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New perturbative approximation applied to a self-interacting scalar field theory
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A recently proposed new perturbation technique is applied to a A, (P2)'+~ self-interacting scalar
field theory in D-dimensional space-time. We calculate, to second order in powers of 5, not only
the two-point and the four-point Green's functions but also the (2+26)-point Green's function,
which can be defined in this approximation. After the renormalization procedures are carried out
to this order, we find that the theory is not fully nontrivial for D + 2.

I. INTRODUCTION II. RULES FOR THE 5 EXPANSION

A new perturbative method was proposed in a recent
series of papers by Bender et al. ' " The method intro-
duces an artificial perturbation parameter and expands
the theory with respect to it. A scalar polynomial field
theory (e.g. , A, P ) is written as A, (P )'+ and 5 is regarded
as the perturbation parameter. Following the rules in
Ref. 1, several theories are expanded successfully; a zero-
and a two-dimensional field theory, ' a two-dimensional
supersymmetric quantum field theory, and a scalar field
theory in arbitrary dimensions.

Since all physical parameters such as the coupling con-
stant and the mass need not be small in this expansion,
we have hope that it is a useful tool to solve the triviality
problem of A, (P )4 theory which cannot be studied in the
standard weak-coupling perturbation. Bender and Jones
already examined the problem using the 6 expansion and
had results that a k(P )D+ theory is nontrivial for D(4
and it is suggested to be a free theory for D ~ 4, which is
consistent with a common belief in A, (P )D. The purpose
of this paper is to examine A, (P )D+ theory from another
point of view in order to see whether the theory is trivial
and whether this new perturbation is useful to solve the
triviality problem. We calculate Green's functions to
second order of 5. We introduce (2+25)-point Green's
functions and define a corresponding coupling constant.
The renormalizations can be done using this coupling
constant. Contrary to a claim of Ref. 4, we find that the
theory is suggested to be trivial for all space-time dimen-
sions higher than two. It seems that this conclusion is
not directly applied to A, (P )D theory.

One disadvantage of this approach is that the diagram-
matic rules developed in Ref. 1 are complicated and we
are not able to know a priori how to calculate an arbi-
trary order in powers of 5; it is not shown in Ref. 1 how
to make calculations higher than 5 . Here we present
simpler. rules which makes any order calculations possible
and which does not require a provisional Lagrangian in-
troduced in Ref. 1. Other simpler rules were also pro-
posed recently in Ref. 3. Both our rules and those of Ref.
2 give the same results.

We consider the D-dimensional scalar field theory
defined by the Lagrangian

2

) (gy)2 y2 D( 2 Dy2)1+—smp kp

2 4
(2.1)

where p is a dimensional parameter introduced to make
A p dimensionless and where m p and kp are the bare mass
and the bare coupling constant, respectively. It should be
noted that A,o is the coupling constant of (2+25)-point
vertex. In order to do the 5 expansion, it is convenient to
divide (2.1) into two parts, unperturbative Xo and pertur-
bative ones LI.

(2.2)

p (2.3)

where

7?l —m p +App /2 (2.4)

Using the relation

n

sa,.
y lk=O ~ (2.5)

we rewrite Xt such as

y2k+2l

with (2.6)

D it2(e k 1 )(iz2
—D)kAp

4

When 6 is small, i.e., DI, can be regarded as a small "cou-
pling constant, " then we can make an ordinary perturba-
tion if k is an integer. Thus rules for calculating the n-

point Green's function
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1G'"'(x, ,x„.. . , x„)= + f d y, d y, . d y (0!TP(xi)P(x2) . P(x„),=o &'

+Dk Dk Dk [0'(yi )] ' [0'(y2 )1 [0 (yp )] ~0 ~ ~k =0 (2.7)

are given as the following steps.
Step 1. First, regard k ] k2 kp as integers with

the same value. Draw all diagrams contributing to 6'"'.
Then count an overall symmetry factor.

Step 2. Regard ki, kz, . . . , k as integers with k;&kj
for i&j. Apply ordinary diagrammatic perturbation (re-
gard Dk, Dk, . . . , Dk as small) and calculate G'"'.

1 2 p

Step 3. Regard k ] k2 ~ ~ k~ as continuous with

k;&k~ for i&j. Apply derivative operators D„and final-
I

ly set all k; as zero.
In order to see how these rules work, we show, as a

simple example, how to obtain the free energy up to
0 (5 ) in the zero-dimensional field theory given in Ref. 1,
where the partition function is

Dk(2k +2)!
22+2k(k + 1 )i

Dkl (k+ —,')
2r(, )

(2.10)

1

2

Dk Dk (2k, +2)!(2k2+2)!4'
k(+k2+2i=i 4 ' ' (21)!(k,+1—l)!(k2+1—1)!

max

1 D„D„[l(k, +k +—,')&m.

—r(k, +-', )r(k, +-', )],
(2.11)

1, give E, and E2, the contributions from Figs. 1(a) and
1(b), as

2 1+5

exp[ —x —x (x —1)] .-- i/7r
(2.8)

where lm, „=min(ki+1, kz+ I). The first factor —,
' on the

right-hand side of the first line of (2.11) is the overall
symmetry factor derived in step 1. In the second line of
(2.11), we have used the formula

max
The Lagrangian is written by

~(0) 2+D(0) 2k+2~ with D(0)—e 1 (2 9)
sa

k k=0 k

The diagrams of order 0 (5) and 0(5 ) contributing to
the energy E are given in Fig. 1. Note that the overall
symmetry factor of the diagram in Fig. 1(b) is —, since we

regard k, =k2 following step 1 of the rules. The Feyn-
man rules in step 2, which are explained in detail in Ref.

, 1(2l+1)I (a —l+2)I (P—1+2)
r(a+ p+-', )&~

I (a+2)l (P+2) I (a+ —', )I (P+ —,')

Step 3 leads to

5 ~k I (k+3/2)
2 21 (3/2)

k~0 g $2
= —f( —', )+ [g'( —', )+g'( —', )], (2.12)

$2
E2 = — [—,'itj'( —,

' )+—,'ll'( —,
' )+p( —', )], (2.13)

++1 Ioop5

(c)

where g(z) is the P function, g(z) = I '(z)/I (z). Then we
eventually have

6 5E =Ei+E2=
2 4 —,')—

2
[it(-,')+0'( —,')], (2.14)

&+1-I loops
1

II nes
(b)

oops
which agrees with the exact solution up to this order.
Likewise, we can obtain the Green's function at any or-
der in powers of 5 if we use the rules described here and if
we are careful and patient enough to accomplish lengthy
calculations.

III. SELF-INTERACTING SCALAR FIELD THEORY
FIG. 1. (a) The leading-order diagram contributing to the en-

ergy. The diagram consists of one vertex with k+1 loops. (b)
The 5 -order diagram contributing to the energy. The diagram
consists of two vertices with k& + 1 —I and k2+ 1 —I loops and
of 2l internal lines.

A. The (2k +2)-point Green's function

Let us calculate the (2+2k)-point Euclidean Green's
function up to order 5 . Here k is an arbitrary integer
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which we, however, regard as continuous in the later
stage. The diagrams we need are drawn in Fig. 2. Ac-
cording to steps 1 and 2 in the previous section, the
leading-order contribution G~~&

~

+ ' is easy to estimate:
2 k+2

(2k, +2)! k, —kG(2k+2! D [I (m)]
2 ' (k, —k)!

(3.1)
k k+(n-I)/2- )+1 (n+ -l) (2

At this stage, k, is assumed to be an integer with k, )k.
Io(m) is the loop integral given by

2k+2- n

dD 'q 1I (m)=
)D

—1
( 2+ 2)n+1/2 (3.2)

This is the divergent integral for n ~ [(D —2)/2] which
is regularized by an introduction of the ultraviolet cutoff
A. Following step 3, we have

FICx. 2. (a) The leading-order diagram contributing to the
(2+2k)-point Green's functions. The diagram has one vertex
with k&

—k loops. (b) The 5 -order diagram contributing to the
(2+2k)-point Green's functions. The diagram has two vertices
with k&

—k +(n —l) l2 and k2+ 1 —(n + l)/2 loops and I inter-
nal lines.

G(2k +2) g 25 2
2 Io(m )

k

g( —', )+P(2) —P(1 k)+L—1

+ —
I [P( —,

' )+P(2) —g(1 —k)+L] +g'( —', )+ t(!'(2)—g'(1 —k) I (3.3)

where

L =ln[2p Io(m)] . (3.4)

The next order contribution GIz!
+ '(p) is estimated from the diagram drawn in Fig. 2(b), where p is the external

momentum. It follows from steps 1 and 2 of the previous rules that

k&
—k+n/2 —1/2

2k+2 (2k +2)! (2k! +2)![Io(m)]
G,",", +"(p)= —,

'
k! k2 g k! —k+n/2 ll2-(2k+2 n)!n! —! 2 2 (k!—k+n/2 —1/2)!

(2k2+2)![Io(m)] ' J&(p )
X

2 ' (k2+1 n /2 —1/2)!—
(3.5)

where the sums over l and n must be taken under the constraint

l +n =even . (3.6)

Here some explanations of notation are necessary. First, l,. „ is given by

l„„„=min(2k2+2 n, 2k, +n —2—k) . (3.7)

It should be noted that we take l,„~~, since the factor

[(k, —k +n /2 —1/2)!(k2+1 —1/2 n l2)!] '=—[I (k, —k +n /2 —1/2+ 1)I (k2+1 1/2 n/2+ 1)]— —

in (3.5) vanishes when 1 )1,„. J(P) is the contribution from the multiple loop appearing in the middle between two
vertices of Fig. 2(b):
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After calculations according to step 3 of the rules, we have

J(p)=rr f (2~)

1

(2~) 5' ' p —g q,.
j=1

g; +I

where

f d x e '~ [I()(x;m)]', (3.8)

and

0 I7
~~

~
q

D
1~

2

e
~

2

dD iqx

I()(x;m) =
(2)r) q, +m

(3.9)

0 for n =0 or 2k+2,
p otherwise, (3.10)

G(2k+2)(
)

5
(g 2)2 ~ (2k +2).

(2) P 2 OP ~ (2k+2 )1 1

2k —1 —n /2+ I/2 nX g it)( —,
' )+P(2) —g 1 —k+ ———+L [Io(m)] " '+'

3 1 (1—k +n/2 —1/2) 2 2

2
—2+ n /2+ I /2 nX )t(( —', )+P(2)—

Q 2 ————+L
1 (2 —n /2 —1/2) 2 2 l! (3.1 1)

Taking the fact 1 —k+n/2 —l/2 1 and 2 —l/2 n/2(1 a—nd the relation g( —m)/I (
—m)=( —1) 'm! into ac-

count, we can rewrite (3.11) as

2 2k+2 (X)

G(2k+2)(
)

5
(g 2)2 y (2k +2). y 2k+( 3

2 „0 (2k+2 —n)!n!
1 z

J1(P)—2 ! k —1+ ![—I()(m)]
2 2

X [1—51 (5, +5„k )]—2" 'k!S[ I (m)] " —'J (p ), (3.12)

where we use the notation

S =(tt( —', )+1+L . (3.13)

G(P+2N5) N55k (2k +2)!p—:e
(2k +2—n)!n!

X (0~$"(p)P + "(0)lo& I„

Setting k=Q and k= 1 in (3.12), we have the two-point
and the four-point Green's functions (by adding the
zeroth-order contribution for the two-point function), re-
spectively. Now it should be emphasized that an intro-
duction of noninteger vertex is possible and is natural in
our approximation. We can define (2+2N5)-point
Green's functions (N=integer) 1) such as

Z 1m 2 —[G(2)(p2 —Q)] 1

Z
—1 —55' G(2+25)( 2 Q)/ 2+(2 —D)5P

Z —1 —N55g(N5) —G(2+2N5)( 2 0)/ 2+(2—D)N5
p p

Z
—25'(4) = G(4)( ~=0)/&4 —D

(3.15)

(3.16)

(3.17)

(3.18)

The wave-function renormalization constant Z is defined
by

B. The renormalization

From the Green's function G( "+ '(p =0), we define
the renormalized parameter, the mass mz, the (2+25)-
vertex coupling constant A,z, the (2+2N5)-vertex cou-
pling constant A,z ', and the four-point vertex coupling
constant kz ' as follows:

where p is the total momentum of n external lines.

(3.14) Z '=1+d [G' '(p )] '/dp
p =0

Some calculations shown in Appendix A lead to

(3.19)

Z 'm~ =m + —A.op S+ [S +P'( ,') —1]——I, (m)
S+Io(m)F, (0)

4 I()(m)
(3.20)
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XQ
Z ' sA& = S+—go[S +f'( —', )

—1]+—
Aof

—S +S[P(—)+ln2+1+g(1)]+/'(1)j

I,(m)——k()p S+Io(m)F, (0)
4 Io(m)

(3.21)

—1 —N5 (N6)Z ' ~sA~g~s'= S+—Ao[S~+P'( —', )
—1]+—NAo{ —S +S[Q(—', )+1 2+1+/(l)]+/'(1)I

r, (m) S+r,(m)F, (0)
om

Z ArR
—2 (4) (1+6S)+—

A,(gc S+—A,ou F~(0),
I,(m)

Io(m) Io(m) 4

where

dF)
Z '=1 — (A~ ) Io(m)

4 dP p&=Q

and

F&(0)=f dDx f dt [(1—&zt)ln(1 zt)+tz]—,
Q t 2

dF,
fd xx Vz f dt ln(1 zt), —

dp 2
Q

2D Q

F (0)=f d f dt
31n(1 zt) +(4 ——2z )

1 —t

o tV1 t—1 —t2

with

z =Io(x;m)/Io(m) .

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

Our results of mR, A,R', and Z agree with those of Ref. 4. Taking into account of the A dependences of F„dF, /dp,
and Fz which are examined in Appendix B, we write the most divergent parts of (3.20)—(3.32) as

5 5
m~ =m +—A.(gc S+ A.(gc [S +P'( —', ) —1]+0 5 I,(m)

S
o(m)

(3.29)

XQ S+—A,o(
—S +2S[@(—,')+ln2+1+@(1)]+2@'(1)+f'(—,') —1]+0 5I )(m)

S
Io(m)

(3.30)

(N5) M, (m)'=A~+ Ao(N —1) I
—S—+S[Q(—,') 1+2n+1 f+(1)] Q+'( l lI +0 S

Io m
(3.31)

A,pp 5I, (m)
(1+5S)+0 SF2

Io(m) Io m
(3.32)

Now we show that the theory can be renormalized in terms of mR and kR. We begin by writing the bare coupling
constant A,Q as

2A.R

S„+5(—S~ /2+S~ [g( —,
' )+ln2+ 1+$(1)]+1('(1)+Q'(—', )/2 —1/2)

2XR 1+M+ 1 — [P( —,')+ltj(1)+1+ln2]+0
SR SR SR

which can be derived from (3.30) by noting S =Sz +0(6I, /Io ), where

Sz =f( ', )+ 1+in[2@ —Io(mz )] .

(3.33)

(3.34)
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Substituting (3.33) into (3.29), we have

1
ni 2 =m~2 —5A a(M2+ 52K~ p —S~ +P( —,')+P(1)+1+ln2+0

R
(3.35)

Using (3.33) and (3.35}into (3.31), we obtain

5(l)l' —1)ii( t
—Sz +S [itj( —,

' )+ln2+ 1+11(1)]+/'( l ) I 5I
XR'~"=XR + +0 S

Si(+5( —Sz /2+ST [(tt( —,
' )+ln2+ I+/(1)]+/'(1)+1l'( —', )/2 —1/2} Io (3.36)

We can eliminate the divergences from (3.36) because the
most divergent terms SR appear in both numerator and
denominator on the right-hand side of (3.36). We have a
finite X[R~":

}((~ s) =Xi(+2(X—l)l(i( =(2l)l' —l l}(i(+0(l/Si() .

Thus when we choose the bare parameters as (3.33) and
(3.35), it seems that we finish the renormalization pro-
gram successfully up to 0(5 ) and that we get an evi-
dence that the theory is nontrivial. However, this state-
ment is not completely correct. To obtain (3.37), we im-
plicitly assume 5SR &&1 which contradicts with 5~0.
Usually we mean by the perturbation with respect to 5
that 5 must be smaller than all other quantities, e.g. , 1/A
or I/Si(. If 5 (( I /S&, then (3.37) becomes

X(,~s) =X, +5m„(X —1)[—S, +q(-', )+ln2

+ 1+it((1)]+0
SR

(3.38)

We cannot eliminate the cutoff-dependent term SR from
(3.38). One may suspect that the theory cannot be renor-
malized in this way. However, we think that this is not
so but this is a signal of the triviality, because the right-
hand side of (3.38}is suggested to have the form

g(N5) ~R
(3.39)I+5(X—1)[Sit —it){—,') —ln2 —1 f(1)]—

i.e., which looks like kz '~0 as A~~. In fact the
form of (3.39) can be guessed from the consideration of
A, '2('. Eq. (3.32) reads, by using (3.33) and (3.35),

IV. CONCLUDING REMARKS

Let us summarize our conclusions with some com-
ments.

(1) The self-interacting scalar A, (P )D theory can be
renormalized [at least up to 0(5 )] in terms of mii and
A,R, the renormalized coupling constant of 2+25 vertex.

(2) A,(P )D+ is not fully nontrivial in the sense that A, (~'

[and AP( )(N ) 1)]—+0 as A~ao. To be more precise,
' is nontrivial when the limit A —+ ~ is taken first be-

fore 5—+0 and it looks trivial when 5~0 is taken before
the limit A —+ ~. On the other hand, A, R becomes always
zero for A~ ~. This holds any dimensions higher than
two and perhaps lower than 0 (1/5).

(3) Comparing A, i( or A, P(
' with A, z~', we note that the

cuto6' A dependences are quite different. For 5~1, A.R
approaches the four-point vertex coupling. However, A.R
has a totally different A behavior from that of A.R'' even
when 5~1. This is because our calculations are only up
to 0(5 ) though the higher-order corrections to A, i( be-
come important for 5~1. Namely, effects of higher-
order terms are significant and cannot be ignored when
we study the triviality problem of field theory.

(4) The previous statement means that our conclusion
(2) does not necessarily imply that A, ((t) )22 is trivial. In
fact it is known to be nontrivial for D=2,3. Thus, we are
led to a claim that the 5-expansion method is not a useful
tool to get an insight into the triviality problem of A, (()| )D
theory.

APPENDIX A

Here we show how to derive (3.20)—(3.23) from
G' "'(p) given by (3.3) and (3.12). Since the sums over l
and n in G((2)+ "'(p) should be taken under the constraint
(3.6); l +n=even, it is convenient to write G(2) "'(p) as
G,'2+2"'(p} or G',2d+d "'(p) when both l and n are even or
odd, respectively. In (3.12), we replace l and n with 2l
and 2n (2l + 1 and 2n + 1) for even (odd) l and n:

(4) 2kRP

Io(m, )
'+5, (3.40)

G(2k+2)(p) 52(/~2)22k 2k)S[ I (~)] k 1J (p )

+G(2k+2)( )+G(2k+2)( )even I odd

which vanishes as A~ ~. where
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g(2k +2) (p) /l22k
—4(g 2)2[ I (m )]

—k +1

2k +2 I (k +2/ —1) 8(n +/ —l, k+/ —n) f d x e '1'"(4z)'[1—/5&)(/'5„o+b„k, )]I=1 n =0
and

k

( )= —
( ) [ I (m—)] "+'g g (, / —

) d
—' (4)+

.2" +1. I (2/+2)

8 (a, /2) is the I3 function; 8 (a, b) = I (a)I (b)/I (a +b) whose integral representation is given by
1

B(a,b)= dss' '(1 —s) ' for a, b )0 .
0

Using this and the relations
k+1 2k +2 ~2n —1 [(1+~)2+2k+(1 ~)2+2k]

2/l 2
n=0

and
k

[(1+~)2+2k (1 g)2+2k]
2n +1 2X

we can write (A2) and (A3) as

g(2k+2)(0) g22k —5(g 2)2[ I ( )]
—k+1 y +2/

even oP' o

(A2)

5

(A3)

(A4)

(A5)

(A6)

f ds $1 —2(1 s)k+1 1 1+
0 1 —$

1/2 2+ 2k

1/2 2+ 2k

1 —s

k

+48(k —1)l (3+2k) g " f dDx z
1

I (2k + 3 2n )I'—(2n + 1 )

g(2k+2)(()) g22k —5(g 2)2[ I (m)]
—k+1

x 4z'

(A7)

1/2

X
r(k +2/) 'd 1 )(1 /k+t —1—d$$ (1 s)

, I (2/+ I) o S
1+

1 —s

1/2 2+ 2k

1 —$

1/2 2+ 2k

X f d x(4z)'+'
(A8)

where 0(x) is the step function. We have written these expressions at p =0 for simplicity. It is also possible to give the
Green's function at p&0, which, however, needs longer expressions.

To get the twa-point Green's function, we take k=0 in (A7) and (AS). Now the integration over s in (A7) can be
dane by the use of (A4). Then we have to sum the following over /:

2 I (/ —1), " 4&7rI (/ —1)
2/(2/ —1) I (2/ —2) &~ /I (/+1/2)

4&~r(/+1), , &
—/.„"r(/+1)

o (/+2)l (/+5/2) "
( ) I (/+5/2) (A9)

where the first equality follows from I (2/ —2) =2 ' I (/ —1)1 (/ —
—,
' )/&~ and the second one from shifting /~/+2.

The sum (A9) is given in terms of the hypergeometric function

(A9)=, f dzzF(1, 1,—', ;z)

z V 1 —t 1 Vl t-=8f dzz f dt = —8 f dt [ln(1 —tz)+tz],
o o 1 —tz o

where the integral representation of the hypergeometric function has been used. Therefore (A7) becomes

(A10)
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Q26,'„'„(0)= (Aut2 ) Io(m) f d x f dt —[ln(1 —tz)+tz] .
0

Similarly we have

$2
6',dd(0)= — (kop ) Io(m) f d xv'z f dt ln(l —tz) .0 0

0 i

(A 1 1)

(A12)

APPENDIX B

We examine the cutoIf A dependences of F, (0),
dFi Id@ ~, , and F2(0) defined by (3.25), (3.26), and+2 pp

(3.27), respectively. We begin by noticing
D/2 —1

1Io(x; m) =
(2'�)

(81)Ki Dy2(mr)

where r =(x )" and K (x) is the modified Bessel func-
tion of order v. I(x;m) has an asymptotic behavior as
r~0:

r2 —
D(47r)

—D/2 for D )
—In(mr)/2' for D =2 . (82)

The cutoff A is used to regularize the divergent integrals
such that the integral domain of r is restricted by
~ & r ) 1/A.

Expanding the logarithm ln(1 zt) = —g—,", i (zt)" /n
and using (A4), we can rewrite F, (0) as

Gathering (3.3), (Al) [(Al 1), (A12)], and the zeroth-order
contribution m, we can obtain G' '(0). Then Eq.
(3.20) follows from [6' '(0)] '. Note J2(0)=I i(m).
There are similar arguments used to derive A,~, A, ~ ', and

from e "6' + "'(0)~& o, e "G'.2+ "'(0)~k 0 and
6'4'(0).

(
—1)~r(g)r(', )

F, (0)=— d x dg
2 r & ized a+i~ sin(~g)1 (g+ 3, )

(+ 1 (+ 1/2

/+1

where u is a real number with 0 & o: & 1. In Ref. 6 we can
find the condition under which transformation from (83)
to (84) is justified. We now evaluate the x integral in (84)
which can be written as

D/2
d x z

[I,(m)]'I (D/2)

X f dr r '[Io(x;m)]2 . (85)
1/A

Since we are interested in an asymptotic A behavior, it is
sufficient to use (82) instead of (81) if there is no infrared
divergence. For D) 2, (85) becomes

D/2
1x z

(477) I (m)

~2v(D —2) —D DX for v~
2v(D —2) D—2(D —2)

(86)
When D=2, (85) is given by

r(n)r( —', )

F,(0)=f d x g
n +1/2+'

n+1 n

const
d xz

m Ipm
(87)

(83) here we have used (82) and

The sum over n in (Bl) can be expressed as a complex in-

tegral by the Sommerfeld-Watson transform:

Io(x;m)~e ™(2vrmr) '~ 2

for r ~~. A substitution of (86) or (87) into (84) gives

(
—1)'I (g)r(=,') g2g+ 2 g2g+ i

F, (0)= dg
ADr(D/2) ~+i sin(sr')l (g+ —') (g+ 1)[2((D —2)+D —4] g(2$(D —2)—2)

for D )2, (88)

( 1)kr(g) const X [Io(m)] ~ const X [Io(m)]
F, (0)= d( +.+; sin(~g) r(g+-,' ) /+1

where

g=AD-2/[(4~)D"I, (m)] .

Note that g-1 when m ((A.
In the case of D=4, (88) is written by

2 . (
—1 )~r(g)r( ) g2g+2 g2(+1

F, (0)= dg —. +
4A4 a+i sin(erg)I (g+ —,

' )g g+ 1

for D =2, (89)

(810)
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Since the integrand has poles at (=1,2,3, . . . in the complex g plane, the above integral reduces to the sum of these
residues (we can exclude the pole at g= —,

' by taking I ) o, ) —,
' ):

Fi(0) =
2A' „

2W4

g2n +1

n ——'
2

I ( —')I'(n) g2n+2

I (n + ,' )n —n+ I

I ( —', )I (n+1) g2 +4

I (n + ,' )(—n + I ) n +2
g2n +3

n+ —,
'

I —' I n+I '
2 2

2

f dkof dpi 4—Sf deaf dt's F(11 2 kf).

F, (0)= f dt ( I —t(2)in(1 rg2)—
2A'

rg2+ tg l—n(1 —t(2)

1+3/t g

I 3/r g—+ t 3~2$2In

for D=4.
(811)

Making use of the integral representation of the hyper-
geometric function and carrying out g„go integrations,
we have

the similar arguments and we eventually obtain, when
g-l,

r

const/A for D & 2,
F)(0)= '

const/[m ln (A/M)] for D =2 .
(812)

Likewise we can see the A dependences of
dF&(p)/dp ~ 2 o and F2(0). We, however, do not repeat

p =0
the details of derivations and present here results only:

dF, (0) const/A + for D )2,
(813)

const/[m ln (A/m)] for D =2,

When g-l, it comes from the above expression that
F&(0)=const/A". For other dimensions, we can follow

const/A for D )2,
F2(0)= '

const/[m In (A/m)] for D =2 . (814)
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