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Derivation of Ashtekar variables from tetrad gravity
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The new gravitational variables introduced recently by Ashtekar are derived from the standard
tetrad gravity formalism with full local Lorentz invariance. This is done by a succession of canoni-
cal transformations, which involve as a first step the transition from arbitrary tetrads to three-
dimensional triads and pure gauge boost variables. It is then shown that the weighted contravariant
triads and mixed components of the extrinsic curvature are also canonically conjugate. Finally, the
new variables are explicitly derived and proved to be canonical because of a remarkable identity
obeyed by the spatial spin connection in three dimensions.

I. INTRODUCTION

Recently, Ashtekar has introduced new variables in
general relativity, in terms of which the Hamiltonian con-
straints become homogeneous polynomials in the new
momenta. ' The interest of these variables is that they
may simplify some questions of quantum gravity.

Now, although the phase space considered by Ashtekar
is the same as that of standard gravity in the tetrad for-
malism, the explicit connection between the new vari-
ables and the canonical variables of known formulations
of tetrad gravity ' has never been fully explained.

It is the purpose of this paper to derive Ashtekar's
variables starting from canonical tetrad gravity. We
show how one can, by a succession of canonical transfor-
mations, go from the canonical pairs of Refs. 2 and 3 to
the variables considered in Ref. 1. Our analysis therefore
explicitly establishes the equivalence of Ashtekar's for-
mulation with standard canonical tetrad gravity, and
should make the formalism of Ref. 1 accessible to work-
ers familiar with more conventional canonica1 ap-
proaches to general relativity.

The transition to the new variables is made in three
steps. First, we show how one can go from arbitrary
tetrads to triads along the spatial sections x =const and
pure gauge boost variables (Sec. II). This step appears
necessary to define Ashtekar variables and is achieved
without fixing the time gauge. Next, we make a further
canonical transformation to contravariant triad densities
and mixed components of the extrinsic curvature (Sec.
III). The fact that it is the contravariant triad vector
densities which are conjugate to the extrinsic curvature is
analogous to the well-known property of metric gravity,
viz. , gg is conjugate to Kk g

' . We also relate this
property to the covariant canonical formalism based on
forms developed in Ref. 4, where a similar result was also
found. Finally, we derive Ashtekar variables and prove

that they are canonical because of a remarkable identity
obeyed by the spatial spin connection in three dimensions
(Sec. IV). We also rewrite the Hamiltonian constraints in
terms of the new variables using an identity due to Wit-
ten. '

Although there is no need to introduce spinorial vari-
ables to perform the analysis, as it has already been point-
ed out previously, ' the use of spinors suggests the con-
sideration of the final variables in terms of which the con-
straints are polynomial. For this reason we rewrite the
final variables, which do not refer to spinors at all, in the
spinor notations used by Ashtekar. This is simply done
by saturating triad indices with the Pauli matrices.

II. FROM ARBITRARY TKTRADS
TO TIME-GAUGE TETRADS

(2a)

&, = —2m, j~, =0,
Jab (~akeb ~bkea ) 0

(2b)

(2c)

where

gIJ ai J

~ij &(e i~ai+e 1~a~)
4 a a

(3a)

(3b)

The canonical variables of tetrad gravity in which the
full local Lorentz gauge freedom is retained are the spa-
tial components e,k of the tetrads and their momenta ~'
(a =tetrad index=0, 1,2, 3; k =spatial coordinate in-
dex=1, 2, 3), satisfying

[e,k(x), ~"'(x')]=5, Bk'5(x, x') .

The Hamiltonian constraints read
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a'
eok = r~1a'k~ (4a)

e k h k+ + hbk
b'

y+»
where

(4b)

The constraints J' generate local Lorentz rotations
and are present because the full Lorentz gauge freedom
has been retained.

The vectors e,„have no particular relation to the hy-
persurfaces x =const. For instance, eo„ is not necessari-
ly normal to these hypersurfaces, and the vectors e, „
(a ' = 1,2, 3 ) are not necessarily tangent. For the subse-
quent discussion it is necessary to use variables which are
adapted to the hypersurfaces x =const (see below). This
can be done by performing a point canonical transforma-
tion as follows. Given e,„and the hypersurface
x =const, one can, by a unique Lorentz rotation in the
plane (eo„,n&) where n is the normal to x =const,
define a triad h, k tangent to x =const. The components
of the triad, and the parameters co, characterizing the
Lorentz boost, can be used as new variables instead of
e,k.

The formulas which connect these two sets are

and

Ja'b' ~ a'b' a' b'+ b' a'
(9b)

~ a'b' Ja'b' a'Job'+ b'Joa'

a'gc'b' ~b'gc'a')
y+»

a'

(9c)

(9d)

It follows that the constraints J' =0 are entirely
equivalent to

a' 0 a'b' 0 (10)

and, therefore, co, is pure gauge, since it can be
transformed at will by a gauge transformation. The im-
position of the time-gauge condition is equivalent to
COaI =Q.

We will not impose the time-gauge condition in the
remainder of this paper and rather keep the variables m'

and co, . However, because they are pure gauge, these
variables decouple from the rest. In particular, one finds
that m'J is given by the expression

a')1 2/

The inverse transformation reads

a' na' ~

(4c}

(Sa)

ij l (pa'ih j+pa'jh i)

so that the constraints &i and &, given by (2a) and (2b)
do not depend on the pure gauge variables co,. or ~'.

b'hak=eak . , ebkn na ~

~ ~+»' (5b) III. THE EXTRINSIC CURVATURE
AS A CANONICAL VARIABLE

where n, are the components of the normal in the tetrad
frame e,&

and only depend on e,k (Ref. 2). One easily
checks that h, .k are indeed triads on x =const, i.e., that
the spatial metric (3a) is given by

I

g J h A J ~

The transformation (4) and (5) can be completed as a
canonical transformation by means of the formula
p dq =p'dq'. One finds

b'
+a'k ha' +ik + 4g ja'b'h k (12)

The canonical variables (h, k,p' ") obtained in Sec. II
satisfy

[h, „(x),p '(x')] =5,.5'„5(x,x') .

In this section we show how, by a further canonical
transformation, the variables (h ' ",2', , k ) arise as anoth-
er canonical pair, where h ' =g' g' h'; and

a'k a'k Ok a'+
Q)b CO

y+» (7a) In (12), K;k is the extrinsic curvature, given in terms of
metric momenta m'J by

m' = m "h' + —co (h' ~ "+m' "h ) (7b)k +1 b' k k

where p' and m' are, respectively, the momenta conju-
gate to h, k and co,

Because the theory is invariant under 1ocal Lorentz
transforrnations, and because the variables co, are just
Lorentz parameters, the canonical pairs (I4i„vr' ) should
be pure gauge. That this is so can be seen by expressing
the Lorentz generators J'b in terms of the momenta ~'
and the spatial rotation generators j' of the triads h, k,

a'b' —
(p a'kh b' .

p
b'kh a'

One finds, after elementary calculations,

+ik g ( 7~jig gik ~ik )

and, by (11), in terms of the triad momenta p' ', by
I

+ik 4g P (ha'jgik a'igkj a'kgij ) (13)

That this transformation is canonical can be checked ei-
ther by directly evaluating the Poisson brackets
[h ' "(x),2Kb,.(x')] and [Kb.;(x),K, , (x')] or, as in Sec.
II, by checking that

2K, dh 'J=p'Jdh, .

In either case one needs the definition ofj,,b, [Eq. (8)] and
the relationship

Job' b'+ .c'b'

p+ 1
(9a) 5h 'J —

g
I /2(h a'jh b ih a'ih b'j ')

5hb. ;
(14)
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This result is analogous to the well-known result of
metric gravity, that is, if

[g;, ( ), "'(x')]=—,'(5; 6, '+5, "5 )6(x,x'),
then also

[gg "(x),g ' 'Kki(x')]= —,'(5'k6'i+6i5'„)5(x, x') .

We point out that if the full Lorentz gauge freedom
was maintained, it would be necessary to add to K,J a
term proportional to the normal n' to the hypersurface
x =const; that is, in an arbitrary gauge, the fields conju-
gate to the tetrad densities gl/2g'Je.

J (a=0, 1,2, 3), are
given by

previous result.

IV. THE "NEW VARIABLES"

The variables considered by Ashtekar' are the h '
themselves and the self-dual combination of the four-
dimensional spin connection,

Aa'k 2%a'k + 6a 'b 'c '~k
b'c'

a c

a'b' —i [g ha'jh b'i+ha'ihb' (a ~b )] (20)

where &ok
' is given in terms of the variables h'; in the

standard way:

ab II ab+(n beai n aebi)K
J J 1J (15)

That the (h ' ",2K, .k ) form a canonical pair can alter-
natively be seen considering the identity

We now show that these variables also form a canoni-
cal pair. This property follows because, in three dimen-
sions, the spin connection (20) obeys a remarkable identi-
ty. That is, the second term on the right-hand side of (19)
is a functional derivative with respect to h ' ' of the func-
tional G[h ' '] with

which relates the spatial components of the four-
dimensional spin connection ~ to those of the connection
on x =const, denoted 0, via the extrinsic curvature. In
the time gauge, this identity (15) has components

G= J d'x e'~"h' h 'k a'j, i

, b 56
~k &a'b'c'

6h '

(21a)

(21b)

co. —A K .
J 1J

(16)

In (15) and (16), time derivatives of the e'; appear on
both sides. Since these are given uniquely in terms of the
~" only on the constraint surface J,b =0, one can always
add terms proportional to J,b (or j, b.) to the right-hand
side of (15) or (16).

Now, in the first-order formalism of tetrad gravity con-
structed covariantly using differential forms, the two-
form primary constraint

c 6
lab ~ab ~ eabcd (17)

with eoiz3= —1= e', relates the (—two-form) momenta
conjugate to the (one-form) spin connection co' to the
square of the (one-form) tetrad e'. When the time gauge
is implemented, this constraint (17) has components on
x =const given by

One could of course have also considered the self-dual
combination of the h '

p a'k+ 1Jkh a .h
4 1 J (23)

but, in the time gauge, this second term is identically
zero. Therefore, it is only in the time gauge that the triad
densities h ' are real.

V. CONSTRAINTS

The replacement of 2K, k by A, k in the canonical mo-
menta conjugate to h ' just corresponds to a canonical
phase transformation and one has indeed

Jd x 2K, .kdh '"=f d x A, kdh '"——dG . (22)

itiab
=

2 itiabiJ dx ' h dx '
~

etc. , with (17')

The variables A, .k are connections and one can thus
define their field strengths F, ; .. In terms of the Riemann
tensor and the extrinsic curvature, F,.; is given by

WOa „=(~Oa "+2g '"ha ")&i&k

where ~o, "=2~o...J.
e'J and e,&3=1. In (17') we have

used the three-dimensional identity

i j~a'b'c' g ij k ~c'

When the constraints (17') ar eliminated, one sees im-
mediately that the momenta mo, . conjugate to the com-
ponents co

'
k
= —h' 'K;k(+ j, b terms) from (16) are pre-

cisely

k 2h k
Oa' a'

That is, the pairs (cok ', —2h, .") are canonical; therefore,
the pairs (2K, ,k, h ' ") are canonical, which is exactly our

Fa;~ = e' ( Rkiii+2K—k;K&~ )ha ~+ 2 (Kkj~i K.
ki~J )ha."a1J 4

with
I I I

Kkj ' E'kj +
4

g' A k A j Ja b Ka j A

(24)

as can be seen by a straightforward calculation [(24) is ac-
tually a reexpression of the Gauss-Codazzi equations].

Now, if one replaces, in F. . . K, - by K;, which does
not change anything on the constraint surface j, b =0,
and if one computes h ''F, , and h, .'hb. Je' 'F. . . one
finds that the first expression yields & [Eq. (2b)] while
the second one reduces to Wig' [Eq. (2a)]. This result
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is nothing but the transcription in the present formalism
of an identity found by Witten.

Therefore, the constraints

and

h ' 'F '.=0a ij

h,'.h ~~.F,., - =0,

~ a'b' 0

(25a)

(25b)

(25c)

are equivalent to the original constraints (2a) —(2c). The
advantage of (25a) and (25b) over the metric formulation
is that, if one regards h '' as momenta and A, .; as
configuration variables, Eq. (25a) is linear in the momenta
while (25b) is quadratic. Furthermore, F... is a p"olyno-
mial function of A, ; and of its derivatives.

Note that the constraint (25c) can be rewritten in the
Yang-Mills form

V h ~ =—h ~ +iA, h ~
e''""=0

k =
I k c'k b' (26)

VI. CONCLUSION

We have written the variables proposed by Ashtekar in
terms of the well-known variables of triad gravity, which

Indeed, the spatial connection term in A, k combines
with h '

"~k to yield the full spatial derivative 2)kh' " of
the triads, which is zero since co,.b.; is the metric connec-
tion. At the same time, the extrinsic curvature X,k piece
in A, k combines with h&. to yield j, b.

can in turn'be reformulated in terms of the better known
tetrad variables by means of (5b).

We have avoided introducing 0. matrices to make it
clear that spinors are not necessary to arrive at (25).
However, for the sake of completeness, and because they
suggested the appropriate change of variables, we point
out that the spinor variables ( 2",cr ™)of Ref. 1 can
be obtained from (19) and h ' " by contraction with the
Pauli matrices (o,.) iv which satisfy o, rr b

=. 5, b
M

+is, .b, o' by the following relationships:

( g k)Mbi g k( a')MN (~ i)MN i
h i( a')MN

v'2

a')Mbi
(

a')M LN LÃ NL

Note added. After completion of this work, we became
aware of recent papers' in which some aspects of the re-
formulation of Ashtekar variables in terms of time-gauge
triads are discussed along diA'erent lines.
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