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Paul S. Wesson and J. Ponce de Leon
Department of Physics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
(Received 1 July 1988)

An exact solution of the equations of general relativity is given that is most appropriately inter-
preted cosmologically and has some unusual properties. The solution is a perfect-fluid, spherically
symmetric, nonstatic one in which the density is uniform but the pressure is nonuniform. A brief
investigation, both algebraic and numerical, is made of the solution’s main physical attributes. It
may be used to model a localized inhomogeneity such as a bubble in the early Universe.

I. INTRODUCTION

" In recent years it has become popular to look for solu-
tions of Einstein’s field equations that are significantly
different from the known ones,! as a means of studying
how effects of particle physics and quantum field theory
can modify classical cosmology.?”* Not long ago, a
perfect-fluid, spherically symmetric, nonstatic solution
was found of a particularly interesting type.’ In it, the
density is uniform (homogeneous and isotropic) as in the
Friedmann-Robertson-Walker solutions of standard
cosmology, but the pressure is nonuniform. Solutions of
this type are interesting because they depart modestly
enough from the standard ones that they can be meaning-
fully interpreted, while also showing significant new
properties. With this motivation in mind, in the present
work another solution of the noted type will be presented
and investigated. The present account is kept brief, since
it is not known how useful the solution will be in astro-
physics or cosmology. But it appears the solution may be
used to model a localized inhomogeneity such as a bubble
in the early Universe.

II. THE FIELD EQUATIONS
AND A SOLUTION

Consider a spherically symmetric metric of the form
ds*=e%c?dt*—e®dr*—R*(d6*+sin’6d ¢?) . (1

The coordinates are ¢, r, 6, and ¢ where r is comoving
and o, o, and R depend in general on ¢ and r. The speed
of light is ¢, and conventional units will be used for ease
of physical interpretation both here and below, where the
constant of gravity G is introduced. Einstein’s field equa-
tions for metric (1) and a perfect fluid are fairly well
known in the form due to Misner and Sharp® and Po-
durets:” namely,
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The density and pressure of the matter are p and p, re-
spectively, and the mass within radius » from the origin
of coordinates is m. Derivatives with respect to ¢ and »
are denoted by an overdot and a prime, respectively.
Equations (2) have been used quite widely (see, for exam-
ple, Refs. 5 and 8-11). And while they are ill defined for
problems involving static (R=0) or Kantowski-Sachs-
type (R'=0) metrics, they are eminently suited to most
problems in astrophysics and cosmology because of their
ready physical interpretation (see Ref. 4). Equations (2)
admit the standard Friedmann-Robertson-Walker solu-
tions where both the density and the pressure are uni-
form, but also solutions where the density is uniform and
the pressure nonuniform. One of these will now be
presented.

It may be verified by direct substitution and several
hours of boring algebra that an exact solution of (2) is
given by

1

e”=g2, g=(1—ap??3?), (3a)

o= | B2 | (3b)
g

R =§c—’gz—/31 , 3c)

:EviE 5%_;53 , (3d)

bty | B e 39

"= 47R’p _ 2B°c*r’(1—9ar*”?)
3 9Gg*? ’

(36)

Two constants appear here, with dimensions a=T ~%/3
and B=L ~'T1/3. Of these, the second is not very impor-
tant because it may if so desired be absorbed by a rescal-
ing of r, but it is kept here for dimensional consistency.
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By comparison, the first constant a is important. It
determines the density and pressure, as well as the
geometry. It should be noted that for a=0, p and p
reduce to those of the Einstein—de Sitter solution of con-
ventional cosmology, as does the metric. This correspon-
dence, together with the fact that the density is in any
case uniform, suggests that (3) be interpreted cosmologi-
cally.

For a=£0, p is finite and nonuniform. However, if p>0
is required for all ¢, then a <O is necessary. This also en-
sures that the function g and the geometry are always
well behaved. A consequence of a <0 is that there is a
region near the origin of coordinates where p <0, though
the more usual behavior holds away from the origin
where p>0. It should be recalled that in recent years
p <0 has come to be regarded as physically acceptable,
since a negative pressure corresponds to an attractive
force between the particles of the fluid, and this can arise
naturally under a variety of circumstances.”>!>” !> But
while this unusual property of (3) can be understood
physically without much effort, other properties of the
solution are harder to grasp. This comment refers espe-
cially to the mass m and the dynamics of the model as
specified by the azimuthal distance measure R. The mass
(3f) has the strange property that m ~0 for r ~0 and
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FIG. 1. (a) The pressure p against (small) ¢ for various r.
From (3e) with a=—1, B=-+1, and units satisfying
c¢?/2mG=1. (b) The pressure p against (large) ¢, with quantities
as specified in (a).
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FIG. 2. The azimuthal distance measure R against ¢ for vari-

ous r. From (3c) with a=—1, B=+1, and units satisfying
c=1.
r~o. This kind of behavior has been noted before,

though, in other situations.'®!” Here, it arises because
the azimuthal distance measure (3c) also has the property
that R ~0 for r ~0 and r~ . This in turn arises be-
cause of the influence of the function g in (3a). That is,
the unusual properties of m and R arise from the
geometry.

The unusual behavior of the solution (3) for large radii
suggests that it be truncated at some appropriate distance
from the origin of coordinates and joined to another solu-
tion. This is the most reasonable way to make use of
solutions such as the one being considered here.” The
present solution in the form (3) itself suggests truncation,
because the pressure (3e) increases away from the origin,
a behavior which might arise from the operation of cer-
tain processes of particle physics but which cannot ex-
tend indefinitely far. Thus the most logical way to con-
sider (3) is that it represents a localized inhomogeneity,
such as a bubble,®> embedded in a global background,
such as that of the early Universe.

It can be remarked in passing that if (3) is to be embed-
ded in a background in this way then it may be con-

FIG. 3. The mass m against ¢ for various r. From (3f) with
a=—1, 8= +1, and units satisfying 2¢*/9G=1.
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venient to express the solution in other coordinates, a
procedure which also suggests other applications of the
solution but which will not be pursued here.'®

Returning to the simple form (3), more insight into it
may be gained from numerical work. The density (3d) is
a simple decreasing function of time and so not very in-
teresting, but the pressure p of (3e), the azimuthal dis-
tance measure R of (3¢), and the mass m of (3f) are worth
plotting. Choosing a= —1 and 3= +1 for reasons given
above, the behavior of these three parameters is illustrat-
ed in Figs. 1-3.

Finally, leaving the solution’s physical properties, it
can be pointed out that it also has some interesting
mathematical properties. Most notably, it admits a one-
parameter group of conformal motions. In the usual no-
tation, it may be shown that
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with k a constant.

III. CONCLUSION

A solution of Einstein’s equations has been given that
is spherically symmetric and nonstatic, with matter that
consists of a perfect fluid with uniform density but
nonuniform pressure. The solution is most appropriately
interpreted as representing a localized inhomogeneity
such as a bubble in the early Universe. It has unusual
properties that can be studied further.
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I8At the risk of being mathematically trivial, it may be physical-
ly useful to note that a more general form of (3), which also
satisfies (2), is given by e’=(T/g)?, g=(1—aT?3X?), e
=(cT**X'/g),, R=cT*’*X/g, p=(1/2wG)(1/3T*—3a/
%), p=(c2/27G)2a/T**—aX?/3T**+a’X?), m =4
TR p/3=(2¢3X3/9Gg>)(1—9aT*’*). Here the two functions
T'(t) and X (r) can be chosen as desired. The choices T =1,
X =pr give back (3) of the main text, but other choices (e.g.,
X=const/r) give forms that suggest other physical applica-
tions.



