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Cosmological solution of Einstein's equations with uniform density and nonuniform pressure
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An exact solution of the equations of general relativity is given that is most appropriately inter-
preted cosmologically and has some unusual properties. The solution is a perfect-Auid, spherically
symmetric, nonstatic one in which the density is uniform but the pressure is nonuniform. A brief
investigation, both algebraic and numerical, is made of the solution s main physical attributes. It
may be used to model a localized inhomogeneity such as a bubble in the early Universe.

I. INTRODUCTION

In recent years it has become popular to look for solu-
tions of Einstein's field equations that are significantly
different from the known ones, ' as a means of studying
how effects of particle physics and quantum field theory
can modify classical cosmology. Not long ago, a
perfect-Auid, spherically symmetric, nonstatic solution
was found of a particularly interesting type. In it, the
density is uniform (homogeneous and isotropic) as in the
Friedmann-Robertson-Walker solutions of standard
cosmology, but the pressure is nonuniform. Solutions of
this type are interesting because they depart modestly
enough from the standard ones that they can be meaning-
fully interpreted, while also showing significant new
properties. With this motivation in mind, in the present
work another solution of the noted type will be presented
and investigated. The present account is kept brief, since
it is not known how useful the solution will be in astro-
physics or cosmology. But it appears the solution may be
used to model a localized inhomogeneity such as a bubble
in the early Universe.
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The density and pressure of the matter are p and p, re-
spectively, and the mass within radius r from the origin
of coordinates is m. Derivatives with respect to t and r
are denoted by an overdot and a prime, respectively.
Equations (2) have been used quite widely (see, for exam-
ple, Refs. 5 and 8 —11). And while they are ill defined for
problems involving static (R=O) or Kantowski-Sachs-
type (R'=0) metrics, they are eminently suited to most
problems in astrophysics and cosmology because of their
ready physical interpretation (see Ref. 4). Equations (2)
admit the standard Friedmann-Robertson-Walker solu-
tions where both the density and the pressure are uni-
form, but also solutions where the density is uniform and
the pressure nonuniform. One of these will now be
presented.

It may be verified by direct substitution and several
hours of boring algebra that an exact solution of (2) is
given by

II. THE FIELD EQUATIONS
AND A SOLUTION

Consider a spherically symmetric metric of the form

ds =e c dt edr R(dO +si—n Hdg —) .
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The coordinates are t, r, 8, and P where r is comoving
and o., co, and R depend in general on t and r. The speed
of light is c, and conventional units will be used for ease
of physical interpretation both here and below, where the
constant of gravity 6 is introduced. Einstein s field equa-
tions for metric (1) and a perfect fiuid are fairly well
known in the form due to Misner and Sharp and Po-
durets: namely,
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Two constants appear here, with dimensions Q. =T
and p=L 'T'/ . Of these, the second is not very impor-
tant because it may if so desired be absorbed by a rescal-
ing of r, but it is kept here for dimensional consistency.
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venient to express the solution in other coordinates, a
procedure which also suggests other applications of the
solution but which will not be pursued here. '

Returning to the simple form (3), more insight into it
may be gained from numerical work. The density (3d) is
a simple decreasing function of time and so not very in-
teresting, but the pressure p of (3e), the azimuthal dis-
tance measure R of (3c), and the mass m of (3f) are worth
plotting. Choosing a= —1 and )33=+1 for reasons given
above, the behavior of these three parameters is illustrat-
ed in Figs. 1 —3.

Finally, leaving the solution s physical properties, it
can be pointed out that it also has some interesting
mathematical properties. Most notably, it admits a one-
parameter group of conformal motions. In the usual no-
tation, it may be shown that

(4a)

g' =3kct 5o+ kr 5I,
with k a constant.

(4b)

III. CONCLUSION
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A solution of Einstein's equations has been given that
is spherically symmetric and nonstatic, with matter that
consists of a perfect Quid with uniform density but
nonuniform pressure. The solution is most appropriately
interpreted as representing a locaIized inhomogeneity
such as a bubble in the early Universe. It has unusual
properties that can be studied further.
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~8At the risk of being mathematically trivial, it may be physical-
ly useful to note that a more general form of (3), which also
satisfies (2), is given by e =(T/g), g—:(1—nT X ), e"
= (CT X'/g), R =CT X/g, p = (1/2&G)(1/3T —3(x/
T ') p =(c /2mG)(2a/T —aX /3T +a X ) m =4
mR 'p/3=(2c'X'/9Gg )(1—9aT ). Here the two functions
T(t) and X(r) can be chosen as desired. The choices T =t,
X =/3r give back (3) of the main text, but other choices (e.g. ,
X=const/r) give forms that suggest other physical applica-
tions.


