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Covariant BRS quantization of the ten-dimensional N = 1 Brink-Schwarz superparticle
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We perform the covariant Becchi-Rouet-Stora quantization of the S=1 Brink-Schwarz super-
particle in ten dimensions. The key ideas used are {1)the Batalin-Fradkin formalism for second-
class constraints, {2)nonsquare vielbeins relating spinor indices to internal SO{8) indices, and {3)the
special properties of I matrices in ten dimensions. Our work generalizes Eisenberg and Solomon's
solution of the X=2 case to X = 1.

I. INTRODUCTION

Recently, a number of papers have appeared' on the
subject of the covariant quantization of the Brink-
Schwarz (BS) superparticle. ' While a noncovariant
quantization presents no difficulties, the model has long
resisted attempts at covariant quantization, due to the
difficulty of covariantly separating the first- and second-
class constraints, which together transform as an irreduc-
ible representation of the Lorentz group. The preferred
solution should be firmly rooted in the covariant quanti-
zation scheme of Batalin, Fradkin, and Vilkovisky"'
(BFV), the most elegant tool yet developed for quantiza-
tion of first-class constrained systems. A natural general-
ization of this scheme to encompass second-class con-
straints has recently been developed by Batalin and Frad-
kin' (BF), which makes use of auxiliary canonical vari-
ables further supplementing the extended phase space of
BFV.

In this paper we perform the canonical quantization of
the ten-dimensional N = I BS superparticle, motivated by
the recent trend to employ auxiliary variables in this
problem, and especially by the work of Eisenberg and
Solomon' (ES), in which elements of twistor geometry
and the BF scheme were used to canonically quantize the
X =2 BS superparticle.

Our work relies heavily on the special features of ten
dimensions, such as the existence of a real Weyl represen-
tation of the I matrices and a simple form of the charge-
conjugation matrix C. These features enable us to
present an economical solution using two Majorana-Weyl
(MW) vielbeins mapping the Lorentz spinor indices to
internal SO(8) indices. This mapping covariantly isolates
the second-class part of the original constraints. The BF
idea can then be applied by adding auxiliary self-
conjugate SO(8) spinors to convert the second-class con-
straints to first class, thus closing the constraint algebra.
The vielbeins, must satisfy certain algebraic constraints,
which however do not remove all of the vielbein degrees
of freedom. The remaining degrees of freedom must then
be gauged away by imposing additional constraints,
which form a closed algebra with the original constraints.
The new constraints have simple interpretations as gen-
erators of rotations on the internal SO(8) manifolds, and
generators of "chiral" rotations relating the two vielbeins

to each other.
We also extend our construction to the X =2 BS model

in ten dimensions. Two possibilities exist for such a mod-
el, the symmetric model (type IIA), and the chiral model
(type IIB), depending on whether the two supersymmetry
generators have opposite or equal handedness. The
chiral model IIB has been thoroughly discussed by ES
(Ref. 1 and 2), and our results for this case are similar to
those found in Ref. 2. The symmetric model IIA, like the
N = 1 case, has not yet been discussed using the approach
of ES; we briefly discuss the solution here. For an ex-
planation of our conventions, see the Appendix.

II. THK MODEL

The action for the Brink-Schwarz superparticle' ' is

(2.1)

where

co"=x "—iO'y"0' . (2.2)

Here, 0' is a Majorana-Weyl 32-component spinor, where
i runs from 1 to N, the number of supersymmetries. In
this paper, we mainly consider the case X = 1, and
suppress the index i.

In 16-component notation (see the Appendix),
Oy"e=g & "y if 0 is right handed, and Oy"O=y o."y if 0
is left handed. Assuming, for definiteness, that 0 is left
handed, we have

co"=x "—iy a"y

and we compute the canonical momenta:

(2.3)

BLq= =0,
Be

(2.4)

(2.5)

Pa = l+ I Pa &
(2 6)

where the derivative in (2.6) acts from the right. We find
the Hamiltonian
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Ho=qe+p„x ~+p~ L—= ,'e—p (2.7) gate. These constraints are second class:

The canonical variables satisfy the graded Poisson
brackets

Ip, x)=1 . (2.17)

(p„,x I =5„,
(2.8)

(2.9)

Now add a canonical pair of auxiliary variables, satisfy-
ing (q,y I =1. The BF prescription for this simple case
amounts to shifting the original constraints as follows:

(2.10) p+y =0, x+q =0 . (2.18)

I q, H0 I
=

—,'p =0 . (2.11)

From the form of the Hamiltonian in (2.7), we see that
the einbein e plays the role of a Lagrange multiplier for
the secondary constraint (2.11). With this interpretation,
we can, for the moment, drop the constraint (2.4), since it
wiH be reinstated implicitly by quantizing the system us-

ing the BFV formalism.
We then have the system of constraints and the Hamil-

tonian:

p+ip o ~—~=0,
HO=0 .

The only nonvanishing Poisson bracket is then

IP, /&I =2ip o & .

We note that

(p o. )(p o ) = —p' .

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

In view of (2.12), this implies that the 16X 16 matrix p o
has eight null eigenvalues, so that the 16 constraints P
can be split into eight first-class and eight second-class
constraints (although this cannot be done covariantly).
Now first-class constraints require gauge fixing. In
Dirac s method of quantization, this means the introduc-
tion of subsidiary constraints. On the other hand,
second-class constraints can be understood as gauge
fixing themselves, so no subsidiary constraints are need-
ed. The eight first-class constraints, together with their
subsidiary constraints, thus remove 16 degrees of free-
dom, while the eight second-class constraints remove
another 8. Altogether, the constraints P remove 24 de-

grees of freedom from the 32 components of the canoni-
cal pair (p, y ), leaving eight physical components. This
explains the fundamental difriculty in the covariant
quantization of the superparticle —there is no eight-
dimensional spinor representation of the Lorentz group
SO(1,9).

If there were no covariance difficulties, then we could
deal with the second-class constraints straightforwardly,
using a technique invented by Faddeev and Shatashvili'
and discussed in the Becchi-Rouet-Stora (BRS) frame-
work by Batalin and Fradkin' (BF).

The essence of the procedure can be illustrated by a
simple example. ' Consider a system with the con-
straints p and x =0, where p and x are canonically conju-

Requiring the constraint (2.4) to commute with Ho, we
find the secondary constraint'

These constraints are now first class, and can be quan-
tized according to the usual BFV formalism, without the
use of Dirac brackets. The number of auxiliary variables
corresponds to the number of original second-class con-
straints, a fact of general validity.

In applying this technique to our problem, we need
eight auxiliary variables to convert our eight second-class
constraints to first class. The question is how to intro-
duce these covariantly. In recent papers, ' Eisenberg
and Solomon have presented a technique which works for
the N=2 superparticle. We show here that the same
general idea can be applied to our case, N = 1, despite the
loss of the holomorphic representation exploited in Refs. 1
and 2. To facilitate comparison of results, our notation
parallels these two papers fairly closely.

Before discussing the procedure in detail, we make
some general comments about how it works. The main
ingredient' is the introduction of dynamical bosonic ob-
jects V, and 0, , ha'ving canonical conjugates W, and

a'

I W, , V(I =5, 5g, IW„V pI =5,„5p. (2.19)

III. THE SOLUTION

We now begin a more technical discussion of the solu-
tion. Using the vielbeins, the fermionic constraints can
be written with SO(8) indices:

V, and V, can be understood as "vielbeins, " converting
spinor indices a to internal SO(8) indices a. This enables
us to redefine the set of constraints characterizing the su-
perparticle model so that they have only SO(8) indices.
We note that the vielbeins are not square matrices, and,
hence, are not invertible.

It is useful to observe that p o ~P& is first class and re-
ducible, due to (2.16). We use the vielbein 0', to convert
these to irreducible first-class constraints and we use V,
to convert P to irreducible second-class constraints
which can be treated by the BF procedure. Consistency
imposes certain restrictions on the vielbeins, eliminating
some degrees of freedom. We then impose additional
constraints to gauge away the remaining vielbein degrees
of freedom. One set of these constraints is a pair of SO(8)
rotation generators. Another pair is analogous to
"chiral" symmetry generators between the two SO(8) rep-
resentations. An important technical problem is to show
that the constraints we impose on the vielbeins form a set
of irreducible, first-class constraints. By using a some-
what different set of constraints from that used by ES, we
simplify the solution to this problem. The application of
the standard BFV quantization is then straightforward.
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d, = V, p +iS, =0,
d, —:V, ~ & ~gp=O,

(3.1)

(3.2)

where (3.1) incorporates a shift by a self-conjugate spinor
S„satisfying

IS,Sb I =i5 b . (3.3)

This shift makes it possible for (3.1) to be first class, as we
now show. The constraints (3.1) and (3.2) have Poisson
brackets:

IPab&Ped I (5ad Vc ~b, a 5bc Va, a d )p (3.15)

Such a proof requires that we check three points: (1)
the constraint algebra closes; (2) the constraints on the
vielbeins are as numerous as the vielbein components; (3)
the constraints are irreducible (i.e., independent).

One easily checks that the constraint algebra generated
by the complete set of constraints (2.12), (3.1), (3.2),
(3.7)—(3.10), and (3.14) closes. We have already presented
part of the algebra. The remaining nonvanishing Poisson
brackets are

I dg, db ] iX.b-,

Id„db I
= i(X',b—+5,b )p

I d„db J
= 2i V,—Pb~'

where we impose the constraints

X,b —=2V,p.o pVb~ —5,b =0,

(3.4)

(3.5)

(3.6)

(3.7)

I P b, d I =5b d, I P b, d, I
= 5b (d— iS )p—

IP,b, X,d I
= —2(5b, V, Vd+5bd V, V, )p

I P.»R.d 1
=5b.P.d 5bd P-—

I Pab&~cd I 5acPdb 5adPcb

(3.16)

(3.17)

(3.18)

(3.19)

X,b =2k', ~ & f'bid 5,b=O—. (3.8)

R,b
—= V, Wb —

Vb 8' —iS,Sb =0,
R., = V..@"; v, .k:=0—.

These obey the SQ(8) algebra

(3.9)

(3.10)

IR,b, R,d I =5b,R,d+5,dRb, 5„Rbd 5bd—R„. —

(3.1 1)

It is easy to check closure of the algebra of the con-
straints (2.12), (3.1), (3.2), and (3.7)—(3.10), due to the re-
lations

IR,b, d, I =5b, d, —5„d„,
( Rab &Xcd I 5bcXad +5bdXac 5acXbd 5adXbc

(3.12)

(3.13}

and identical relations for the quantities with carets.
The SO(8) rotations, by themselves, are not enough to

gauge away all of the remaining vielbein degrees of free-
dom. We introduce "chiral"-symmetry operators con-
necting the careted and uncareted SO(8) systems:

P,b =—P', ~ o ~Wb t3=0,
(3.14)

P,b= V, p o tsk~q=O,

which generate, respectively, Vg~p & ~ f', and
P'b &~p cr& V, Imposi. ng the . constraints (3.14) turns
out to gauge away the remaining degrees of freedom, as
we now show.

Closure of the algebra (3.4)—(3.6) required that we im-
pose (3.7) as a constraint. Symmetry suggests that (3.8)
should also be imposed, and our analysis will show the
utility of this constraint.

Equations (3.7) and (3.8) are algebraic constraints, and
eliminate only a fraction of the vielbein degrees of free-
dom. We would like to treat the remaining vielbein com-
ponents as pure-gauge variables. Operationally, this
means that we need to find differential constraints to im-
pose. A natural idea is to use the SO(8) rotation genera-
tors as constraints:

Then the constraint X,b =0 leads to

VA VA
5,b

a b (3.21)

where we follow the notation of Ref. 1 in parametrizing a
by a=( A, A ), with A, A = 1,2, . . . , 8. Equation (3.21}

plus the careted versions of (3.17)—(3.19).
Let us now make a detailed comparison of the total

number of degrees of freedom with the total number of
constraints. For completeness, we consider not only the
vielbeins, but also the other variables.

In the fermionic sector, phase space consists of
2X 16=32 fermionic components (from the original MW
spinor and its conjugate momentum), and eight com-
ponents from the self-conjugate SO(8) object S, . These
are constrained by 8+8=16 first-class constraints (3.1)
and (3.2). Since first-class constraints each remove 2 de-
grees of freedom (after gauge fixing), we eliminate 32 fer-
mionic degrees of freedom, leaving 8.

The bosonic variables x" and p„must satisfy the single
first-class constraint (2.12) and so contribute 2X10—2
= 18 degrees of freedom.

Finally, each vielbein contributes 8 X 16=128 com-
ponents; another 128 come from their conjugate momen-
ta. This gives 4X 128=512 auxiliary degrees of freedom.
We have 36 independent constraints (due to symmetry)
from each of the X,b and X,b, and 28 from each SO(8) ro-
tation generator R,b and R b. Each chiral-symmetry
operator P,b and P,b defines 64 constraints. In sum, we
have 2X(36+28+64)=256 first-class constraints, which
therefore eliminate all 512 auxiliary degrees of freedom,
if these constraints are irreducible

To decide the irreducibility question, we consider these
constraints in the particular Lorentz frame defined by
p;=0, where i =1,2, . . . , 8. Since p =0, we can also
choose p

—=po —p9&0, which fixes p+ =0. In this
frame, using the conventions explained i.n the Appendix,

P- o 0 0
P 0: 0 0 q P & 0 p— (3.20)
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shows that V, is essentially an 8X8 orthogonal matrix,
with 28 degrees of freedom. These can be gauged away,
using the 28 constraints defined by the antisymmetric
SO(8) generator R,b.

Similar results foHow for the careted variables:

X'.„=0=y. „P„„= (3.22)

so V ~ is essential1y an orthogonal matrix and R,b cana, A

gauge away the remaining degrees of freedom, as above.
To complete the argument, we examine the constraints

(3.14):

l P„(t'b J
= U b it)c . (4.2)

Note that our structure functions U,'b are constant, ex-
cept when P, corresponds to p =0. It is easy to prove in
such a case that Q in (4.1) is nilpotent, using the Jacobi
identity, '

l q, l q, q I I =0, where q
—=rI'P, .

The second problem is that some of our constraints
have symmetric or antisymmetric indices. This causes
some confusion about double counting and about the
correct Poisson brackets for the corresponding ghosts.
The easiest way to resolve this confusion is to temporari-
ly combine the symmetric and antisymmetric constraints:

P,b=O- =p V - 8' =0—'8' „=0, (3.23) cti b =X b+R b p b =X b+R b (4.3)

P,b=O- --P V,"8
b =0=8'b =0 . (3.24)

Here, we have used the fact that V," and p, z are non-
singular matrices.

This proves that the constraints (3.7)—(3.10) and (3.14)
are linearly independent. Thus, the constraints on the
vielbiens eliminate all the vielbein degrees of freedom.

We can also examine the fermionic constraints (3.1)
and (3.2) in this frame:

d, =0 = V,"P„+V, $„.+iS, =0,
d, =0 -p V ~/~=0.

(3.25)

(3.26)

Hence, P„. =0, while P„ is completely determined in
terms of S . This clarifies the counting; the independent
fermionic variables are precisely the SO(8) variables S, .

In the quantum-mechanical limit, the relation (3.3)
satisfied by the remaining fermionic variables S, defines
an eight-dimensional ClifFord algebra. Such an algebra
can be represented concretely by matrices acting on a
16-dimensional carrier space. The 16-dimensional funda-
mental representation decomposes into two irreducible
parts, 8, and 8„consisting of eight fermionic and eight
bosonic states. ' ' Hence, our X =1 model reproduces
the supersymmetric Yang-Mills multiplet in ten dimen-
sions. This fact also follows directly from a Fock-space
analysis of the states defined by the corresponding U(4)
fermionic creation operators. '

IV. THE BRS CHARGE

If we were interested in performing a Dirac quantiza-
tion, ' we would want to find subsidiary constraints to fix
the gauge. It is straightforward to work out a suitable set
of noncovariant subsidiary constraints, using the particu-
lar Lorentz frame used in Sec. III. However, we are in-
terested in using the covariant quantization scheme of
BFV, using the BRS charge. This scheme allows one to
proceed directly to the second-quantized formalism.

In working out the BRS charge, two problems present
themselves. First, some of our structure functions are
not constant. This means that the BRS charge might not
take the usual form for a "rank-1" theory

P~jp, gj= 1,

X,b~l P(,b), rl'")
I
=

—,'(5'5b+5,"5b ),
.b lP[.b] n' 'I —l(5:5b —5."5b»

lP.b n"I=5:5b .

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

Equations (4.5) —(4.8) have analogs for the constraints d, ,
x,b, R,b, and P,b. Here, for convenience, we have used a
slightly misleading notation. g' ', g~' ], and g are com-
pletely independent quantities, distinguished by the pres-
ence or absence of ( ) and [ ]. Also, note that g' and P,
are bosonic ghosts.

For the BRS charge, we find

Q
'=

q &
+ ( qd +q» +Qii +q p )

+("qd+ "qx+ Qt(+Pi »
where the individual terms are

(4.9)

qy=rty —[q rI P(,b)
7—

/ g P(X,b+—5,b)]2

~'~bp. +~'"~'p(d. iS.),
q„=g'd. +2g[ b]g'Pb+irt'r)—'P( V:Pb.),

(ab)X 4 [ab] (bc)p9X= I ab 9 9 (ac} &

(4.10)

(4.11)

(4.12)

Q rl[ab]R 2rl[ab] [bc]pR= I ab 9 I [ac]

abp +( yalya) b~bacp+4( Paya) ab (bc)p

(4.13)

—2g' (g[ ']P +rl ["]P ) (4.14)

The indices of p, b and gab then have no symmetry prop-
erties and neither do the corresponding ghosts. The
ghost Poisson brackets is therefore obvious. One easily
computes the BRS charge, with no double-counting
difficulties. Using (4.3), one can then rewrite Q in terms
of X,b and R,b, etc. This naturally selects the symmetric
and antisymmetric combinations of the ghosts and deter-
mines the Poisson brackets for these combinations.

The results are as follows. To each constraint, we asso-
ciate ghosts and antighosts having the Poisson brackets:

Q=)]'p, + —,'( —)'rI'rl Ub, p, ,

where

(4.1)
The careted terms qz, Q», Qii, and qi, follow from

(4. 11)—(4. 14) by applying the caret operation, using the
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rule that the ghost P remains invariant. Note that Q is
nilpotent, as are Qii and Qii, while the other terms in
(4.9) are not.

4.'=P.'—+iP ~.pre =o (5.13)

similar to the N=1 problem. Here, we have the con-
straints

V. THK N=2 CASK N =Pti+'P'o X@=0 (5.14)

I P', Pjp j =
2ip

.o g'J (5.1)

Finally, we briefly discuss the extension from N = 1 to
N =2. As we mentioned earlier, there are two cases to
consider.

First, we discuss the chiral N =2 case (IIB), with both
fermions having the same handedness. Thus, we double
the number of original fermionic constraints (2.13), so
that the algebra is now

which satisfy

Ig, gpj =2ip o. (5.15)

(5.16)

Again, we introduce the usual vielbeins V, , V, and their
canonical conjugates 8'b &, 8'b, which we use to convert
the constraints to SO(8) indices:

with i,j= 1,2. Correspondingly, we define two MW auxi-
liary spinors S,' satisfying

(5.2)

which are used to shift the SO(8) fermionic constraints

d —= V i' +iS =0,
d~—= jI)'. ~ o Py~=o,p

d,"= V, p ir PPJi =0 .

(5.17)

(5.18)

(5.19)

(5.20)

d' = V P'+iS,'=0 . (5.3)

da—= ~aN o 0p (5.4)

It is convenient to pass to the holomorphic notation

d. =— —(d,'+id, ), d, —= —(d,' id, )—,
2 ' '' '

2
(5.5)

—(d,'+id, ), d, = —(d,' id, ), —(5.6)

(5.7)

Note that

—(S,'+iS~),
2

—(S,' iS, ) .—
2

(5.8)

tk. 4j=~.b (5.9)

Then we find that the holomorphic analog of (3.1) and
(3.2) is

d, = V, P +g„d, = V, i' i g, , —

d, =V, ~ o Pimp, d, =P', ~ o

(5.10)

(5.1 1)

One easily sees that the bosonic sector of constraints is
practically identical to the N= 1 case. Only in the
definition of the uncareted SO(8) gauge generator do we
encounter a slight difference, due to the lack of an i in
(5.9):

&ab Va ~b, a Vb ~a, a—+(kalb —kb0a) . — (5.12)

Hence, the proof given above for the pure-gauge charac-
ter of the bosonic auxiliary variables extends automatical-
ly to the chiral N =2 case.

Next, we discuss the symmetric N=2 case (IIA), in
which the fermions have opposite handedness. This case
is not discussed in the literature, since it is technically

It is not necessary to double the number of vielbeins. We
also have

The nonvanishing Poisson brackets of this system of con-
straints are

Id~, d,'j =ix.,
Id a~d b j l(Xab+5ab )p

Id, , d b j
= —2i( V, P& )p

IdR dRj g

Id, , db j = i(X,b+—5,b)p

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

[d, , d b j = —2i( V, 0'b )p (5.26)

where X,b and X,b are defined exactly as in (3.7) and
(3.8).

Clearly, we are now forced to impose both X,b and X',
b

as constraints. The removal of the remaining vielbein de-
grees of freedom proceeds as in the N = 1 case, with the
proviso that the SO(8) rotation generators now take the
form

(5.27)

P.,= P..S'„P,.k: —is.'S,' . — (5.28)

The constraints P,b and I',b, and the counting of degrees
of freedom, are unchanged from the N = 1 case.
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Fisch, M. Henneaux, and C. Schomblond, Phys. Lett. B
210, 141 (1988).
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APPENDIX: CONVENTIONS

Throughout this paper, a dagger means Hermitian con-
jugation, an asterisk means complex conjugation, and T
means transpose, when these symbols appear
as superscripts. We use the Minkowski metric

=diag( —+ + + ).
We look for a set of I matrices I" and a charge-

conjugation matrix C in ten dimensions, satisfying

(Al)

One checks easily that these satisfy (Al) and (A2).
Moreover, r"=r'r' . r' is diagonal, and C also takes
a simple form:

(A2)

(A3)

Many such representations exist, but ours wi11 be chosen
to simplify the Majorana and Weyl conditions on spinors.

From Appendix 5.B of Ref. 14, we know that one can
construct a set of real-symmetric 16X16 matrices y',
where i =1, 2, . . . , 9, satisfying

(A4)

It is easy to check that C '=C =C = —C and that
(A3} is satisfied.

We now consider the Majorana and Weyl conditions
on 32-component complex spinors. The Weyl condition
states that I"P„=+/ where the eigenvalue is + ( —)

for right- (left-) handed components. The Majorana con-
dition states that g =C(l ) f' . In our representation,
C(I )"=I", so that a Majorana-Weyl spinor satisfies
the simple conditions

We take the sign of y opposite that in Ref. 14, so that Pmw =+0 w '(('mw (A9)

(A5) The solutions for right- and left-handed spinors are

We then define the real-symmetric matrices o" and o ",
where p =0, 1, . . ., 9, by

x
x (A 10)

o"=(l,y'), o "=(1,—y') .

Using these, we define a set of pure-real I matrices:

(A6) where g is a real, 16-component spinor. Using the repre-
sentation (A7), it is easy to work out the generators of
Lorentz transformations in 16-component notation.
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