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We discuss the most general solution describing the collision of plane gravitational waves with
constant polarization. Among these solutions there is an infinite-dimensional family of metrics free
of curvature singularities and analytically extendable across the “focusing” hypersurface. These
regular solutions describe collisions between two incoming plane waves with different amplitudes
for which u-v symmetry is broken. Boundary conditions on the null hypersurfaces u =0, v =0 are
discussed and it is shown that any solution describing the scattering of plane gravitational waves
with constant polarization has to include at least two solitary terms each of which stabilizes the be-
havior of the gravitational field on the null boundaries.

I. INTRODUCTION

During the last few years there has been a renewed
considerable interest in the solutions of Einstein’s equa-
tions describing collisions between plane gravitational
waves. One of the main features of these solutions is the
development of a curvature singularity in the interaction
region. Recently, however, a few examples were found
which do not result in a curvature singularity after the
collision.’? These solutions have been obtained mainly
by using either analogy with axisymmetric spacetimes or
the inverse-scattering techniques.>*

In this paper we develop a new approach to construct
solutions and to study the problem of collision between
plane gravitational waves with constant polarization.
This approach is based on the similarity between space-
times produced by the collision between plane gravita-
tional waves and that of inhomogeneous cosmological
models. This enables us to apply results, accumulated
from the studies of mathematical cosmology by various
authors during last two decades, to the problem of
plane-wave scattering in general relativity.

Since considerable effort has already been devoted to
the study of inhomogeneous vacuum cosmological mod-
els, the approach developed in this paper becomes a
powerful tool to get a new insight and resolve in fact the
two basic problems related to the collision of plane gravi-
tational waves. These problems are (1) the study of the
most general solution of Einstein’s vacuum field equa-
tions describing a spacetime with two spacelike commut-
ing Killing vectors which verifies the proper boundary
conditions imposed by the physics of collision of two
plane gravitational waves with constant polarization and
(2) determination of the most general family of solutions
among these mentioned in (1) that fail to develop a curva-
ture singularity on the “focusing” hypersurface, and their
analytic extension.

An essential new feature to our approach is that it en-
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ables us to isolate those terms in the general solution
which contribute to the development of the curvature
singularity in the interaction region. This allows one to
construct models for which the avoidance or evolution of
the singularity depends on the relation between the am-
plitudes of the two incoming plane waves. In Sec. II we
discuss the behavior of the gravitational field in the in-
teraction region near the “focusing” hypersurface. In
Sec. III the boundary conditions on the null hypersur-
faces are considered.

II. THE INTERACTION REGION
IN CANONICAL COORDINATES

We consider the metric describing the interaction re-
gion produced by the collision between plane gravitation-
al waves with constant polarization in the form

ds*=efdu dv+G(ePdx®+e Pdy?), u>0, v>0, (1)

where F, p, and G depend on the null coordinates # and v
alone. '

It follows from Einstein’s vacuum field equations that
the transitivity surface area G has to satisfy the classical
wave equation

G,, =0 @)

and the solution of this equation relevant to the problem
of colliding waves might be initially taken in the form*

G=a(u)+b(w)=1—(au)"—(Bv)", (3)
where
alu)=5—(au)", blv)=1+—(Bv)". (4)

Here a and B are arbitrary positive constants and n and
m are determined by boundary conditions.

In order to interpret the spacetime defined by Egs.
(1)-(4) as the interaction region which results in the col-
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lision of two gravitational plane waves one has to impose
proper boundary conditions on the null hypersurfaces
u =0 and v =0. On these hypersurfaces one matches the
metric given by (1) to those with higher exactly plane
symmetries which describe incoming pure advanced and
retarded plane waves.’

We will first study the evolution of the gravitational
field near the “focusing” hypersurface

1=(au)"+(Bv)", (5

and return to the problem of null boundary conditions in
Sec. III.

Along the lines of general singularity theorems®” pre-
dicting one or another kind of singularity to be evolved in
the interaction region, it is usually believed that the
spacetime resulting in the collision of plane gravitational
waves is inextendable across the focusing hypersurface.
Recently, however, a few ‘“degenerate” examples of solu-
tions were constructed in which the curvature singularity
does not evolve in the interaction region.>>® Two of
these solutions have been shown to be extendable.® In
what follows we will show that there exists an infinite-
dimensional family of solutions describing collisions be-
tween two plane gravitational waves, regular on the hy-
persurface 1=(au)"+(Bv)" and admitting an analytic
extension across it.

To study the behavior of the gravitational field in the
interaction region u >0, v >0 we have found it con-
venient to use canonical coordinates ¢ and z, rather than
the null ones. We define these coordinates as

t=a(u)+bw)=1—(au)"—(Bv)",

(6)
z=a(u)—bw)=(Pv)"—(au)” .
The line element (1) then takes the form
ds*=e/(—dt*+dz?)+t(ePdx?®+e Pdy?) , @)

where f and p are treated as functions of ¢ and z.
The Einstein vacuum field equations now take a very
simple form:

. 1 Y "

P+7P—p =0, (8)
'___ 1 t - 2 ,2

f—»2—t+5(p +p'°), » (9a)
Sf'=twp’, (9b)

where an overdot denotes d/9¢ and a prime denotes d/9z.

It follows from Egs. (8) and (9) that the entire dynamics
of the gravitational field in the interaction region is deter-
mined by the single “transversal” degree of freedom p.

In the new coordinates the “focusing” hypersurface
1=(au )"+ (Bv)™ corresponds to t =0. The hypersurface
u =0 corresponds to t = —z + 1 whereas the hypersurface
v =0 corresponds to t =z +1 (see Fig. 1).

To understand the evolution of the gravitational field
near the focusing hypersurface =0 it is important to
clarify the behavior of different solutions of Eq. (8).
These solutions in fact were studied during the last two
decades in the cosmological context by various au-
thors.’ !¢ Although one might write the general solution

of Eq. (8) in terms of a line integral, it is instructive to
sort out different terms in the following form:

p=kIn(t)+L{ A4, cos[o(z+zy)Jolwt)}
+L{B cos[w(z+zy)]Ny(wt)}
z+z;

— 3 d;arccosh ra (10)

Here L{ } stands for arbitrary linear combinations of the
terms in curly brackets including terms of the form

fomecos[w(z—on)]No(cot o , v

® (11)
fo A cos[o(z +2zy)y(wt)dw

and Jy(wt) and Ny(wt) are Bessel and Neumann func-

tions of zero order, respectively.

Each term in the solution given by Eq. (10) differs in its
behavior when ¢ approaches 01. The first term in Eq.
(10) can be thought as producing a homogeneous expan-
sion and is mainly “responsible” for the development of a
curvature singularity at t—07. The second term induces
regular behavior, whereas the third one also contributes
to the divergence of the curvature at t—0" due to the
“bad” behavior of the Neumann functions near zero.
This term is sometimes referred to as chaotic.!”> The last
term in the expansion (10) is composed of the so-called
gravitational solitons and was studied in the context of
inhomogeneous cosmological models quite recent-
ly.127 1416 golitons are singled out since they are not
decomposible into Fourier-Bessel integrals. The contri-
bution of the solitary terms to the divergence of the cur-
vature near t—07" is similar to that of homogeneous
terms.

One can further show that the curvature invariant
C=C(,,B},3C"‘B”{5 behaves at t —0" as!®!?

11 . 2
efc“zzF—F k+ 3d;+L{B,sinfw(z+z,)1} | ,

(12)

where 3d; is a sum over soliton amplitudes.

Behavior similar to this was already discussed by Mon-
crief.'° However, in the case of inhomogeneous vacuum
Gowdy universes studied by Berger’ and Moncrief'® the
soliton terms were excluded by the restrictions posed by
T3XR topology. It will be shown later that these terms
prove to be crucial in the problem of collision of plane

"
1= @us’+ (pv)

a b

FIG. 1. Interaction region in (a) (u#,v) coordinates and (b)
(t,z) coordinates.
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gravitational waves. Using Eq. (12) and the properties of
the metric function f given by Egs. (9) it can be shown
that the following solutions will fail to develop curvature
singularities at t —07:

z+z;
p,=k In(t)— ¥ d;arccosh ;
+L{A,cos[o(z+zy)]/y(wt)} (13)
provided
k+>d,=+1. (14)

We would like to stress here that when 3 d; =0, the
evolution of the singularity depends only on the homo-
geneous “Kasner” term? k In(z). This corresponds to the
situation when either there are no solitonic terms in the
general solution (10) or the solitons appear in pairs as dis-
cussed in Ref. 16. However, for the case 3 d;5£0
(significance of which we will discuss below) the
avoidance of the singularity is determined by the
difference between the physical structure of incoming
plane waves.

One may further show that these solutions are extendi-
ble across the =0 hypersurface. To extend the solutions
given by Egs. (9), (13), and (14) we proceed along the
lines of the work of Moncrief:!° the metric for regular
solutions can be written as

ds*=e/(—dt?+dz?)+1t%ePdx?+e Pdy? (15)
and
p=p,—In(t)
=L{ A cos[a(z+zy)]/o(wt)}
— 3 dIn{z+z+[(z+z)*—*]%} . (16)

The function f can then be expressed as
2

~ 1 p:¢
f(t,z)=p(t,z)+5f0dss

op(s,z)
ds

2
4 | 9Bls,2) gz’z’ } t>0.
17)

When condition (14) holds the functions f and p satisfy
lim [f(t,2)—p(t,z)]= lim [f(¢,z)—p(t,2)]
t—0t t—ot
=0. (18)

Introducing a pair of new coordinates

t'=t2, x'=x—In(t) (19a)

or

t"=t%, x"=x-+In(t) (19b)

one obtains, similarly to Moncrief,!© two inequivalent ex-
tensions of the metric (15) defined now for all values of
(¢',x') and (¢t",x")E(—1,1)X(— 00,00 ). Here we have
supposed min|z;|=1.

III. BOUNDARY CONDITIONS

We will now show that among the solutions given by
Egs. (13), (14), and (9) there is an infinite family of metrics
which describe scattering of plane gravitational waves
provided there are at least two solitonic terms in Eq. (13).

The solution of the Einstein’s vacuum field equations,
which describes the spacetime with two spacelike com-
muting Killing vectors, can be interpreted as the interac-
tion region produced after the collision of two gravita-
tional plane waves only if certain boundary conditions on
the null hypersurfaces u =0 and v =0 are satisfied.-

Without any loss of generality we consider the follow-
ing form for the solution of Eq. (8):

z+1 +d,arccosh 1=z

p =d,arccosh (20)

It can be shown that other terms of the solution given by
Eq. (13) such as the homogeneous term k In(#) and the
linear combination of the terms A cos(wz)Jy(wt) are
redundant for the discussion of the boundary conditions
on the null hypersurfaces # =0 and v =0.

One can also show that inclusion of more solitary
terms, unless their poles z; (origins on the ¢ axis) are
within the interaction region bounded by t=—z+1 and

=z+1 (see Fig. 1), does not change the behavior of
gravitational field relevant for the boundary conditions
on the ¥ =0 and v =0 hypersurfaces. If, however, the
solution for the function p contains another pair of soli-
tons with poles (a, —a) such that a < 1, one should define
the interaction region to be bounded by t=—z+a and

=z +a hypersurfaces and rescale accordingly Egs. (3)

" and (4).

The appropriate boundary conditions for the colliding
wave problem were formulated by O’Brien and Synge!®
(see also Ref. 4). In fact, with the chosen coordinate
gauge given by Eqgs. (3) and (4) one has to verify only the
continuity of the function F(u,v) of Eq. (1). The relation
between this function and the function f(u,v) is given by

eF(“’U)=~4tutvef(u’U) . (21)

All other boundary conditions are automatically verified.

Since ¢, and ¢, of Eq. (21) tend to zero as O(u" ') and
O(v™~!) on the null boundaries ¥ =0 and v =0, respec-
tively, the function e/ **’ must diverge as u' " and v' ™"
on these hypersurfaces to ensure the smooth matching
between the interaction and the extended precollision re-
gions. This divergence in the function e/'*” comes
“surprisingly” from the solitonic terms.

The first soliton

z+1

darccosh

contributes to the function f(u,v) via Egs. (9) the follow-
ing term on v =0:

—1d3mn[(z+1)*—¢*]= —1d?In(v™)+bounded terms ,

(22)
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which stabilizes the behavior of the gravitational field as
v—0 provided

d?=2—2/m . (23)
By the same token the second soliton

z—1

d,arccosh

contributes, as u —0,
—%d%ln(u”) , (24)

which smoothes the behavior of the field on ¥ =0 hyper-
surface, provided

d3=2—2/n . ' (25)

As we have already mentioned, we have checked all
other possible contributions of p, [Eq. (13)] to the func-
tion f(u,v) and found them to be bounded on the boun-
daries ¥ =0 and v =0. Consequently, we conclude that
the presence of at least two solitonic terms in the
transversal degree of freedom p are necessary to ensure
the verification of the boundary conditions relevant to the
colliding wave problem.

It is important to note in this context that each soliton
acts on a different null boundary thus providing a balanc-
ing mechanism for ensuring the proper boundary condi-

tions to be satisfied. The understanding of this mecha-
nism combined with our previous conclusions related to
the evolution of curvature singularity allows one to con-
struct regular solutions describing collisions between
plane gravitational waves which do not preserve the usual
(u-v) symmetry. The simplest such regular solution is
given by Egs. (20), (23), and (25) along with

ef(z,t):(ﬂl+'u2)2dld2(m)2df—qd1(y2)2d§—qd2
X (12— ) 2= p2) " (26)
where
g=d,+d,=+1,
w=1—z+[(1—z)*—1¢2]'"2, 27)

p=z+1+[(1+z)?—2]"72.

The results of the study of this solution and the relation
between the development of the curvature singularity and
the energy content of the incoming plane waves will be
presented elsewhere.
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