PHYSICAL REVIEW D

VOLUME 39, NUMBER 12

15 JUNE 1989

Brief Reports

Brief Reports are short papers which report on completed research which, while meeting the usual Physical Review standards of
scientific quality, does not warrant a regular article. (Addenda to papers previously published in the Physical Review by the same
authors are included in Brief Reports.) A Brief Report may be no longer than 3% printed pages and must be accompanied by an
abstract. The same publication schedule as for regular articles is followed, and page proofs are sent to authors.

(¢?) for massive fields in Schwarzschild spacetime

Paul R. Anderson
Physics Department, Montana State University, Bozeman, Montana 59717
(Received 4 January 1989)
The quantity {#?) is computed for massive scalar fields in a background Schwarzschild space-
time. For conformally coupled massive scalar fields the expectation value of the trace of the stress-

energy tensor, { T'), is also computed.

Since Hawking’s discovery that black holes emit a
thermal distribution of particles,! a great deal of effort
has gone into the study of quantum effects in black-hole
spacetimes. Two very useful tools in such studies are the
quantities {¢$?), where ¢ is a quantum field, and ( T;w>’
where T, is the stress-energy tensor operator for ¢.
($?) is a useful quantity because it gives one qualitative
information about (7,,) and can often be computed
with much less effort. {($?) also provides information
about spontaneous symmetry breaking in a given back-
ground spacetime. (T, ) gives direct insight into such
quantum effects as vacuum polarization and particle pro-
duction. Through use of the semiclassical back-reaction
equations it also provides insight into the ways in which
quantum fields can affect the spacetime geometry.

To date, most computations of {(¢*) and (T,,) in
black-hole spacetimes have focused on Schwarzschild
spacetime. In a background Schwarzshild spacetime
Fawcett and Whiting,2 Candelas and Howard,> and
Candelas and Jensen* have computed {$?) for a massless
scalar field, while Fawcett’ and Howard and Candelas®
have computed <Tuv) for a massless scalar field. Most
recently Jensen and Ottewill” have computed (T, ) for
the electromagnetic field.

For massive fields no exact computations have been
made. However, an approximate computation of {$?)
has been made by Frolov® and an approximate computa-
tion of (T, ) has been made by Frolov and Zel'nikov* '
for massive scalar fields in Schwarzschild and Kerr space-
times. The approximations used are expected to be valid
when m =Mm >>1, where M is the mass of the black
hole and m is the mass of the scalar field. Throughout
this paper, units are used such that AI=G=c=kz=1.
The results of these calculations show that for 7 >>1
vacuum-polarization effects for massive fields are smaller
than for massless ones and their magnitude tends to de-
crease with increasing mass by a factor of /m

In this paper {$?) is computed for massive scalar fields
in Schwarzschild spacetime using a generalization of the
method used by Candelas and Howard® for massless
fields. It is shown that for m R 2, the approximate ex-
pressions obtained by Frolov and Zel’nikov are valid.
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Vacuum-polarization effects for small values of 7 are
also explored. It is found that even for 72 =0.1 there is a
significant decrease in the value of {¢*) compared to the
m =0 case.

For massive scalar fields with conformal coupling to
the scalar curvature, the expectation value of the trace of
the stress-energy tensor (T ) is also computed. For
m X2, the approximate expressions of Frolov and
Zel'nikov are shown to be valid. As is predicted by their
approximation, the trace anomaly is effectively canceled
by other terms in (T') for m X 2.

The computation of {¢?) proceeds in much the same
way as in Ref. 3. One begins by noting that for the Eu-
clideanized version of Schwarzschild spacetime the
metric has the form

ds?=(1—2M /r)d*+(1—2M /r)" 'dr*+r3dQ? . (1)

The Euclidean Green’s function Gg(x,x) is equal to {¢?)
as can be seen from the relationships

(%) =G V(x,x)/2=iGp(x,x)=Gg(x,x) . @)

As in Ref. 3, the renormalization scheme used to com-
pute {$?) is point splitting. First Gg(x,x’') is computed
for a scalar field in the background (1) and then the
DeWitt-Schwinger expansion for Gg(x,x’) is subtracted
from it. The result is an expression which is finite in the
limit x'—x.

Candelas'! has derived Gp(x,x’) for a scalar field in
Schwarzschild spacetime in the Hartle-Hawking vacu-
um!'? which is a thermal state at the black-hole tempera-
ture T =« /(27), where k=1/(4M) is the surface gravity
and M is the mass of the black hole. Using his results,
one finds that when the points have the same values of 7,
0, and ¢, and different values of 7, such that 7—7'=¢,

G (x,x")=(64m*M?)"1 S (21 +1)po(s)gos(s)
=0

+(327°M*) ™! 3 n " lcos(nke)

n=1
X 2 (21 +l)p,,,(s)q,,,(s) .
1=0
(3)
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A new radial coordinate s has been defined here such that

r=M (s +2). Note that s =0 on the event horizon. The
modes p,; and g, satisfy the equation
d 5 d
— ——1
a’s(s +2s)ds (I+1)
ni(s+2)* .
e ™ s +2)? |R,=0. (4

J
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in the limit
—n/2

They are normalized so that
Por~ 17q01 -~ —lns’ DPni ~Sn/2’ and qni ~S

Note that with the definition 7 =mM, the mass M of
the black hole scales out of the mode equation.

Candelas'! pointed out that, as it stands, the left side of
Eq. (3) is finite as long as x and x’ are separated, but for
the given separation the right-hand side is divergent.
This can be remedied by subtracting the quantity 2/
(s2+25)1/2 from py;qo; in Eq. (3) and adding it to p,q,,
using the identity ¥ _, cos(nke)= —1. The result is

s—0,

Gr(x,x")=(64m*M?)™1 3 [(21 4+ 1)pg(s)go(s)—2/(s2+25)"/?]

1= O

2 cos(nke) 2 [(2l +1)n

n=1 =0

+(3272M?)

Tl (8)g(s)—2/(s2+25)1 2] . (5

To renormalize, one subtracts the DeWitt-Schwinger expression for G (x,x’) which is given by!?

2
2

2
GDs(x,x')z(Swza)_l-}—;n—ﬂ_z y+1n

—1
7]’

(6a)

where o is one-half the square of the geodesic distance separating x and x’ and y is Euler’s constant. For the points

chosen
__€s €'s (6b)
25 +4  24M*(s +2)°
To get Gpg into the same form as G, one can use the Plana sum formula'* which says that, for a function f (n)
S fm)= fG—in]. ¥
n=j
The result is'®
N —(s+2) & 2 172
Gps(x,x )——~ cos(nke)[n?/16+m %5 /(s +2) +—————ln m2s /(s +2)
ps 16m°M s 2 | ] Torip® L :
7 2
s sIn{L+[L+m s /(s +2)]'72)
i(s+2) re dt 2 2 12 .12 2 12
1+ 16+ + —[(1—ir)*/16+ +2
T6n2n1%s Jo [exp2mn—1] {[(1+ir)*/ m s /(s +2)] [(1—it)*/ m %s /(s +2)]'7%}
1
O(e) . (8)
4872 M3%s (s +2)°
Subtracting Eq. (8) from Eq. (5) and taking the limit e— 0 gives the following renormalized expression for {¢$?):
($2)=(64m2M?) "1 S [(21 +1)po;(s)gos(s)—2/(s2+25)'/?]
1=0
+(327*M?)” z 5_‘, [(21+1)n " 'p,(s)g,,(s)—2/(s2+2s5)1 2]+ s+2)[n2/16+ﬁ'12s/(s +2)]'2
P w2 /s 2]~ [ Ns+2)]17?
Py n[m s /(s EYYS n{++[Lt+m %5 /(s 174}
i(s+2) © dt . \2 2 172 L\2 2 172
— 1+it)?/16+ + —[(1—
vor2p?s Jo expemt)—1 {[(1+it) s m s /(s +2)] [(1—it)*/16+m *s /(s +2)]"/%}
1 9

 48mMs(s +2)°

To compute {$?), one solves the mode equations numeri-
cally with the appropriate boundary conditions at the
event horizon, substitutes the results into Eq. (9), and
uses appropriate cutoffs for the sums over / and n. The

f

details of the numerical calculations will be presented
elsewhere.

The results for m =0, 0.1, 0.2, 0.5, 1, 2, and 3 are
shown in Figs. 1 and 2. From these figures it is seen that
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FIG. 1. From top to bottom the curves in this figure corre-
spond to the cases m =0, 0.1, 0.2, and 0.5, respectively. Note
that in each case {¢?) has its maximum value on the event hor-
izon s =0, and decreases monotonically to its flat-space value at
s =00,

($?) is smaller than in the massless case. However, its
overall behavior is much the same in that it attains its
maximum value on the event horizon and decreases
monotonically to its flat-space value at s=o. The
reason this asymptotic value of (¢?) is nonzero is that
the field is at the black-hole temperature T =(87M) !,
Table I gives, to three significant figures, the value of
(¢?) at s =0 and s = o for m=0, 0.1, 0.2, 0.5, 1, 2, and
3.

The approximate expression for {¢$?) obtained by Fro-
lov® comes from higher-order terms in the DeWitt-
Schwinger expansion than are needed for renormaliza-
tion. He kept terms to O(m ~2). To O(m ~* one
ﬁnd38’13'16’17
(¢?) =(16m*M?) " Lm ~*s +2)7°

15

+m s +2)7E =L (s +2)77]

+o(m ~9)} . (10)
For /m X 2 there is good agreement between (10) and the
numerical results for s < 5.

Once {$?) is known, it is easy to compute (7T ) for a
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FIG. 2. The curves from top to bottom in this figure corre-
spond to the cases M =1, 2, and 3. In each case (¢?) has its
maximum value on the event horizon s =0, and decreases
monotonically to its flat-space value at s = .

conformally coupled massive scalar field. Since
T=—m?¢? for this field, the renormalized value of (T')
is just the trace anomaly plus (¢?) (Ref. 13): i.e.,

1
) 60> M*(s +2)°
From Egs. (9) and (11) it can be seen that if (T ) is writ-
ten in terms of 7 and s, then the black-hole mass only ap-
pears as an overall factor of M ~*.

The results of numerical computations for m =0, 0.1,
0.2,0.5, 1, 2, and 3 are shown in Figs. 3 and 4. From the
figures it is seen that the magnitude of (T) decreases
with increasing # and M. In the massless case, (T ) de-
creases monotonically from its maximum value on the
event horizon to zero at s =c. For the massive scalar
field, (T) also attains its maximum value on the event
horizon. It then decreases to a minimum negative value
and asymptotically approaches its flat-space value, which
is also negative, at s = co. The values of { T') at s =0 and
s=ow for m=0, 0.1, 0.2, 0.5, 1, 2, and 3 are given in
Table I to three significant figures.

An approximation for (7T) which reproduces these
features can be obtained by substituting Eq. (10) into Eq.

—m*(¢?) . (11)

TABLEL (¢?) and (T) ats =0and s = .

m 16m*M*($?), - 16T M) = o 16m*M*(T),_, 16°M*(T), -
0 8.33X 1072 2.08X 1072 4.17X1073 0.00

0.1 4.99x1072 2.38X1073 3.67X1073 —2.38X107°

0.2 3.17X1072 2.51x107* 290X 1073 —1.00X1073

0.5 1.07X 1072 2.02x1077 1.48X1073 —5.05x10°8

1.0 3.51x1073 9.82x10713 6.54x107* —9.82x107 13
2.0 9.88x10™* 1.68x 1072 2.16X 1074 —6.71X107%
3.0 4.51%x10™4 2.49X 10734 1.03x107* —2.24X%1073%
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FIG. 3. The curves from top to to bottom on the event hor-
izon s =0 in this figure correspond to the cases m =0, 0.1, 0.2,
and 0.5. The magnitude of (T) decreases with increasing 7.
(T) approaches its flat-space value at s = .

(11). The result is
(T)=(16m*M*m 2) [ —3(s +2) 73+ 2i(s +2)77] .
(12)

This is identical to the result that one finds by taking the
trace of the approximate expressions for ¢ T/w) given by
Frolov and Zel’nikov.>!® Equation (12) gives good quan-
titative agreement with the numerical results for m 22
and s 3.

From the above results it is clear that vacuum-
polarization effects in Schwarzschild spacetime due to

FIG. 4. The curves from top to bottom on the event horizon
s =0 in this figure correspond to the cases m =1, 2, and 3. The
magnitude of {(T) decreases with increasing m. (T) ap-
proaches its flat-space value at s = .

massive scalar fields are always smaller in magnitude
than those due to massless scalar fields. Further, as pre-
dicted by the calculations in Refs. 8 and 9, these
vacuum-polarization effects are negligible compared to
those due to massless scalar fields when m < 2.
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