
ed at a given point plus quantum Auctuations which are
orthogonal to the bosonic zero modes. (Since the bosonic
zero modes correspond to infinitesimal translations of the
instanton, including them in the allowed quantum Quc-
tuations would amount to overcounting of the actual
configurations. } The function n (B) is therefore equal to
the number of open cubes to which the instanton's center
of mass belong.

Using paths defined analogous to Y(x ), we now ob-
serve that due to the absence of boundary surfaces there
is no singular contribution to the nonlocal part of the
Jacobian. Consequently the nonlocal part is always
0(6+2'). Moreover, when substituting Eq. (A4) in the
partition function, the deviation of the LHS from one

Xp

xo
I

FICs. 12. A typical path Y(x ) in two-dimensional space-
time. The dashed line shows the varies path Y(x +5x&,0)
where 6x =(5x&,0).
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leads to violation of Eq. (2.22) which is O(e/b ). There-
fore the total violation of Eq. (2.22) is O(h+2e+Elh),
and by appropriately choosing 6 and e it can be made ar-
bitrarily small. This completes the proof of Eq. (2.22).

APPENDIX B

Det'~ [D„(B)]=Det'~ [DF(B)]

X Id g exp[ ,' g E' „—(P)g„], (82)

In order to prove Eqs. (2.32) and (2.33) we reintroduce
the fermionic path integral. Let y„,n =1, . . . , X, be the
fermionic zero modes, g„ the zero-mode amplitudes, and
let g be orthogonal to all zero modes. Taking into ac-
count that the fermionic variables are Majorana spinors
we have

Det' [DF(B)]
= J[dX]dkexp[ ,'(7-+X' 0 ID (B)IX+X'.g. )],

(8 I)

g(g„) is related to X(X„) through Eq. (3.22). We con-
struct the fermionic propagator GF only from the
nonzero eigenstates of HF(b) [see Eqs. (2.28) —(2.31)]. In-
tegration over [dX] gives rise to

E „(p)= X' (p) g [ GpV—(p)]" Xo
p=0

(BS)

APPENDIX C

A SUSY theory admits an R symmetry provided one
can assign charges to the scalar fields, such that the su-
perpotential transforms with charge Qz[W(@)]=1. In
this case the various fields have the following charges:

Q~( A„')=0,

Q~(A, )=-,',
Q~(~P )=Qg( Ii )=Qg(@ ) ——,

' .

(C2)

(C3)

Consequently besides closed fermionic loops one also ob-
tains open fermionic lines with zero modes at the ends
and any finite number of V(P) insertions along the line.

We now observe that due to Hermiticity and Majorana
symmetries of H~(b), g„ is a permutation of X„t [see in
particular Eq. (3.26)]. Consequently performing the in-
tegration over d g we find

Det' [DF(B)]=Det' [DF(B)]det'~ [E „(P)], (84)

where

E'.(»= 7' V(P) Q [ GFV(P)Y—x'.
p=0

(83)
Using the 4& notation for the scalar fields [see Eq.

(3.21)], the generator of R transformations is

Similarly to the fermionic propagator, the functional
determinant in Eq. (82) is constructed only from the
nonzero eigenstates of Hz(b). The p =0 term in the ex-
pansion of E' „(P) comes from substituting the zero
modes in the fermionic Lagrangian. All higher terms
arise because performing the functional integration only
over the nonzero modes is equivalent to treating both bo-
sonic fields and fermionic zero modes as external sources.

Q5 QRy5 ' (C4)

APPENDIX D

+M ip @ iIIM+ + gy ++ie +2 +M@tT +M

The fermionic SUSY Lagrangian in Minkowski space
is defined through

I
I

Xi

—
—,'%~ 8'~p(N~)4p

88'
W~=, etc. ,

a

45 =[+)N+ [ —]4' = —,'(1+y5)C&+ —,'(1 —y5)4', (Dl)

T5 =[+]T'+ [.
—](—T')"

D„5.=9„+I,eA„'T5 .

The Majorana fermions g are constructed from Weyl
fermions as

~ v.=i(x ) yoy2 (D2)

In going to Euclidean space we perform the standard
continuation to imaginary time and make the replace-
ment

FICx. 13. Dividing space-time into cubes (Q~ I of size h. The
thick line shows a typical path T{x ). The dashed line corre-
sponds to one enlarged open cube G~.

M~X5-
l o'2xL

(D3)

We recall that in Euclidean space yL and gz are not con-
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&F = ,'X5D—(B)X5 .

We now observe that the eigenvalue equation

(D4)

jugate. The resulting fermionic Lagrangian has the gen-
eral form

ic components with identical transformation properties,
only in different order. Consequently the operator [see
Eq. (3.2)]

DF(B)=i y 5([+]L+[—]I)D(B)([+]I+[—)L ) (D7)

&(»Xg =~X5 (D5)
gives rise to an eigenvalue equation which respects all the
relevant symmetries. Clearly,

is inconsistent with gauge symmetry, since D(B)X5 has
the transformation properties of io2X&. In general the
only way out is to consider the eigenvalue equation (here

X~ and i a2X~ are treated as independent variables)

Det' [DF(B)]=det' [8(B)] . (D8)

%'e may therefore define the fermionic sector of the
theory using DF(B) The. explicit structure of DF(B) is
given in Eq. (3.20).

D(B) i 0 2'J5 2X5
(D6) APPENDIX K

Equation (D6) involves redoubling of the number of fer-
mionic degrees of freedom relative to the original %'eyl
fermions.

However, when the matter fields belong to a real repre-
sentation of the gauge group, X~ and i cr2X~ have ferrnion-

We give below a detailed list of the Anal expressions for
all diagrams that have some m, dependence (see Fig. 7).
Our notation conventions can be read off Eqs. (El) and
(E4). The following diagrams contribute to order m,
[note that due to Eq. (5.20) G» =O(m, )]:

EP'=4S, (mm, ) Tr[(y —1)(BkG )(y —1)(BkG )]

=4S, '(mm. )'f d'x d'y[q'(lx I)—1] G~ (x y) [q'(lyl) —1] G (y, x)
Bxk

ez, = —4S, (mm, m, ) Tr[G (&p
—1)G.. .(y —1)],

E2&'=S, (mm, ) Tr[(Bky )G,*,(&kg )G,*,],
Ez,'=4S, (mm, ) Tr[(y —1) G,~, ]=4S, (mm, ) J d x(qP(~x ~)

—1) G, , (x,x),
E4&'=S, mm, Tr[(Vkp+)(V~g )Gl, l 1—
EI3'=8S, (mm, ) Tr[(y —1)(BI,G )(Bky )G, , ],
(2)+ (2) I + rs

E,6

E'= —,'S, mm, Tr(G, , @+V y+ ),

(El)

(E2)

(E3)

(E6)

(E7)

E"=—8S, mm, p g Tr[G, , yg~(k)] [P~(A.)]*
A,~&0

The following diagrams contribute only to higher orders:

l —a

ez, '= —S, (mm, ) Tr[(Bky )G, , (Bk&p )G, , ],
e~ '= —16S, (mm, ) Tr[G, , , (y

—1)(BkG )(y —1)(Bky )],
e', z'= —16S, (mm, ) Tr[G, , (y —1)(BkG )(y —1)(B&G )(cp —1)],
eP4'+sI&'= —16S, (mm, ) Tr[G, , (y

—1)(8kG )(y —1)G&~ &(y
—1)(8kG )(g —1)]

+16S, (mm, ) Tr[G, , (y —1)(B„G )(y —1)G, , (y —1)(B„G )(y —1)] .

(E8)

(E9)

(E10)
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