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The quantity (P ) is computed for massive scalar fields in a background Schwarzschild space-
time. For conformally coupled massive scalar fields the expectation value of the trace of the stress-

energy tensor, ( T), is also computed.

Since Hawking's discovery that black holes emit a
thermal distribution of particles, ' a great deal of effort
has gone into the study of quantum effects in black-hole
spacetimes. Two very useful tools in such studies are the
quantities (P ), where P is a quantum field, and ( T„„),
where T„ is the stress-energy tensor operator for P.
(P ) is a useful quantity because it gives one qualitative
information about (T„) and can often be computed
with much less effort. (P ) also provides information
about spontaneous symmetry breaking in a given back-
ground spacetime. (T„,) gives direct insight into such
quantum effects as vacuum polarization and particle pro-
duction. Through use of the semiclassical back-reaction
equations it also provides insight into the ways in which
quantum fields can affect the spacetime geometry.

To date, most computations of ( P ) and ( T„) in
black-hole spacetimes have focused on Schwar zschild
spacetime. In a background Schwar zshild spacetime
Fawcett and Whiting, Candelas and Howard, and
Candelas and Jensen have computed (P ) for a massless
scalar field, while Fawcett and Howard and Candelas
have computed ( T„) for a massless scalar field. Most
recently Jensen and Ottewill have computed (T„) for
the electromagnetic field.

For massive fields no exact computations have been
made. However, an approximate computation of (P )
has been made by Frolov and an approximate computa-
tion of ( T„„)has been made by Frolov and Zel'nikov '
for massive scalar fields in Schwarzschild and Kerr space-
times. The approximations used are expected to be valid
when m =Mm &)1, where M is the mass of the black
hole and m is the mass of the scalar field. Throughout
this paper, units are used such that A=G=c=k&=1.
The results of these calculations show that for m ))1
vacuum-polarization effects for massive fields are smaller
than for massless ones and their magnitude tends to de-
crease with increasing mass by a factor of m

In this paper (P ) is computed for massive scalar fields
in Schwarzschild spacetime using a generalization of the
method used by Candelas and Howard for massless
fields. It is shown that for m «2, the approximate ex-
pressions obtained by Frolov and Zel'nikov are valid.

Vacuum-polarization effects for small values of m are
also explored. It is found that even for I=0.1 there is a
significant decrease in the value of ( P ) compared to the
m =0 case.

For massive scalar fields with conformal coupling to
the scalar curvature, the expectation value of the trace of
the stress-energy tensor (T) is also computed. For
m ~ 2, the approximate expressions of Frolov and
Zel'nikov are shown to be valid. As is predicted by their
approximation, the trace anomaly is effectively canceled
by other terms in ( T ) for I R 2.

The computation of (tb ) proceeds in much the same
way as in Ref. 3. One begins by noting that for the Eu-
clideanized version of Schwarzschild spacetime the
metric has the form

ds =(1 2M/r)dd+(—I 2M/r) 'dr—+r dQ

(2)

n=1

X g (2l +1)p„t(s)q„t(s) .
1=0

(3)

The Euclidean Green's function Gz(x, x ) is equal to ( P )
as can be seen from the relationships

(P ) = G'"(x,x)/2=iGF(x, x) =Gz(x, x) .

As in Ref. 3, the renormalization scheme used to com-
pute (P ) is point splitting. First GE(x, x') is computed
for a scalar field in the background (1) and then the
DeWitt-Schwinger expansion for Gz( , xx) is subtracted
from it. The result is an expression which is finite in the
limit x'~x.

Candelas" has derived GF(x, x') for a scalar field in

Schwarzschild spacetime in the Hartle-Hawking vacu-
um' which is a thermal state at the black-hole tempera-
ture T =tc/(2m ), where tc= 1/(4M) is the surface gravity
and M is the Inass of the black hole. Using his results,
one finds that when the points have the same values of r,
0, and P, and different values of ~, such that r r'= e, —

G~( ,xx)=(64m M )
' g (2l + 1 )pot(s)qot(s)

1=0

+(32m. M )
' g n 'cos(ntce)
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A new radial coordinate s has been defined here such that
r =M(s+2). Note that s =0 on the event horizon. The
modes p„1 and q„1 satisfy the equation

(s +2s) —l(l +1)d
ds ds

2 3n (s +2) 2( +2)2 / ()
16s

They are normalized so that in the limit s ~0,
701 &q0] l Pn1 s, and qn

n/2 —n/2

Note that with the definition m —=mM, the mass M of
the black hole scales out of the mode equation.

Candelas" pointed out that, as it stands, the left side of
Eq. (3) is finite as long as x and x' are separated, but for
the given separation the right-hand side is divergent.
This can be remedied by subtracting the quantity 2/
(s +2s)' from po&qoI in Eq. (3) and adding it to p„&q„&
using the identity g„,cos(nKe') =

—,'. The result is

Gz(x, x')=(64vr M )
' g [(2l+ l)po&(s)qol(s) —2/(s +2s)'~ ]

1=0

+(32vr M )
' g cos(n~E) g [(2l+1)n 'p„&(s)q„&(s)—2/(s +2s)' ] .

n=1 1=0

To renormalize, one subtracts the DeWitt-Schwinger expression for Gz(x, x') which is given by'

2 2

GDs(x x )=(8' cr) '+
~ y+ —,'ln (6a)

8vr

where 0. is one-half the square of the geodesic distance separating x and x' and y is Euler's constant. For the points
chosen

ES ES
2s+4 24M (s+2)

To get GDs into the same form as GE, one can use the Plana sum formula' which says that, for a function f (n),

oo

g f (n) = + f dx f (x)+i f [f(j +it) f (j —it)]—.
n=j

The result is"

g cos(n«)[n'/16+m 's/(s+2)]'~'+ ln[m 's/(s+2)]
—(s+2) "

2 2 1/2

16m M s „ 16~ M

ln[ —,'+[—,', +m ~s/(s+2)]'~2}

+ ' ',+', f" "' [[(1+it)'/16+m "/(s+2)]'~' —[(1—it) /16+m s/(s+2)]'~ I
16~~M2s o [exp(2mt) —1]

+ +O(e) .1

48m. M s(s+2)
Subtracting Eq. (8) from Eq. (5) and taking the limit e~O gives the following renormalized expression for (y'):

(P ) =(64m M )
' g [(2l+1)poI(s)qol(s) —2/(s +2s)'~2]

1=0

+(32rr M )
' g g [(2l+1)n 'p„l(s)q„&(s)—2/(s +2s)'~ ]+ [n /16+m s/(s+2)]'~2(s +2)

n =1 1=0

(6b)

ln[m s/(s+2)]+ lnI —,'+[ —,', +m s/(s+2)]'
16~ M 8w M

f [[(1+it) /16+m s/(s+2)]'~ —[(1—it) /16+m s/(s+2)]'~ ]
o exp(2~t )

—1

1

48vr M s(s+2)
(9)

To compute (P ), one solves the mode equations numeri-
caHy with the appropriate boundary conditions at the
event horizon, substitutes the results into Eq. (9), and
uses appropriate cutoffs for the sums over l and n. The

details of the numerical calculations will be presented
elsewhere.

The results for rn =0, 0.1, 0.2, 0.5, 1, 2, and 3 are
shown in Figs. 1 and 2. From these figures it is seen that
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TABLE I. (P ) and ( T) at s =0 and s = ~.
16~'M (T), o 16~'I'( T ), = „

0
0.1

0.2
0.5
1.0
2.0
3.0

8.33 X ]0-'
4.99x 10-'
3.17x 10-'
1.07 x 10-'
3.51 X 10
9.88 X 10
4.51 x 10-'

2.08 X 10
2.38 X 10
2.51 X 10
2.02 X 10
9.82 x 10-"
1.68 x 10-"
2.49 x 10-"

4.17 X 10
3.67 X 10
2.90X 10
1.48 X 10
6.54 x 10-'
2.16X 10
1.03 x 10-'

0.00
—2.38 X 10
—1.00 x 10-'
—5.05 X 10
—9.82 x 10-"
—6.71 x 10-"
—2.24 x 10-"
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