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We study the creation of particles by inhomogeneous perturbations of spatially flat Friedmann-

Robertson-Walker cosmologies. For massless scalar fields, the pair-creation probability can be ex-

pressed in terms of geometric quantities (curvature invariants). The results suggest that inhomo-

geneities on scales up to the particle horizon will be damped out near the Planck time. Perturba-

tions on scales larger than the horizon are explicitly shown to yield no created pairs. The results

generalize to inhomogeneous spacetimes several earlier studies of pair creation in homogeneous an-

isotropic cosmologies.

I. INTRODUCTION

In recent years, the study of quantum fields in curved
spacetime' has had a profound impact on our under-
standing of cosmology. It is now recognized that both
the effects of curvature on quantum fields and the
inhuence of quantum field dynamics on the metric are
likely to be important in determining the evolution of the
early Universe. Most recent work on the subject has con-
centrated on the dynamics of interacting gauge theories
in curved space, with particular attention to such issues
as asymptotic freedom, symmetry restoration, and the
possibility of inAation.

Yet, one of the most remarkable results in the subject
remains Parker's discovery almost twenty years ago that
the expansion of the Universe can create pairs of parti-
cles. Parker's work focused on particle production in
the homogeneous, isotropic Friedmann-Robertson-
Walker (FRW) models. In addition to establishing the
possibility of pair creation, he showed that fields obeying
conformally invariant wave equations (e.g., two-
component neutrinos, massless Dirac particles, and pho-
tons in four dimensions) will not be produced, because
the FR%' models are conformally Bat. Subsequently
Zel'dovich and Starobinsky considered particle creation
in a broader class of homogeneous cosmologies and found
that conformally invariant particles will be produced
when the conformal symmetry of the FRW models is bro-
ken by anisotropy.

In this paper we extend this work by considering the
production of scalar particles due to inhomogeneous per-
turbations of conformally Aat spacetimes. This calcula-
tion is of cosmological interest because, if inhomogeneity
is present in the Universe near the Planck time, it can act
as an efficient source of relativistic particles; in particular,
it may contribute significantly to the observed entropy of
the microwave background and thus help explain the ori-
gin of the matter in the early Universe. The possibility of

particle creation is readily understood in field-theoretic
terms: whenever a quantum field couples to a classical
time-dependent source, the breaking of time-translation
invariance implies that the field energy need not be con-
served; as a consequence, particles can be created. Thus,
fields in a time-dependent inhomogeneous background
should be excited. For weak inhomogeneities in a Aat

Minkowski background, the particle creation rate is
negligible because the energy in the gravitational field is
small. In the cosmological case, energy is provided by
the expansion of the Universe, while the inhomogeneity
serves to break eonformal symmetry.

Throughout, we shall work entirely in the external-field
approximation, that is, we take the classical perturbed
metric to be given and study the production of matter
fields in this fixed background. This is analogous to the
usual treatment of Coulomb scattering in quantum elec-
trodynamics (in which the vector potential is fixed) and is
believed to be a consistent truncation of the theory when
the back reaction of the quantum fields on the geometry
is small. Whether it is a good approximation in consider-
ing particle creation in the very early Universe is more
doubtful. The work of many authors on particle
creation and vacuum polarization in homogeneous
cosmological models shows that the back reaction can
dramatically alter the evolution of the Universe. In par-
ticular, any initial anisotropy in the expansion is rapidly
damped out on the order of the Planck time. Parker has
used these results to postulate a "quantum gravitational
I enz's law" which states that "the reaction of the parti-
cle creation back on the gravitational field will modify
the expansion in such a way as to reduce the creation
rate. " This behavior is intuitively plausible in the quan-
tum electrodynamics analogy: when external electric
fields are strong, pairs are spontaneously produced which
neutralize the charges which produce the external fields.
It is thus precisely when particle creation becomes impor-
tant that the external-field approximation fails.

Applied to the present case, Parker's hypothesis
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strongly suggests that particle creation in an inhomo-
geneous cosmology will similarly tend to damp out the
initial inhomogeneity. Cosmological particle creation
may thus help account for the observed homogeneity and
isotropy of the Universe. If particle horizons are present,
however, causality limits the damping of inhomogeneous
perturbations to scales smaller than the horizon. As an
indication of this, we will find that perturbations obeying
Einstein's equations do not give rise to pair creation
when their wavelengths are larger than the particle hor-
izon. Unfortunately, in the standard FRW cosmology,
during the epoch when particle creation can be
significant, the comoving size of the present visible
Universe is much larger than the horizon, and particle
creation alone cannot account for the observed homo-
geneity. However, it has been shown that vacuum polar-
ization can give rise to horizon-free models in the FRW
case and we expect the same to hold true for weakly per-
turbed models.

Although the external field approximation is inade-
quate for the problem at hand, nevertheless it is the start-
ing point for a systematic perturbation expansion in the
case of weak fields. Our expression for the pair-creation
probability in terms of spacetirne integrals of geometric
invariants will be formally correct; the back reaction will
determine quantitatively how these invariants evolve.
Thus, in the homogeneous anisotropic case, this ap-
proach gives results for pair creation in agreement with
those of the effective action approach, which explicitly
incorporates back-reaction effects. A similar agreement
will hold in the inhomogeneous case. It would be of in-
terest to study the back-reaction problem for inhomo-
geneous cosmology as well. The first half of this prob-
lem has been solved by Horowitz and Wald, ' who used
an axiomatic approach to find the expectation value of
the stress-energy tensor (the source in the semiclassical
Einstein equations) of a conformally invariant scalar field
for arbitrary perturbations around a conformally Oat
spacetime. However, a back-reaction calculation requires
one to postulate a dynamical theory of gra. vity near the
Planck time. To date, such calculations have generally
assumed semiclassical Einstein gravity, that is, classical
general relativity modified only by the one-loop quantum
effects of matter fields. In leaving open the back-reaction
question, we may contemplate a broader range of possi-
bilities.

A final, more speculative motivation for the study of
cosmological particle creation is the light it may shed on
the thermodynamic aspects of gravity. Although the en-
tropy of the gravitational field has so far been defined
only for spacetirnes with event horizons, Penrose" and
Hu' have discussed the possible meaning of gravitational
entropy in a general cosmological context. ' Penrose sug-
gested the Weyl tensor C,b,d (which measures the devia-
tion from conformal fiatness) as a measure of the gravita-
tional entropy and argued that the present "low-entropy"
state of the Universe (as compared to a universe full of
black holes), and thus the arrow of time, could be ex-
plained by postulating C,b,d =0 at the initial singularity
(a condition presumably brought about by as-yet un-
known time-asymmetric physical laws acting near the

singularity). This definition is made plausible by the fact
that, in general relativity with classical matter sources
obeying an energy condition' (and zero cosmological
constant), the Universe becomes clumpier and more an-
isotropic as it evolves, so C,b,d grows with time. ' Hu
proposed that the matter entropy generated in cosmologi-
cal particle production' be used as a measure of the
change in the gravitational entropy. In this view, particle
creation and back-reaction damping of anisotropy act as
a "transducer" of gravitational entropy to matter entro-
py, leading from a wide class of initial conditions to a
universe that nearly satisfied the Penrose hypothesis
(C,b,d=0) near the Planck time. In support of this pic-
ture, the total probability of producing a pair of massless
conformally coupled scalar particles in a homogeneous
anisotropic cosmology ' (and thus the total matter entro-
py produced) is proportional to the spacetime integral of
the square of the Weyl tensor C,b,d

C'"'". Soon after the
Planck time, particle creation effects are negligible, and
C,b,d again grows classically. The decrease of the gravi-
tational entropy in quantum processes and its growth
during "classical" epochs is similar to the behavior of
black-hole entropy. In this paper we find a similar form
for the particle creation probability, which suggests that
the above heuristic picture, if correct, can be extended to
inhornogeneous spacetimes as well. This is not surpris-
ing, because the Weyl tensor gives a measure of inhomo-
geneity as well as anisotropy.

We now give a brief outline of our method of calcula-
tion. The excitation of free fields (i.e., fields with no
nongravitational interaction) by a curved background is
usually studied by means of a Bogoliubov transformation
of the Heisenberg equations of motion, which gives an ex-
act solution of the problem. ' For spatially homogeneous
metrics, this method is convenient because mode solution
of the curved-space field equation can be separated, and
the time evolution of individual modes can be given ex-
actly in favorable cases. For inhomogeneous spacetimes
we resort to a perturbative treatment: we assume the
geometry can be written as a Hat Minkowski background
plus a s~all perturbation, g,b

=g,b+ h,b, and expand the
scalar field Lagrangian in powers of h, b. In Sec. II we
carry out the expansion to lowest order and calculate the
pair-creation probability via the S matrix. In Sec. III we
generalize the result to perturbations around conforrnally
fiat metrics, g,I,

= (rl)rl, i, +H, i„which are of cosmolog-
ical interest (a is the Robertson-Walker scale factor, rj is
conformal time). Our conclusions follow in Sec. IV, and
we relegate most of the technical details to the Appen-
dixes.

Here, we briefly mention the relation of this paper to
previous work. Birrell and Davies' and Zel'dovich and
Starobinsky studied particle creation in homogeneous
anisotropic spacetimes using a perturbative treatment of
the Heisenberg equations of motion. The results of this
paper include their work as a special case. The calcula-
tion of (T,b) by Horowitz and Wald' includes vacuum-
polarization and particle creation effects to lowest order
in h,b, but the energy density of created particles con-
sidered here arises only in second order in h, b and is not
included in their computation.
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II. PERTURBATIONS IN MINKOWSKI SPACE

To study particle creation by inhomogeneous perturba-
tions of Aat space, we consider the following idealized pic-
ture the metric is taken to be everywhere that of Aat
space with the exception of a compact region where the
curvature is nonzero. This formulation has the advan-
tage that in the Minkowskian "in" (t~ —Op ) and "out"
(t~+ op ) regions, particle states, and in particular the
vacuum state, are physically well defined: all inertial ob-
servers in the asymptotic regions will agree on the pres-
ence or absence of particles, because the "in" and "out"
vacua are Poincare invariant. (We could replace the as-
sumption of a compact perturbation with one in which
the curvature falls o6'su%ciently rapidly, by defining adi-
abatic particle states. ) This situation is clearly analo-
gous to the usual asymptotic treatment of scattering in-
teractions in Aat-space field theory. We will develop this
analogy further by evaluating the S matrix in the interac-
tion picture.

In a general curved space, the Lagrangian for a real
scalar field is taken to have the form (see Appendix A for
conventions and notation)

where R is the Ricci scalar and g is a dimensionless con-
stant. (For /=0, the field is said to be minimally coupled
to the metric; for g= —,', the curved-space Klein-Gordon
equation is conformally invariant in the massless limit. )
To write this in the form L =Lo+LI, where

is the Lagrangian in Aat space and LI describes the in-
teraction with the external gravitational field, we expand
the scalar field action in a functional Taylor series about
fIat space. The first-order term is well known to be
5S = ,' f—dx T,b5g'; the interaction Lagrangian is then

LI = —
—,
' T,bh', where we have used the fact that, to first

order in the perturbation, g'b= q' —h ' . The Min-
kowski stress tensor of the scalar field is

(3).

In the interaction picture, the field operators satisfy the
Aat-space Klein-Gordon equation derived. from the "free"
Lagrangian (2), with the usual plane-wave solutions
P;„(x). Although I.I has the form of a derivative interac-
tion, it is straightforward to show that the canonical in-
teraction Hamiltonian density is HI(P;„)= Ll(C&;„—), in-
dependent of representation. From Eq. (3), we can write
the Feynman rule for the pair-creation vertex shown in
Fig. l. (Parentheses on indices denote symmetrization. )
The scattering vertex is obtained by letting k~ —k.
Note that we are treating h' as a classical c-number
source, so we only need evaluate matrix elements of the
stress tensor. Since T,b is quadratic in the fields, to
lowest order in h, b particles are created only in pairs.
For the total pair-creation probability (in this case also
the expectation value of the number operator in the
"out" region), we find, ' using Appendix 8 and the
definitions of Appendix A,

Lo= 2(rl' B—, /dbms mP—
) (2)

qd pd k 4P= f q P 5'(q —p —k) M(q, k,p)l'
2cok 2co&

1/2
4m

d4q g q2 —4~ 2

60 q2

2 1
2

. lR (q)l 60(g —
—,') —40 g' ——+

q' 6 6q'

2

+lc.b,d(q)l' l- 4m

q

(4)

As required, this expression is manifestly gauge and
Lorentz invariant. The total emitted energy in the "out"
region is just Eq. (4) with a factor 2q 8(q ) inserted in the
integr and.

There are several features to note about expression (4).
First, as expected, the creation rate is of order (h, b ) .
Second, in this approximation time-independent sources

Q=P+k

M = ivrh (q) pi kbi- (I —4(')(m + k ~ p)~ b- 2(q qb

FICx. 1. Pair-creation vertex for scalar particles.

do not create particles, because the amplitude

S d x h' (x)e'"+P'"fi

-2m5(k +p ) .

Third, there is no particle creation for Ricci-Aat pertur-
bations, i.e., for solutions satisfying the vacuum linear-
ized Einstein equations, e.g., gravitational waves. (To
this order in perturbation theory we expect the graviton
to be stable anyway because there is no phase space for it
to decay. ) Fourth, the threshold for massive particles
roughly implies that creation occurs only if the curvature
varies over scales less than the particle Compton wave-
length, in agreement with dimensional arguments. Need-
less to say, perturbations due to macroscopic sources to-
day, e.g., stellar pulsations, have negligible power in sub-
Compton wavelengths. For example, the collapse of a
protostar of solar mass releases —10 ergs in the form of
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heat but only ~ 10 ergs in direct particle creation. By
power counting, the pair-creation probability is ultravio-
let finite for sources which fall off faster than h, b -q " at
large momentum. For massless particles, there is no in-
frared catastrophe if h, b ~q at small momentum. As
in the electromagnetic case, however, there are sources
for which P diverges but for which the emitted energy is
finite.

In the massless case, for sources which satisfy
l&,b(q)l = l&,b(q) 0(q ), we can use Parseval's theorem
to rewrite Eq. (4) as

P d4& 60 & 2g 2+ g Cabcd1

For conformally invariant scalars (g= —,', m=O), this ex-
pression is conformally invariant, so we expect it to hold
in a conformally flat background as well.

We close this section by noting that Eqs. (4) and (5), al-
though derived for a flat-space background, are useful ap-
proximations in cosmological spacetimes as well, provid-
ed the expansion rate is slow. For example, they may be
applied to the creation of particles by the gravitational
field of oscillating cosmic strings. '

V'Vc =( g(o) )
' (-')~(& g(o)g('o)()b ) .

With this decomposition of the Lagrangian, we have
reduced the problem to that of two interacting fields on a
FRW background. Thus, our approach is formally simi-
lar to earlier studies of the creation of self-interacting sca-
lar fields in FRW universes. ' However, the context here
is rather different, for we are interested in the production
of particles which have derivative interactions with an
external field H,b, in addition to their coupling to the
FRW metric. (Below, we discuss H, b as a dynamical
field. )

In the interaction picture, the field operator satisfies
the Klein-Gordon equation in the background spacetime
(derived from L ' ')

(V"V +m +JR' ')/=0

which has the solutions'

y(x ) = f d'k (a/, f/, + a/, f/,*),

III. COSMOLOGICAL PKRTURBATIONS

We next consider the case of inhomogeneity in an ex-
panding background, without restriction on the expan-
sion rate. The new features here are that the expansion
can itself generate particles (in the absence of inhomo-
geneity) and also gives rise to a particle creation term
which is first order in the metric perturbation. We as-
sume that the unperturbed metric has the form of a spa-
tially flat FRW model:

g,'b'dx'dx =dt a(t)(dx +—dy +dz )

=a (i))(dil —dx —dy —dz ),
where the conformal time il= j'dt'/a(t'), and a(t) is

the FRW scale factor. When a (il) is time dependent, in
general there is no privileged definition of the vacuum
state as there is in Minkowski space, and the notion of
particles is inherently ambiguous. (This is partially a
reflection of the fact that the expansion can create parti-
cles. ) To obtain meaningful results, we must restrict the
form of the expansion such that the vacuum state can be
defined in the asymptotic regions [see discussion follow-
ing Eq. (10)].

If we write the perturbed metric as g,b
=g,'b'

+H, b
=a (q)(i),b+ h, b ) and define L' ) as the scalar La-

grangian evaluated at g,'b', then a similar argument to
that of Sec. II gives the interaction Lagrangian
LI = —

—,'Q g(o)H' T,'b'. Here g(o—) is the determinant of
g,'b' and T,'b' is the scalar field energy momentum in the
FRW background:

where

y'k'+ lkl +m a +(g —
—,') (10)

where o/;„=(lkl +m a) )' . The field operator in the
asymptotic regions may then be written as

lim P(x)=(2~) a, ' f d k(ake' " ' '""+H.c. )'g~ oo

and

Here, a prime denotes d /d g, and we note that the Ricci
scalar for a spatially flat FRW universe is R (il )

=6a "/a . From Eq. (10), in order to obtain well-defined
asymptotic vacua, we restrict the expansion rate as fol-
lows for g& —,', we require a "/a~0 as i)—++ca; for
m &0, the expansion is asymptotically static, i.e.,
lim„, a(i))=a„ lim„+„a(il)=a&. As before, we
are assuming the inhomogeneous perturbation vanishes
as tj —+ + (x) .

As a reflection of the fact that the FRW expansion
(with M,b=0) can create particles, the vacua in the
asymptotically flat "in" and "out" regions will in general
be different. We assume fk(x) is a pure positive-
frequency flat-space mode in the distant past:

lk x —leg) 77in

lim fk(x) =

T b ~ 4~b4 g b (g (0) () '(t ()d'(t' m (t

—g(v a — '"v'v' +z"'——,
'z'o) .',")y'. (7)

lim (t(x)=(2~) ~ az ' f d k(bke '"' +H. c. ) .g~+ oo

Here V, is the covariant derivative with respect to g,'b'

and the d'Alembertian

(13)

The creation and annihilation operators in the "in" and
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"out" vacua, defined by ak Io);„=bk IO),„,=0, are related
by the usual Bogoliubov transformation

bk ~kak+/ ka —k (14)

where

l~» I' —I/3» I'=1 .

In general, the homogeneous expansion mixes positive-
and negative-frequency modes, i.e., pk&0 for some k, and
particles are created; the average number density of
created particles is

No=(2~a) 'f d'k; (Olbkbklo);

=(2~a) 'fd'kl/3 I'. (16)

The Bogoliubov coeKcients can be calculated analytically
for certain special functional forms of a(rI); in general,
however, one must resort to approximations or numerical
techniques. '

We now include the interaction with the metric pertur-
bation M,b. Assuming the field is in the "in" vacuum at
g~ —~, the state can be written as '

p&=lo&,„+-,' fd'k d'p;. &k,plsl»;. Ik, p &;. , (»)

where the first-order S matrix is

S = ' fd4x+ g,—H'bT"'

The expectation value of the number operator
N =(2aa) fd q b bq in the state Ii/) can be written as
a sum of three terms:

(qlNI1t & =No+N +N, (19)

which are, respectively, of zeroth, first, and second order
in H, b. The first term No is given in Eq. (16) above; it
embodies the creation rate due to the expansion without
inhomogeneity. The first-order contribution arises from
the interference between the 0- and 2-particle states,

N, =(2ira) f d k d p 5 (k+p)

xRe[(k&plslo)(akpk+a~/3~)], (20)

where, here and below, all particle states are taken to be
"in" states. Here, the S-matrix element is given by

& k,plslo &
= f—d—'x H"f d~.f» db&f,

* ,'n.bn"d—~.f—k'dd&f,*+-,'g'b'~ 'f» f*
2

PV. ab g.',—"V'V, +~—.'b','~ '"g,'b')fk*f*] . (21)

Unlike the first two terms, N2 survives even if all the /3»

vanish; this term is the FRW analogue of the
Minkowski-space expression.

To illustrate these formal results, we shall study several
choices of the scalar field parameters for which the prob-
lem simplifies. First, consider the conformally invariant
scalar field, i.e., m =O, g= —,'; this case is of interest since
the results are similar to those for other conforrnally in-
variant fields, such as photons and free massless fermions.
As is well known, conformally invariant particles are not
created by an unperturbed FRW expansion, allowing one
to clearly separate the effects of expansion from inhomo-
geneity on the particle creation rate. For conformally in-
variant scalars, the wave equation (10) reduces to

x'k'+ 1kl'xk =0, (23)

which is just the mode equation in Oat space. The nor-
malized positive-frequency solutions for all g are

We note that the first-order term is not present in Min-
kowski space, since it arises from the combined effects of
expansion and inhomogeneity. In addition, N, vanishes
if the in and out vacua are identical (/3» =0 for all k), i.e.,
if the homogeneous background produces no particles.
The final term is given by

N2=(2rra) f d k d p I &olslk, p & I (Ip» I
+ Ipi, I

+1) .

(22)

where k—:Ikl. From Eqs. (12)—(14), we see that /3» =0
for all k, and thus No=N, =0. To evaluate X2, it
remains to evaluate the S-matrix element of Eq. (21), us-
ing the modes of Eq. (24). The task is simplified by ex-
ploiting conformal invariance. Under a conformal trans-
formation g b ~g,'b'=a (q/, x)g b, for conformally invari-
ant fields, the stress-energy tensor transforms as'
T,&

~T,'b'= a T I, provided its trace vanishes,
T=T,'=0. In curved space, the vacuum expectation
value of T is not zero, due to the trace anomaly. ' Howev-
er, it is clear from the form of Eq. (7) that the 0~2 parti-
cle matrix element of T,'b' is finite (unlike its vacuum ex-
pectation value), while the trace anomaly arises from the
fact that conformal invariance is broken when the theory
is regularized (e.g., in dimensional regularization, the
effective action is not conformally invariant in d&4).
The anomaly thus does not contribute to this matrix ele-
ment, and (2I T,'b'IO) is conformally related to the Min-
kowski value. (There will be nonzero vacuum stress due
to virtual particles during the period when h, b&0, to
which a particle detector would respond; however, this
does not give rise to a nonvanishing particle density in
the asymptotically fiat future. ) It follows that the first-
order S-matrix element is conformally invariant:

sI,. = —(i/2) fd"xQ —g~o~H' (2IT,',"lo&

(i/2) f d x h' (2I TMIO&,

e
—ikg

(24) and from Eqs. (5) and (22) we find
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P — d4& CM Cabcd1
abed M (25)

(26)

We note that in the special case of homogeneous aniso-
tropic perturbations, i.e., H, b =H,b(il), Eq. (26) can be
written

dna g C,b,dC'b'",1

which agrees with the results of previous authors. ' '

Another class of interesting particles is massless scalars
with nonconformal coupling, i.e., m =0, g& —,'. For exam-
ple, gravitons and Nambu-Goldstone bosons can be
treated as massless scalars with minimal coupling, /=0.
We first consider a particular spacetime for which the
problem simplifies: namely, FRW backgrounds with van-
ishing Ricci scalar, R' '=6a "/a =0. We suppose the
dominant component of the cosmic matter can be de-
scribed as a perfect Auid with equation of state p =vp',
v=0 for a matter-dominated universe, and v= —,

' for radi-
ation. From the Einstein equation, the FRW solution for
the scale factor is then

a ( )
2/((+3v) (28)

so that

12( 1 —3v)a R
(1+3v) i)

Thus the condition R' '=0 holds for v= —,', i.e., a radia-
tion dominated universe. In the standard cosmological
model, the Universe was radiation dominated for times
earlier than about 10 yr, although it may have under-
gone a very early phase, near the Planck or grand unified
epochs, when other forms were matter dominated (e.g. ,
inflation). From Eq. (10), the mode equation for massless
scalars in a radiation-dominated background again
reduces to the Aat-space equation. Thus the Bogoliubov
coefficients P&=0 and the terms No=N(=0. To calcu-
late X2, we again exploit the conformal triviality of the
background. Since R' '=0, the Ricci scalar due to the
perturbation transforms conformally, R (H, b )
=a (il)R(h, b), where R(h, b) is given by Eq. (A4).
From Eq. (5), we find then

f d xQ g(o)[60(g,') R (H~b)
1

960~a

(29)

+C,b,qC' '"]

(R' '=0) . (30)

For general FRW spacetimes with R' '&0, we can
make progress by expanding about the conformally in-
variant limit, g= —'. In the massless mode equation (10),

where C,b,d is the Weyl tensor calculated with the metric
h, b =a H,b. From the conforma1 invariance of C,"b„
this can be written in terms of the Weyl tensor of the
cosmological perturbed metric g,b.

N2= d x a (7))C,b,&C'"' for m =0, g= —,
' .1

we treat (g —
—,
' )R' ' as formally of order e, and we retain

terms in the pair-creation density which are of the form
0 (e )+0 (eH)+0 (H ); these are the lowest-order terms
which survive. Following Birrell and Davies we evalu-
ate the Bogoliubov coefficients to order e:

13k = f e '""(g—,')R'—'(21)a (r))drl . (31)

The resulting expression for Xo is well known:

(g —
—,
' )'

No = f di) a (g)R (o) .
16+a

(32)

[We note that, since we are treating (g —
—,
' )R ' ' as small,

we could also have arrived at Eq. (32) directly by using
Eq. (5).]

In calculating N2, we note that pk is of order e, so
that, in Eq. (22), the terms proportional to ~)(3k ~

are of or-
der e H, and can be dropped in our approximation. In
addition, the modes fk appearing in the S-matrix ele-
ment for X2 can be replaced to this order by the "in"
modes, since the true modes differ from the "in" modes
by a term of order e. As a result, N2 is just given by the
Weyl term, Eq. (26), i.e., there is no (g —

—,
'

) R (H, b ) term
here since it is higher order. The term N& will be of or-
der H(g —

—,')R' ', it can be evaluated for special choices
of a (i)), but is not generally expressable in terms of cur-
vature invariants.

Thus far, we have treated the metric perturbation H, b

as a prescribed external classical field. In fact, of course,
H, b has a well-determined dynamics of its own, given by
the solutions of Einstein's equations linearized about a
FRW background. We expand the Einstein action in
powers of H,b, and couple the matter fields through an
interaction Lagrangian of the form LI given above.
Then, to first order, the perturbed Einstein equation can
be written

where 5T,b includes the expectation value of the 0 (H)
vacuum polarization' and pair-creation terms (the back
reaction of the scalar field on the perturbed metric), as
well as any classical stress and density perturbations in
the matter. A general metric perturbation can be decom-
posed into three parts: (i) transverse, traceless tensor per-
turbations, corresponding to gravitational waves in the
FRW background; (ii) vector perturbations, which corre-
spond to rotational velocity perturbations of the matter
fiuid (without change of density); and (iii) scalar perturba-
tions, which couple to density and stress perturbations in
the matter. If the stress perturbation vanishes, then
gravitational-wave perturbations satisfy Lifshitz s equa-
tion, ' which can be written in a form identical to the
wave equation for massless, minimally coupled scalars.
For the tensor perturbations, our study thus reduces to
the theory of two scalar fields, one with /=0, the other
with arbitrary g, interacting via Eq. (33) in a homogene-
ous, isotropic FRW background. Thus, the dynamics of
the graviton is determined by two factors: damping due

16wG~T, b
=V'V, H, b

—V'V(, Hb), +V, VbH

+H,bR' '+g,'), '(V'V', H V'V'H, (, ), —(33)
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to the creation of scalar particles and excitation (graviton
creation) by the FRW background. The latter process
has been studied by a number of authors, ' with the re-
sult of Eq. (32) above.

However, the results presented above are more general,
because they apply to scalar and vector as well as tensor
gravitational perturbations. For example, consider
cosmological density perturbations obeying Einstein's
equations as a possible source of particles. Expanding the
perturbation in plane waves, at sufficiently early times the
wavelength of the perturbation is larger than the instan-
taneous Hubble radius (a/a) '=a /a'. On scales out-
side the Hubble radius, a calculation in synchronous
gauge (boo=ho;=0) shows that the density perturba-
tion grows as (5p/p)-q, and that the metric perturba-
tion

h (g)-(ag ' + ' "+ ') -const,5
1J

P
(34)

independent of the equation of state. Substituting Eq.
(34) into Eq. (26) we find N2=0 for these perturbations.
This is just a reAection of the fact, noted earlier, that stat-
ic sources do not create particles. Although this result
was derived in the synchronous gauge, the statement that
%2=0 is gauge invariant. As confirmation of this, there
exists a gauge-invariant measure of the perturbation
which is time independent for this mode outside the Hub-
ble radius. Thus, growing mode perturbations outside
the Hubble radius satisfying the classical Einstein equa-
tions do not create massless particles. As a consequence,
in agreement with expectations from causality, ' density
perturbations outside the horizon at early times are not
damped. Note that, in reaching this conclusion, we
should insert the caveat that we are considering only
spacetimes which have the global structure of spatially
flat FRW universes, with topology R XR '.

IV. CONCLUSIONS

In this paper we have calculated the probability for
pair creation by small-amplitude perturbations of FRW
cosmological models. For conformally invariant scalar
fields, the pair production probability is expressed entire-
ly in terms of gauge-invariant geometrical quantities. In
the limit that H, b is space independent, the results
presented here reduce to the expressions found previously
by several authors for homogeneous anisotropic FRW
spacetimes. By analogy with those results, we believe
that subhorizon perturbations will be strongly damped at
early times. We should point out that other processes
may damp inhomogeneities at early times as well; for ex-
ample, in asymptotically free theories, near the Planck
time the mean free path is larger than the particle hor-
izon and particles can free-stream out of overdense re-
gions. In addition, large-amplitude perturbations may
develop into black holes which subsequently evaporate by
the Hawking process. The inflationary scenario is prem-
ised on the initial condition of homogeneity on horizon
scales, a condition which may require such damping
mechanisms to achieve.
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APPENDIX A: RESULTS FROM LINKARIZED
GRAVITY

In this appendix we set out our notation and conven-
tions and some useful results from linearized relativity.
We follow Bjorken and Drell in normalizing field opera-
tors, states, and commutation relations. Four-
dimensiona1 Fourier transforms are defined with the nor-
malization

f (q) =(2') f d x e'~ "F(x) .

For the metric and curvature, our sign conventions are
( ———) in the terminology of Misner, Thorne, and
Wheeler, so the metric has signature —2 and on-shell
squared momenta are positive. We use units in which
A=c= l.

In linearized relativity, the metric is g,b=g, b+h, b,
and the inverse metric is an expansion in the perturba-
tion, g' =g' —h '"—h, h '"+ . . ; the determinant of the
metric is given by V —g = 1 + h /2+ . , where
h:—g' h, b. Indices are raised and lowered with q,b. The
connection coe%cients are

r:„=,'q'"(a. hbd+-Bbh, d Bdh, b } . —

To lowest order, the Riemann curvature is

R.„„=q.f(a„rf —a, rf„)
=

—,'B,B)bh, )d+ —,'Bd B),hbi, ,

(A l}

(A2)

where brackets denote antisymmetrization. The Ricci
curvature is

R,b =R,', -= —
—,'a a, h.b+-,'~'a, .h», —

—,'a. abh

and the Ricci scalar

(A3)

R =g' R =O'B, h —8'0'h„. (A4)

We would like to express the pair-creation probability in
terms of geometric invariants. Since the S matrix is
-h' (q)O(q ), the probability -h'"(q)h' ( —q)O(q ),
since h'b is real. From the form of Eqs. (A2) —(A4) and
the requirements of local gauge invariance and global
Lorentz invariance, the choices are the curvature-squared
terms R (q)R ( q), R,b(q)R' ( —q—), R,b,d(q)R' '"( q}. —
Now, from (A2) —(A4), it is easy to read off the Fourier
transforms, e.g. ,

R (q) =q'q'h„(q) —
q h (q) (A5)



396 JOSHUA A. FRIEMAN 39

and the invariants of interest are

IR(q)l =R(q)R( q) q q qbqzh (q)" ( q)+q h{q)" ( q) q qbqa[h { q)" {q)+"b"(q)" ( q)]
2

IR,b(q)l = 2q, q, qbqzh "(q)h "( q)— —q, q'h, b(q)h '( q—)+ —,'q h' (q)h, (, ( q)—

(A6)

,'q—
q—,q, [h "(q)h ( q)—+h "(—q)h (q)],

IR,b,ql = —,'q h' {q)h,b( q) —2q —q, q "hbq(q)h' ( q)+—q, q, qbqqh "(q)h" ( —q) .

(A7)

(A8)

In the linearized theory, h' transforms as a Lorentz
tensor under global Lorentz transformations, so these ex-
pressions are Lorentz invariant, as required. Also, under
local gauge transformations (infinitesimal coordinate
transformations) x '~x '+P, the metric perturbation
transforms as h, (,

—+h, b
—

Bb g, —(),gb, and the Riemann
tensor (and its contractions) are gauge invariant.

We note from Eqs. (A6) —(A8) that

C,b,z(q)C' '"( q) =—2R,b(q)R '"( —q) ——', R (q)R ( —q)

(A12)

in the linearized case. The conformal tensor vanishes in
conformally Hat metrics and thus provides a measure of
the deviation from isotropy and inhomogeneity. Physi-
cally, it is often thought of as the part of the curvature
which propagates tidal forces.

IR.„&I' —41R.b I'+ IR I'=0 (A9)

so IR,b,z I is not an independent invariant. As a check,
we would also have guessed this from the Gauss-Bonnet
theorem, which states that in four dimensions, the quan-
tity

G[g,b]= f d x&—g (R, ,„R' '"—4R R' +R )

is a topological invariant, i.e., its variation with respect to
the metric vanishes. Thus,

G [g.b+h.b]- fd'q{ IR.(„~I' 41R.b I'+ I—RI')

=G[g,b]=0 .

In four dimensions, the Weyl conformal tensor is
defined as

C,b,q=R, („q+(gb(,Rq)g g, (,Rq)b)+—,'Rg, {qg,)b (A—10)

and the absolute value-squared of its Fourier transform is

APPENDIX B: EVALUATION OF PAIR PRODUCTION

This gives the Lorentz-invariant four-momentum prod-
ucts

2 2

p k= ~ —m', p.q=k q ——~
2 '

2
(B1)

In this appendix we outline the calculation of the pair
production probability, Eq. (4). Since we are treating the
inhomogeneity as the source of an ordinary perturbative
interaction in Minkowski space, the answer must be
Lorentz invariant, and this property greatly simplifies the
calculation. We can evaluate all quantities in the center-
of-momentum (c.m. ) frame, in which

p =(E,p), k =(E, —p),
q =p+k =(2E,O)=(+q, O) .

I c.„,(q) I'= IR.„„I' —2IR.„I'+, IR I' .

Using (A9), we can express this as

(Al 1) Substituting (Bl) into the momentum-space Feynman
rule of Fig. 1, the pair-creation probability of Eq. (4) be-
comes

4 ~M
P =m f d q (1—4g) q +(I(,b)(,~)+4( IMq, qbq, q~)h'"(q)h'"( —q)

4

+q2(1 4()(gq, qbIM —
—,
(—I(,b) )[h ' (q)h ( q)+h '

( —q)h (q—)]

2g'q, qbI(, q) [h'"(q—)h'"( q)+h' ( —q)h' (—q)]

where we have used the reality of h' to set h' (q)"
=h' ( —q). The integrals appearing in (B2) are

k G p 4
~(ab)( cd) |) (q —k —p)k(, p(, )k(,pq) .

2cog 2co&
(B5)

k G p 4

k8p 4I(,b)
= f P 54(q —k —p)k(, p„)

2COk 2'&

(B3)

(B4)

I~ is a standard phase-space integral for two-body de-
cays. It is most easily evaluated by putting it in manifest-
ly covariant form and subsequently evaluating in the c.m.
frame. The result is
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2
1/2

2 8(q )0(q —4m ) .
q

(B6)

To evaluate the remaining integrals we use symmetry
and Lorentz covariance. I[,b~ is a symmetric Lorentz-
covariant tensor which only depends on m and q, so it
must be of the form I[,b~=I, g,b+I~q, qb where I, and
I2 are Lorentz invariant. Contracting with g,b and q'q
gives two simultaneous algebraic equations for I, and I2,
evaluating the solutions in the c.m. frame gives the well-
known result

To evaluate I[,b][,d], we employ the same principles.
Using symmetry under interchange a~b, c+-+d and under
exchange of the first and second index pairs (ab)++(-cd),
we can write

(ab)(cd)= I lab lcd J2( qac 9bd+qad abc )

+J3q, qbq, qd+ J4(g,bq, qd+ri, dq, qb )

+~5( qacqbqd+qbdq qac+ 9adqbqc+ )bcqaqd )

2mI(.b)
= 2q. qb 1+

q
+q g, b

1—4m

(B7)
I

We again contract this to form Lorentz invariants which
can be evaluated in terms of IM and the quantities in (B1).
Solving the resulting five simultaneous equations for
J&, . . . , J5 yields

M 2m 6m2 4

I( b)( d) 24 (q —4m ( q: l,d+ q., qbd+ ) dqb, )+8q.qbq 'qd 1+ +

+ (q 4 ) 'q + )( q b qqd+ 'q dq qb )—,( q.,qbqd+ 1bdq q, +q.dqbq + fb q 'qd )

(B8)

We substitute (B6)—(B8) into (B2) and obtain

2 2 4

P = J d4q IM 3 40/+—120$'+ (16—80$)+ Iq h (q)h ( —q) q'q, qb[h'—(q)h ( q)+h' ( —q)h (q)]I—
q4

2
2

4m

q
[q h' (q)h, b( q) 2q q'qb—h„(—q)h '( —q)]

2 6 4 2

+ 4 1+ + —40/+120/ —80$ [q, q q, q„h' (q)h' ( —q)]2 4 (B9)

Now, using Fqs. (B6) and (+6)—(&12), we can finally write this in the form given in Eq. (4), Sec. II. We note that since
the integrand is even in q, we can replace 0(q ) with a factor —,', with the integral now unrestricted.
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