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Two-dimensional quantum cosmology is studied to clarify the issue associated with the arrow of
time. We introduce a density-matrix description for the minisuperspace by projecting out nonzero
modes of the wave function of the whole Universe. Thermodynamic time is determined by the
direction in which the quantum coherence of minisuperspace variables decreases. This arrow of
time is compared with that of dynamical time which is determined by the semiclassical approxima-
tion for the density matrix. We reconfirm that the global time cannot properly be defined for the
thermodynamic times as well as for the dynamical time in a closed universe. The arrows of dynami-
cal and thermodynamic times coincide with the cosmological arrow of time.

I. INTRODUCTION

The singularity theorem' says that the classical con-
cept of space-time cannot be unlimitedly applicable to the
vicinity of the big bang, whereas the present Universe is
fairly well described by the classical theory. At present
there seems to be no quantum correlation which, if it ex-
ists, drastically destroys the consistency in the deter-
ministic interpretation of cosmic observations. Thus,
there must be a transition from an era which is fully
quantum mechanical to an era which has no quantum
coherence in the course of cosmological evolution. In
this paper, we call this direction from the quantum to the
classical era the thermodynamic arrow of time. Precise-
ly, this thermodynamic time is measured by the quantum
coherence width of the density matrix. ' For the case of
four-dimensional Aat spage-time, as is studied in Ref. 3,
the width turns out to be inversely proportional to the
cosmic scale factor. This shows that the gradual transi-
tion to a classical era occurs due to cosmic expansion. In
this paper we examine gravitation in two space-time di-
mensions (2D) (Ref. 4). Using this model, we previously
studied how to extract dynamical time variables which
assure the positive definiteness of the probability density
of the Wheeler-DeWitt (WD) wave function. Here we
do not treat the wave function but the density matrix.
The latter seems more suitable than the former for con-
siderations of the thermodynamic arrow of time. Corre-
sponding to this change of strategy, dynamical time is
defined also in a different form from Ref. 5. The merit of
the 2D model is that it enables us to estimate the quan-
tum coherence of minisuperspace in every case: open,
Oat, and closed universes. It is also possible to study the
relationship between the thermodynamic arrow of time
and the dynamical one.

The outline of this paper is as follows. In Sec. II, the
density matrix of minisuperspace is constructed in the

path-integral form from the inAuence functional method.
Then the density matrix is evaluated by the steepest-
descent method and the direction of the thermodynamic
time is discussed. Subsequently in Sec. III, that direction
is compared with that of dynamical time t which is deter-
mined from a semiclassical solution of the density matrix.
The time t is written in terms of gravitational variables
and no additional clock variable is needed. Section IV is
devoted to discussions. The Appendix gives the deriva-
tion of the inAuence functional which is used in Sec. II.

II. DENSITY MATRIX OF MINISUPKRSPACE

where g is a coupling constant to the scalar curvature. In
this paper we use the following parametrization for the
metric:

g, =a diag(X, —1), (2.3)

where N is the lapse function which represents the arbi-
trariness in the time parametrization. The shift function

We consider a 2D space-time model universe. Beyond
their own meaning, 2D models in particle physics are the
guideposts to the corresponding theories in four dimen-
sions. In the case of the minisuperspace model, its essen-
tial features seem to be involved in the 2D model. The
gravitational action in 2D reads

Ss =
—,
' f d x&—g b(R —2A)+surface term, (2.1)

where R is a scalar curvature and A is a cosmological
constant. The variable b is a scalar field, which yields the
nontrivial contribution of 2D pure gravity to the equa-
tion of motion. The gravitational coupling constant
I/(16mG) is included in b unless it is explicitly needed.
The matter action is given by

(2.2)
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S =—' fd xN(N P —P' ) (2.5)

and terms which break the conformal invariance are
treated as perturbations:

S,„,= —
—,
' fd'x Nh P', (2.6)

is already set to be zero. The above actions become, for
this parametrization (y:—lna, an overdot denotes 8/Bx,
a prime denotes 8/Bx '),

r
t

Sg= f d x — g—+b'(Ng'+N') Na—bA, (2.4)
b .

ed in Sec. I. Since the subsystem cannot be described by
a superposition of pure states, we have to introduce a
density matrix description. Just for simplicity of calcula-
tion in this paper, we take into account only the nonzero
modes of the scalar matter field P. That is, we consider
the back reaction of the spatial fluctuation of P into
homogeneous space-time. This rejects just what we actu-
ally observed in our Universe.

Using the WD wave function 4, the total density ma-
trix of the whole Universe is given by

~[a+.b+.O+,a,b, O ]

where
=4( a+, b+, P +)+*( a, b, g ) . (2.8)

h=m a —2g
N"
N N

The above-mentioned situation of realistic observation
implies that we should treat the reduced density matrix p
defined by

(2.7)

Our basic strategy is to construct the effective dynam-
ics of minisuperspace variables (the zero modes of a, b,
and qr) by projecting out all the inhomogeneous modes.
Even if the total wave function of the Universe ideally ex-
ists, it will not directly relate to our actual observables.
Thus, the inconsistency in the probabilistic interpretation
of the wave function of the Universe does not worry us
seriously. For an experimentally accessible argument, we
switch to the subdynamics of minisuperspace as motivat-

I

p[a+, b+;a, b ]

=

fdic

f dP p[a, b P; a, b, P ]

X5($+—P ) . (2.9)

Equation (2.9) is evaluated in the Appendix using the in-
in formalism of quantum field theory. The result be-
comes

b

p[a+, b+,a, b ]=f da'+ fda' fdb+ f db' f +2)a+ f X)a f +2)b+f X)b p[a'+, b+,'a —,b —]
a '+ 0

'
I '+

Xexp(iS[a+, b+,a, b ]) .

(2.10)

Here

exp(iS[a+, b+,a, b ])=%[a+,b+,a, b ]exp[i(S~[a+,b+]—Sg[a, b ])I

with

(2.1 1)

V[a+, b+,'a b ]=exp — f dx fdxo0(x x)H~(xo—)(2m)

X f dp e '~ "lnp H, (x ) — f dx H&(x )
p V

(2.12)

where Vis a coordinate length which is an arbitrary con-
stant. %'e have to introduce it in order to avoid diver-
gence due to the infinite spatial volume. H (x ) is
the time integral of the perturbation: H+ (x )

=f dx h+(x ).
Now we evaluate the path-integral expression for the

density matrix by the steepest-descent method; the path
integral is approximated by the integrand with the ex-
tremum path (classical solution). As far as the lowest or-
der of the perturbation is concerned, perturbation-free
classical solutions are sufficient for the evaluation of the

So= Vf dx
b+ b

y+ —N+ a+6+ A+
+

+N a b A (2.13)

The classical solutions must satisfy the extrernum condi-
tion

integrand. The perturbation-free action for the density
matrix is given by
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5So =0
5a+

~ ~

b~ —2Aa+bg =0,
a

5S0

6b~
=0 —(y+ —a+ A) =0,

(2.14)

and the constraint equation which comes from the lapse
function independence of the density matrix:

6So

Mt~
=0—b+ j'+ —a+b+A=O . (2.15)

In Eqs. (2.14) and (2.15), we have set N+ =1 after the
Euler variations. In the remainder of this section, we
study the steepest-descent approximation for the density
matrix in the following three cases: (A) the case
0 (A—:cz, (8) the case 0=A, and (C) the case
0)A—:—o. .

(A) For the case 0 (A —=a, the classical solutions be-
come

A+

sinh[a A+(x —x+ )]

B+
tanh[a A+(x —x+ )]

(2.16)

In the above, A+, B+, and x+ are integral constants.
Among them, A+ represents a scale of the scale factor
a(x ) which has no meaning by itself. Thus, we restrict
our consideration on the solutions with A+ =1. In the
gauge N+ = 1, the perturbation becomes

h+(q)=(m'a+ —Zgj'+)=(m'+2/A)a+ =M'a+ .

(2.17)

We put the classical solutions Eq. (2.16) into the action
Eq. (2.11) and expand it as a series in a~ (a~=a+ —a )

assuming the smallness of a z. ia ~ /a, ~

(( 1

(2a, —=a++a ). Then the approximate density matrix
becomes

p[a+, a ]=A'exp iaV(b+—+1+a+ b+—1+a )

4

a, ~( +a, )
' @+[a, —1 —

—,'( I+a, )]Q I+a, I a ~ +O(a ~ ) (2.18)

From the above expression, the dispersion (the width of
the quantum coherence) a of this density matrix be-
comes [see Fig. 1(a)]

Thus, the dispersion is given by [see Fig. 1(b)]

64
a,

VM
(2.23)

o = a, (1+a, ) I ~4+[a, —1 —
—,'(1+a, )]2 32 A

X+1+a ) (2.19)

This expression has the following asymptotic forms:

a, for a, ~0,
g 0: a, for a, ~~. (2.20)

We now proceed to the second case.
(8) For the case 0=A, the classical solutions become

In this case, the phase part of the density matrix com-
pletely vanishes for this perturbation-free evaluation.
Thus the semiclassical approximation may seem implau-
sible. However, we expect that the nonlocal imaginary
exponent in %[a+,a ] of Eq. (A9) gives rise to a nonvan-
ishing contribution to the action. Whether or not this ac-
tually happens is not yet clear.

(C) For the case 0) A—:—a, the classical solutions be-
come

a+ = A+exp[A+(x —x+ )], b+ =8+ .

Then the approximate density matrix becomes

VM4»
p[a+, a ]=JVexp — a, a ~128

(2.21)

(2.22)

cosh[a A+ (x —x+ ) ]

b+ ———8+tanh[aA+(x —x~)] .

The approximate density matrix becomes

(2.24)

p[a+a ]=JVexp —ia ( VbQ+l —a+ —b Ql —a )

4

a, (1—a, ) 'I~4+[a, +1+—,'(1—a, )]+1—a, la~+0(a~)
32

(2.25)
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2 Th en the dispersion in is given by [see Fig. 1(c)]

2 16 ao. = a, (1—a, )

0

d2

(c)

~
a

a

X {~+[a, +1+—,'(1 —a )]+1—
4

C C
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( ) o o d o h
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This time variable is closely connected with that intro-
duced in the case of the wave function of the Universe in
the same model of Eq. (2.1) (Ref. 5). The method of this
section is the extension of the WKB approximation in the
WD wave function to that in the density matrix.

Using the variables p and pb canonically conjugate,
r'espectively, to g and b, 8 of Eq. (2.4) is rewritten as

Sg= f d x(prj+p'bb Ngf—) (3.1)

and

~[a—ip ]+— H~ p[ a+p +, a,p ]=0, (3.8)

%[a+,p+] — H ~ p[a+,p+,a,p ]=0 (3.7)32

with

A=prpb+ y'b' b"—be'—rA .

Changing variables g and b into

—(X+b), P= ——(X—b),1 1

2
'

2

and therefore

(3.2)

(3.3)

where the last terms in Eqs. (3.7) and (3.8) are the contri-
butions from the influence functional in Eq. (2.12). From
Eqs. (3.7) and (3.8), we get the Wheeler-DeWitt-type con-
straint equation for the density matrix:

&[a+,P+]—&[a,P ]—'
H~ pfa+, P+,a,P ]16

=0 . (3.9)

&=—,'(p —p&) —vU(a, P) (3.5)

1 1
Pa ~ (Pr+Pb )& Pp ~ (Pr Pb )

2 2

the Hamiltonian of Eq. (3.2) for minisuperspace is diago-
nalized as

Now we derive an evolution equation for the density
matrix by applying the WKB approximation for this
equation. Assuming a large magnitude of the variable ~p~

compared to ~a[: ~p~ &&~a~. (This condition breaks
down in the neighborhood of A in the contracting phase
[see Pig. 1(c)]. This problem will be discussed shortly. )
%'e parametrize the density matrix as

with

U(a, P)=- —(a —P)exp[&2(a+P)] .
2

(3.6)

p[a+, P+]= A [a+,P+]exp(iB [P+]),
where the Hermiticity condition should be satisfied:

(3.10)

Here we write out explicitly the gravitational coupling
constant K which has so far been included in b. In the
same way as for the case of the wave function of the
Universe, we get the energy constraint equation for the
density matrix:

A [a+,/3+]* = A [a+,P+ ),
B[P+]= B[P+], B—:real .

(3.1 1)

Putting this form of the density matrix into Eq. (3.9), we
get

$2B~A+~ ' +i A +2i
ap'

'
ap ap

—(+~—) — [U(a+,P+) —U(a, P )]A =0,1
(3.12)

where

1

Bo.+

Putting the expansion

8 =KB&+Bo+K B ]+
into this equation, we get

») + U(a+, P+)=0

(3.13)

(3.14)

(3.15)

I

to order O(1~ ), and so on. Now we introduce a dynami-
cal time t based on a particular solution of Eq. (3.15) p+
by the condition

BB)
=Pp =+K

~p+
(3.17)

According to the conclusions of the previous section,
we can expect the classical property of the variable p for
the region ~p~ )) ~a~. We may put p+=p (i.e., p+. is al-
most classical). Equation (3.16) is reduced to

»i aw
l

Bp+ Bp+

Bi 8 Bi
2 QP2

' »)»0+
ap ap

aB
Bp Bp

BB, BB
A =0 (3.16)

to order O(1~") with the assumption ~p~ )& ~a~ and

g 8

2 Qp

»O
&A i + A—=O.

Bt Bt
(3.18)

BBO
Tr(NA )+ =0,

Bt

where use has been made of

(3.19)

Taking the trace of both right- and left-hand sides of Eq.
(3.18), we obtain
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Trd =1 . (3.20)

However, since

we get

()Bo =0.
at

(3.22)

Tr(jfA ) =Tr [&,A ]— [H, [H, a]] =0, (3.21)

of thermodynamics for the minisuperspace universe).
Thus, we have shown that the direction of t coincides

with that of entropy increase. Then, does the latter
change its direction in the contracting phase? Our
answer is aSrmative. In the contracting phase, an
overall factor b of S changes its sign at a,„. And quite
the same argument as that developed in Eqs. (3.10)—(3.29)
is valid also in the contracting phase provided that o. and
P are exchanged. We denote the dynamical time variable
in the expanding (contracting) phase as t (tt)). That is,

Consequently, we obtain the time-dependent Schrodinger
equation for the density matrix:

(3.23)

dp~ M) (pg)
dtp Qp~

BB,(ap)
(3.30)

i = [&o, A ]— [H, [H, A ]] (3.24)

with

2&o—= 2Pa . (3.25)

The corresponding operator form of this equation be-
cornes

where the rniddle equality holds since both right- and
left-hand sides satisfy the same Hamilton-Jacobi equation
(3.15). If IpI » IaI in the expanding phase and IaI » IpI
in the contracting phase are satisfied, then p+ =p+(,)) and
a+=a+(,)), with p+ (,)) and a+(„) given by substituting
Eq. (2.24) -into Eq. (3.3). The classical trajectory in the
a+(,))

—p+(,)) plane is shown in Fig. 2. From the inequali-
ty

It should be mentioned here that p&+, and then t, can-
not be real unless U(a+, p+) is negative. This condition
is satisfied only in the expanding phase. The treatment in
the contracting phase is discussed in the last part of this
section.

From Eq. (3.24), we can calculate t dependence of
quantum coherence and entropy. The quantity Tr A per
volume (=—F) indicates the degree of quantum coherence.
Actually F=1 for a pure quantum state since for this
state, A =A. On the other hand, for general mixed
states, 0 ~ F( 1. Furthermore, for more dispersedly dis-
tributed mixed states the value of F is smaller. We get

(cl) + (cl) &0,dx' dx' (3.31)

together with Eq. (3.30), it follows that

dt dt&
&O.dx' dx'

(3.32)

This means that the dynamical time reverses its direction
at a,„as well as entropy.

BF 1 TrA [H, [H, A]],
r)t 16m

(3.26)

which is negative semidefinite. This is because in the ma-
trix representation that A is diagonal:

TrA[H [H A]]= g IH;, I'(A; —A, )'-o (3.27)

Equation (3.26) shows that the system gradually becomes
classical in the sense that the value of F decreases mono-
tonically. For the ordinarily defined entropy —Tr 3 In A

per volume ( =S), we get

0 0)

Tr(ln A )[H, [H, A ]],1 (3.28)

which is positive semidefinite. This is because, in the
same representation,

Tr(lnA )[H, [H, A]]=—g IH; I(A —A;)ln &.0 .
IJ J

(3.29)

The existence of monotonically changing quantities sug-
gests the intrinsic irreversibility of the system (second law

FIG. 2. The classical solution Eq. (2.24) for the case (C):
0& A in terms of new variables a, i3 introduced in Eq. (3.3).
Points 2 and B, respectively, correspond to those of Fig. 1(c).
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IV. CONCLUSIONS AND DISCUSSIONS

We have studied arrows of time in 2D quantum
cosmology. First in Sec. II, we introduced a thermo-
dynamic time which is measured by the quantum coher-
ence width. The width associates with the density matrix
of minisuperspace. We found that this thermodynamic
time coincides with a cosmological time which is defined
by the increase of scale factor. Second in Sec. III, the
quantum coherence measured by the linear entropy and
the ordinary entropy was studied based on the semiclassi-
cal property of the clock variable argued in Sec. II. We
were forced to define local time variables a and P in the
closed universe. Using these time variables, we showed
that entropy increases (decreases) in the expanding (con-
tracting) phase as x increases. This is consistent with
the results of Sec. II.

In this paper, the density matrix on the minisuperspece
has been naturally introduced by projecting out the other
inhomogeneous modes. This subdynamics description
seems to become essential whenever we make any predic-
tion of the results of realistic cosmic observation. This
subdynamics description is also used in Refs. 9 and 10,
which study the loss of quantum coherence in the theory
of quantum gravity. Their method essentially relies on
projecting out the topologically excited baby universes of
Planck size and on the concentrating upon the sub-
dynamics of nearly fiat global universe (mother universe).

Their standpoint is that topologically excited other
universes are causally unobservable while our standpoint
is that the globally distributed physical quantities on a
spacelike hypersurface are causally unobservable. In ei-
ther case the intrinsic limitation of the cosmic observa-
tion introduces the loss of quantum coherence and the
reduction of the quantum system to the classical evolu-
tion. In order to proceed further, including the problem
of which of the above projections is more realistic, we
have to consider the specific properties of the actual ob-
servational processes of the Universe. What we can say,
at least, is that the naive application of quantum theory
to the whole Universe, neglecting the specific structure of
the detection, does not give any realistic prediction; the
prediction is detector dependent. Furthermore, if we in-
troduce the concrete structure of the detection process,
any nonstandard interpretation on the wave function will
become unnecessary.

APPENDIX

In this appendix, we derive the expression for the re-
duced density matrix Eqs. (2.9)—(2.12) based on the
inhuence functional method developed in Ref. 11.

From the total density matrix
p[ a+b +P a+,b, P ], which describes the entire
Universe, a reduced density matrix p for the minisuper-
space variables is defined:

S [a+»+ a b ]=f-dd-+ f—d4 @[a+»+0-+,a » 0 ]&(-4+ -0 -)—- (Al)

We assume the matter unperturbed state is the conformal vacuum. Then the reduced density matrix is expressed as

p[a+, b+', a, b ]=f da'+ fda' f db'+ f db' f X)a+ f Xla f X)b+ f 2)b p[a'+, b'+, a', b' ]

Xexp(iS[a+, b+', a, b ]),
(A2)

where

exp(iS[a+, b+,a, b ])=%[a b+a+, b ]exp[i(S~[a+,b+ ]—S [a,b ])] (A3)

and

%[a+,b+;a, b ]=f2)P exp[i(S [P+]+S;„,[P+,a+ ]—S [P ] S;„,[P,a ])j .— (A4)

In this equation, P means a pair of scalar fields P+ and
and its path integration is performed on the confor-

mal vacuum. This is the in-in formalism of quantum field
theory which is natural and useful for calculating density
matrices. ' . It is straightforward to evaluate Eq. (A4) in
perturbation series in the interaction. In two-by-two ma-
trix representation, it becomes

%=exp ' —
—,'Tr ln — z+

—h +
0

0

,' fd'x f—d—' [xh~( ) x(Ixi, x')h~( )x

+h~(x)112(x,x')h, (x')]+O(h ),
(A5)
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where

h+ =N+ m a+ —2g2 2 X

(A6) II2(x,x')—:2i8(x —x ')Im( TP(x)P(x') )2 .

(A7)

(A8)

h~ =—h+ —h, 2h, =—h++h

and

In deriving Eq. (A5), we have assumed the regularization:
(P (x) ) =0. It is a standard calculation to evaluate Eq.
(A5):

9[a+a ]=exp — ' f d x f d x'h~(x)(2sr) f d p e '~+ p lnp h, (x')

—
—,', f d x f d x'h&(x)(2') f d p e '~ "p 0(p )h~(x') (A9)

The second term of the exponent in Eq. (A9) arises as a
back reaction of P-particle production and will cause
difFusion of quantum coherence of the scale factor. We
concentrate upon the efFect of this term in Sec. III. The
first term of the exponent in Eq. (A9) is very similar to
one which appeared in Ref. 13. It represents a dispersive
back reaction of the P field and is needed for the concrete
evaluation of the diagonal elements of the density matrix.
However, it does not have any relation to a reduction of
classical properties of the density matrix.

As we have remarked in the Introduction, what we
want to describe is the homogeneous minisuperspace
variables. Thus, we consider the homogeneous perturba-
tion h+(t) though general perturbations are also tract-
able. Equation (A9) reduces to

exp — f dx H~(x )
32

(A10)

where V is a constant coordinate length over which we
study the homogeneous universe and H(x ) is the time
integral of the perturbation: H+(x ) = J" dx h+(x ).
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