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Dirac quantization of the vector superfield
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We use the Dirac quantization method in superspace to quantize the Abelian vector superfield in

the Wess-Zumino gauge.

I. INTRODUCTION D and D, are the usual covariant derivatives

II. DIRAC BRACKETS CONSISTENT
WITH THE WESS-ZUMINO GAUGE

The action for the vector superfield V has the form"

I
&g

d x d 0d 0 DD DVDV+H. c.

where V in terms of component fields is given by

(2.1)

V(x, 0, 0)=C(x)+i'(x) i'(x)+——OOM(x)

——OOM*(x) —Oo "OA (x)+i OOOO(x)
2 p

i OOOO. (x)+ ,'0000D(x) .—— (2.2)

It has been shown that the Dirac quantization
method' can be extended to superspace, where
superfields are taken as canonical variables.

The consistency of this procedure was verified in super-
symmetric quantum mechanics, in the quantization of
the chiral superfield, and in supersymmetric theories in
1+1 dimensions. ' In the last case, the nonlinear o.
model is a nice example. We have quantized it in the
usual version with O(N) symmetry and in the geometri-
cal approach, without and with torsion.

The purpose of this paper is to use this method to
quantize the vector superfield. We shall restrict our con-
sideration to the Abelian case. There are two new facts
which emerge here. First, the corresponding supersym-
metric Lagrangian, in superfield formulation, contains
higher-order derivatives. Second, we have now the in-
herent problems of a gauge theory. We will work in the
Wess-Zumino gauge. This choice does not completely
fix the gauge. Additional assumptions have to be made.
The condition we shall consider corresponds, in com-
ponents, to the usual radiation gauge. '

The paper is organized as follows. In Sec. II we
present the Lagrangian density of the theory and show
how to incorporate the Wess-Zumino gauge in the Dirac
formalism. In Sec. III we give a short discussion of the
canonical formalism involving second-order derivatives.
In Sec. IV the theory is quantized, starting with the vec-
tor superfield as a canonical variable. We show that the
results are in agreement with the well-known ones in
component fields. Some concluding remarks are left to
Sec. V.

D.=a.+ i O ~,0 'a„, D, = —a,—i 0 0-),a„. (2.3)

The conventions used throughout in this paper are the
same as those of the Wess and Bagger book, mentioned in
Ref. 11.

We observe that the corresponding Lagrangian density

,', (DD D—VDV+H.c. ) (2.4)

contains derivatives up to third order acting on the vec-
tor superfield V.

In order to simplify the problem of higher derivatives
we consider V in the Wess-Zumino gauge, where the
component expansion has the form

V(x, 8,0)=i 000 A(x) i OOO—A(x) Ocr"0—A„

+ —,'OOOOD(x) . (2.5)

Now we observe that since 0 0 V and 00V are zero,
there are no more third-order derivatives. However,
there are still second-order ones, because 0,0 V is not
zero. So, canonical quantization of the vector superfield
involves higher-order derivatives. The way of performing
canonical quantization when higher-order derivative
terms are present will be shortly discussed in Sec. III.
Now, let us show how to incorporate the Wess-Zumino
gauge in the canonical formalism.

The conventional way of dealing with constraints in
the canonical quantization is first to calculate the mo-
menta and get the primary constraints. ' Then, by im-
posing that constraints do not evolve in time we may ob-
tain what are called secondary constraints. The next step
is to verify if there are constraints which have null Pois-
son brackets with all the others. If there are (these are
called first-class constraints), this means that the theory
presents some gauge symmetry. Then either we fix the
gauge, or we may choose to work in a covariant formal-
ism' related to the Becchi-Rouet-Stora-Tyutin (BRST)
symmetry In this work we will adopt the gauge-fixing
procedure.

For a question of simplicity, we avoid following all
these steps. This is particularly possible here because any
functional derivative with respect to a superfield, for ex-
ample, Vcan be written as
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=8888 —2i8ee +2ieee, —2i88 +2iee +28cr"8
5V(x, e, e) 5C(x) 5y (x) 5y, (x) 5~(x) 5M*(x) 5A "(x)

+2i 0 —2i8. +2
5X (x) 5X,(x}

(2.6)

Thus, independently of the definition of the supermomen-
tum [when there are higher-order derivatives the momen-
tum expressions are different from the usual ones, see
Eqs. (3.8) and (3.9)] and of the specific form of the La-
grangian, one may write that the canonical momentum
related to the superfield V has the general form

II(x, e, e) =888 0P, (x) 2ie —88IIx(x)+2i 888 I'I (x)

—2ie 8PM(x)+2i 88P, (x )+28cr"011„(x)

+2i 0II&(x) 2i 0 II—I(x)+2PD(x), (2.7)

where P, (x), II&(x), . . . are, respectively, the canonical
momenta conjugated to C(x), g (x), . . ..

The Wess-Zumino gauge eliminates the fields C, M,
and g. So, it is a question of consistency that the corre-
sponding canonical momenta have to be eliminated too.
In superfield language, the elimination of these degrees of
freedom in Vand in H is written as

5 (8)5 (8)V=O,

5'(0)5'(0)aa v =o,
5'(0)5'(e)a a v=o,
5 (8)a a(0. V) =0,
5'(e)aa(e. v) =o;
aaa aII=0,
5'(0)a aa.lI =o,
5 (8)aaa. II=0,
5'(0)a a II=o,
5'(e)aaII =o,

(2.8)

(2.9)

where 5 (8)=08 and 5 (0)=80. The symbol = means
weakly equal. '

These constraints are second class. The elimination of
these degrees of freedom may be done by means of Dirac
brackets, ' whose general definition in superspace for
any two dynamical quantities A (x, e, e) and 8(x, e, e) is

{A(z), 8(z')]*,=
[ A(z), B(z')J

0 0 0 0

—f d z"d dz"'[ A (z), I;(z")] „D; (z",z'" )[I (z"'),8 (z')j
0 0 0 0

(2.10)

where z =(x„,e, 8. ) and D is a matrix such that the con-
straints I; can be made strongly zero in the above brack-
ets. See how this matrix is built up when superfields
are involved.

By using the set of constraints (2.8) and (2.9) one ob-
tains the brackets

[ V(z), II(z')J", =[5 (8)5 (8)—25 (0)88'
0 0

—25 (0)88'+488'8 8']5 (x—x'),

superfields will be illustrated in the next section.
Let us consider the following kind of Lagrangian densi-
.14

z =z(y, a„y,a„a.y ) . (3.1)

The Euler-Lagrange equation of motion is obtained by
the usual variational principle

5I=5f dt f d xX=0, (3.2)
t1

[ V(z), V(z')J*, =0= [II(z),II(z') j*
0 0 0 0

(2.11}

5$(ti ) =5/(tp) =0, 5$(t, )=5/(t, )=0 . (3.3}

where one considers that at the instants t, and t2 the sys-
tem is characterized by

These will be the fundamental brackets which we shall
use in S..c. IV.

III. CANONICAI. FORMAI. ISM
WITH HIGHER-ORDER DERIVATIVES

In this section we give a short discussion of the canoni-
cal formalism involving second-order derivatives. We
shall deal only with scalar fields. The extension to

The equation of motion is then found to be

az az
~ a(a„y)

+ ~ "a(a„a.y)
(3.4)

5$(t, )=0, 5tt(t i )=0, (3.5)

We introduce canonical momenta by considering varia-
tions in the action with only one of the extremes held
fixed, for instance,
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5I=fd x
az
ap

a az ar ax
at aj 'a(aj) aj

(3.7)

but in such a way that only classical trajectories are al-
lowed. ' The canonical momenta ~ and s, conjugated to
P and P, respectively, are given by

5I= f d x(~P+s(5), (3.6)

where 5P and 5$ denote variations at tz =t. In the case
of Lagrangian densities such as (2.1) we have

Dirac brackets might be different from zero. For exam-
ples see Ref. 16.

az a az az
av at aV 'a(a v)

' (4.1)

IV. CANONICAL QUANTIZATION
OF THE THEORY

As we have seen in Sec. II, even using the Wess-
Zumino gauge, the Lagrangian density (2.4) exhibits
second-order derivatives. Thus, according to Eqs. (3.8)
and (3.9) we introduce the following supermomenta:

By comparing these two last expressions, one obtains

ar a ar
ai atai "a (3.8)

(3.9)

ax
aV

(4.2)

Since V is been considered in the Wess-Zumino gauge, we
immediately infer that V and S also satisfy similar brack-
ets such as (2.11):

The next step is to define the canonical Hamiltonian.
This is done in the standard way, that is

H, = f d x(vrP+sP —X) . (3.10)

5Hc
~(

5Hc
5m(x)

' 5s(x)
5Hc . 5Hc

s x
5j(x)

&(x)=—
(3.1 1)

Let A [P,P, vr, s] be some dynamical functional quanti-
ty. The total time derivative of A is

One verifies that the canonical Hamiltonian is a function-
al of P, (t}, vr, and s. (These play the role of canonical vari-
ables at the present formalism. ) We can thus obtain the
Hamiltonian equations of motion

I v(z), S(z')J', =[5 (8)5 (8)—25 (8)88'
0 0

—25 (8)88'+488'8 8 ']

X5 (x—x'),

I V(z), V(z')I*, =0=IS(z),s(z')J' (4.3)

——

'(eo'a}b'av

——'(eo'a)aav,
4 4

(4.4)

s(x, e, e) =-'(ca+8 a) v ——'88(8 o'av) ——'e 8(eo'av)7 7 4 8 8

Using (2.4), we obtain, from the momentum definitions
(4.1) and (4.2),

11(x,e, e) = —~ V+,'(ea+ ea) V+-,'(e o "a+co"a)a, V

+-,'(8 o 'a)(eooav)+-,'(eo'a)(e o 'a)a, v

3 = f d x P+ . P+ m+ s . (3.12)
5P 5j 5m 5s —

—,'(eo a)(eo aV), (4.5)

Using the Hamilton equations of motion (3.11), we have where Vis in the Wess-Zumino gauge.
Relations (4.4) and (4.5} lead to the primary constraints

A =
I A, H, ),

where

5A 5Hc + 5A 5Hc
5P 5~ 5j 5s

5A 5Hc 5A 5Hc
57' 5P 5s

(3.13)

(3.14)

r, =5'(8)5'(e}n=o,

r,,=5'(8) e,lI ——'5'(e)(ao'), aaV =O,

r;=5'(8) e.n ——'5'(8)(ao'). aav =o,

PI( )x, ~( x) 3, =5 (x —x'),
0 0

IP(x),s(x')I, =5 (x—x') .
0 0

(3.15)

Other Poisson brackets such as IP, PI and I~,sI are
zero. If there are constraints involved, the corresponding

is the Poisson brackets of 3 and H, . For any two func-
tionals A and 8, the Poisson brackets will be defined
analogously to (3.14).

The fundamental nonvanishing Poisson brackets are

r,=5'(8)5'(e)(aooall —a o 'aa, V) =O,
(4.6I'=5 (8)5 (8)(acr 'aII+2ao' aa'V+ —', ao 'aV)=0,

r, =5'(e)5'(8)s=o, r;=5'(8)e.s=o,
r,,=5'(8)e,S=O, r,=eo'eS=O,

r', O=eo'Os —
—,'5 (8)5 (8}ao 'a V=0 .

Each one of these constraints has a specific meaning in
the component language. For example, I &=0 means
that the canonical momentum related to the component
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field D(x) is zero. I 2=0 is the usual constraint of the
fermionic momentum H&, and so on.

In order to look for secondary constraints we would
have to construct the primary Hamiltonian' and impose
the consistency condition that constraints do not evolve
in time. Alternatively, they can also be obtained directly
from the equations of motion. From the action (2.1) one
obtains

DDDD V=0 . (4.7)

Thus, the secondary constraints are

r„=n'(8)5'(e)aaa a v=o,
r„=n'(8)5'(8)aaa av=o,
I, =5 (8)5 (8)(o.~a) aaa„V=O,

r„.=5'(8)5'(e)(~~a).aaa„v= o,
r„=n'(8)n'(e)(a~'av'v+a~'aa, v)=o .

(4.8)

I » and I,2 are the equations of motion for the auxiliary
fields D(x) and D(x). I,3 and r, ~ are the Dirac equa-
tions of motion for the photino fields A,, and A, . (In the
higher-order formalism, these are constraints. ) Finally,
I &5 is the Maxwell equation for A

Constraints I 4, I 9, and I,5 are first class. They occur
I

because there is a residual gauge freedom in the theory.
The Wess-Zumino gauge does not completely fix the
gauge. We make the gauge choice

I i7=0o. OV=O,

r„=e~'ea, V=o .

(4.9)

These correspond, in components, to the radiation
gauge' (A =0 and V. A=O, including also A =0).

Altogether, with these three last constraints, we have
that constraints I,—I &8 are second class. This means
that if we construct the total Hamiltonian' and impose
the consistency condition that constraints do not evolve
in time, we will not obtain new constraints, just the
Lagrange multiplier superfields in terms of the dynamic
fields of the theory.

We now have to use all these constraints to construct
the Dirac brackets. This can be done iteratively. ' Par-
ticularly, we have chosen for these iterations the follow-
ing subsets of constraints: I &, I 6, I », I,2, I 2,, I 3 I 7,
I ... I;,, r„.; I „r„;r„,r„;r„r„;r', , r', ,

The calculation of Dirac brackets in superspace has
been exhaustively discussed in previous works. It is
just a matter of algebraic calculation to find out that the
nonvanishing Dirac brackets of the theory are

I V(z), 11(z') )
0 0

—5 (8)e 8' 5(e)ee'+ '(e—o'8)(e'cree') ——ii; + a;a
4

5 (x —x'),

I V(z), V(z')I, =i[5 (8)5 (8')ecr 8' —5 (8)5 (8')8'o. 8]5'(x—x'),
0 0

[II(z),II(z')I, =i(eo. 8' —8'o 8)5 (x—x'),
0 0

I v(z), s(z )I,=-, (e~'e)(e~ie ) —~,, + a, a,
1 1

5 (x—x'), (4.10)

I V(z), II(z')I, =[,'(ecr'8)(e—'cree')a;+25 (8)eo'cr ea; —25 (8)eo o'8'a;]5 (x—x'),
0 0

[ v( ), v( )ID, =(8 '8)(e ~ e ) ~, — a,a, 5'(x—
477

' ~ ~x —x'~

Ill(. ),S( )I,=-, (e~'e)(e Je) ~, — a,a, 5'(x —x ) .
1

x =x 4 4~ ' ' ~x —x'~

Since there are no ambiguity problems with ordering
operators in the right-hand side of the above relations,
one can finally obtain the canonical quantization of the
theory v~ith the usual prescription

~ ~ 1 1[A'(x), A J(x )],=i q'J+ a'ai-
0= 0 4' ~x —x'~

X5 (x—x'),
(4.12)

i (Dirac brackets)~(commutators) . (4.11) [A, (x),X.(x')], = —o .5 (x—x') .
0 0

The consistency of these results may be verified if one
writes V, V, II, and S in components. From the relations
(4.11) we obtain

Other commutators and anticommutators vanish. These
are exactly the relations which we would have obtained if
we had started with the action (2.1) written in component
fields and worked in the radiation gauge.
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V. CONCLUSION

We have applied the Dirac method for constrained sys-
tems to quantize the Abelian vector superfield in the
Wess-Zumino gauge. The quantization using the vector
superfield as a canonical variable leads to a natural exam-
ple of higher-order derivative formalism. The results we

have found are consistent when we go to component
fields.
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