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A new Monte Carlo method is presented for estimating the dominant eigenvalue of a matrix
Hamiltonian. It is a version of the power method, in which the basis-state amplitudes are stochasti-
cally rounded to integers. Its relation to the ensemble projector Monte Carlo method is discussed
and some results are demonstrated for the example of the Z, gauge model in 2+ 1 dimensions.

I. INTRODUCTION

Monte Carlo techniques have become established as
the most reliable means of calculation for very large or
complicated lattice systems, such as lattice gauge theories
in four dimensions. Within the context of Hamiltonian
lattice field theory, several approaches of this sort have
been presented.! > They can all be said to derive from
the Green’s-function Monte Carlo (GFMC) method of
Kalos and collaborators.®’ Heys and Stump' adapted
the GFMC method directly to study lattice gauge theory.
Blankenbecler and Sugar? developed a variant called the
projector Monte Carlo (PMC) method, which was later
improved by DeGrand and Potvin* into the ensemble
projector Monte Carlo (EPMC) method. Nightingale and
BlSte® have presented a similar scheme in connection
with lattice spin models. Chin, Negele, and Koonin® also
developed an alternative to GFMC called the guided ran-
dom walk (GRW).

All these methods are based upon a von
Neumann-Ulam “random walk”® in the space of basis
states. At each step in the walk, one applies a “projec-
tion operator” to the current basis state in some stochas-
tic fashion, making a transition to a new state or states.
The projection operator is chosen so as to drive the sys-
tem into its ground state after many iterations: for exam-
ple, it might be e ~HAT o1 H itself, where H is the Hamil-
tonian. The number of times each basis state is visited
during the walk is proportional to its amplitude in the
ground-state wave function (multiplied, in general, by
some weighting function); by exploiting this fact one may
estimate the ground-state energy and ground-state expec-
tation values. In the PMC method, only a single basis
state is allowed in the walk. In the other methods
‘“branching” of the walk is allowed, so that extra basis
states may appear or disappear, and the total number
fluctuates. To improve statistical accuracy, it is useful to
guide the random walk toward the more important re-
gions of state space using a trial wave function (‘“‘varia-
tional guidance). The GFMC and GRW algorithms de-
pend on this variational guidance for calculating vacuum
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expectation values and the results may in fact be biased
by the variational ansatz chosen. A guided-random-walk
algorithm which avoids the problem of bias was discussed
by Barnes, Daniell, and Storey.’

Now for lattice models of lesser complexity, such as
spin models in two dimensions, a deterministic approach
will usually be more accurate than a Monte Carlo ap-
proach. One can evaluate the ground-state energy exact-
ly on a sequence of finite lattices (using a Lanczos algo-
rithm, for instance) and extrapolate to the bulk limit us-
ing finite-size scaling techniques.'® For larger systems,
however, one must truncate the set of basis states to a
manageable size in order to implement this approach.!'!!?
The truncation may introduce an unacceptable systemat-
ic error,' in which case the approach breaks down.

We present here a variant Monte Carlo method called
“stochastic truncation,” which may be viewed as a com-
bination of the two approaches discussed above. Suppose
the ground-state eigenvector |¢,) is to be represented on
a set of basis states |i); then the basis-state amplitudes
(il¢o) are approximated by a set of integers n/X at the
kth iteration. At the next iteration the Hamiltonian H is
used as a projection operator to generate a new set of am-
plitudes or “occupation numbers” n/¥ *1) in a stochastic
fashion. This amounts to a Monte Carlo version of the
standard “power method” of numerical analysis. The
average value of n/X gives the basis-state amplitude
(il¢,7; but at any given iteration, most of the occupation
numbers will be rounded to zero, so that the set of basis
states has been effectively truncated to a manageable size
in a stochastic way, without necessarily introducing any
systematic error.

In Sec. II of this paper we formulate this algorithm in
detail, and in Sec. III we discuss its relation to other ap-
proaches. It is closely related to the EPMC method*> in
fact, with the quantity N'¥'= 3, n/¥ playing the role of
ensemble size. In Sec. IV some preliminary tests of the
method are discussed for the case of the Z, gauge model
in 2-+1 dimensions, and in Sec. V our conclusions are
summarized. A full-scale application of the method to
lattice QED in 2+1 dimensions is described in the fol-
lowing paper.!*
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II. THE STOCHASTIC TRUNCATION METHOD

A. The basic algorithm

Our approach is based on the standard power method
for calculating a single dominant eigenvalue and associat-
ed eigenvector of a matrix. Let H be an n X#n matrix for
which the Jordan canonical form is diagonal, and sup-
pose E is its unique dominant eigenvalue:

|Eol > |E;| for 15i<n—1. (1)

Next, let |¢©') be an initial guess at the exact eigenvec-
tor |¢y) corresponding to E,, which we shall call the
“ground state’’; then a sequence of improved approxima-
tions to |¢,) may be obtained simply via successive mul-
tiplications by the matrix H. Let

|¢(m+l)>:H|¢(m)> (mzo) (2)
and expand |#'”’) in the basis of eigenvectors |¢; ):
n—1
=3 a;l¢;) . (3)
j=0
Then

aoldo) + nil a;

j=1

) =Eg

E; |"

From Eq. (1), (E;/E;)"—0 as m — o, so that the eigen-
vector |¢,) is “projected out””:

9™ >aoEl|dy) as m— oo . (5)

Hence one can obtain estimates of the eigenvalue E, and
eigenvector |¢,).

Now suppose that all calculations are being carried out
in some arbitrary basis of vectors {|i),i=0,1,...,n
—1}. Then the eigenvector |¢,) can be expanded

n—1
lpod =3 cli), (6)
i=0

where for simplicity we shall assume the amplitudes ¢
are positive real numbers. In the stochastic truncation
scheme, we use the power method to construct a se-
quence of (un-normalized) approximations to |¢,):

n—1
hp(m)): 2 nf(m)h-) , (7)
i=0

where the n/™

bers. Denote

are now integers rather than real num-

n—1

N(m): 2 ni(m} . (8)
i=0

The algorithm then runs as follows.

Begin from some initial trial vector |¢?’), specified in
terms of integer amplitudes 7%, and an initial *“score”
S'®. Then at each succeeding iteration m, a new trial

vector |#!"™ ) and score S'™ are generated by the rules
1 b

S(m—l) ©

n,((’"’=2R
i
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N(m) (m—1)
ms . (10)
Here H,; is an element of the matrix H and R (x) is a sto-
chastic “rounding function” defined by the requirement
that, for any real argument x,

S(M):

[x] with probability 1—8§ ,

[x]+1 with probability & , (1)

R (x)= {
where [x] is the greatest integer less than or equal to x,
and 8=x —[x] is the remainder. The function R (x) may
be implemented by generating a random number € in the
range [0,1] and choosing

[x] if e>5,

[x]+1 otherwise . (12)

R(x)=‘

If we denote the average of any quantity over many trials
or iterations by angular brackets we therefore have

(R(x))=x . (13)

B. Equilibrium conditions

Assume that the system settles down after some time to
an equilibrium, where N (m) and S fluctuate over suc-
cessive iterations around some fixed average values.
Then the average amplitude or “occupation number”
(n, ) and the average score are related according to Eq.
(9) by

()= ;Hki<%>
g<§>2Hk,-<n,> (14)

(the approximation involved here will be discussed
below). Comparing this with the eigenvalue equation

S Hyc!=Eyc} (15)
k

we see that Eq. (14) is satisfied if
(ng)<cy, (16)
<é>=Ea‘ , (17)

so the average occupation number {n, ) is proportional
to the ground-state amplitude ¢, and the average (1/S)
gives the ground-state energy.

Thus Eq. (9) implements the power method in a sto-
chastic fashion, and the trial vectors |#™) at equilibri-
um provide a discrete, stochastic representation of the
ground-state eigenvector |@,). For basis states whose
amplitudes ¢ are very small, the occupation numbers
n{™ will usually be zero: thus the less important basis
states have been “truncated” out, again in a stochastic
fashion. Equation (10) adjusts the score in a way
de(si%ned4 to maintain an equilibrium ‘“‘ensemble size”
N,

Our discussion of the equilibrium conditions has relied
upon the approximation made at Eq. (14), that /™ and
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1/8'™ are uncorrelated. This assumption is of course in-
correct, in general. But the error should be unimportant,
provided one works with a sufficiently large ensemble size
(N). It would be preferable if the approximation could
be avoided entirely, but there seems to be no very
straightforward way of doing this. One might try to use
a fixed score S, for instance: but insofar as S differs from
E,, the ensemble size N m would diverge as m — o, or
else decrease to zero, and no equilibrium would be at-
tained. )

C. Measurements

After equilibrium has been reached, one may obtain es-
timates of the eigenvalue E at each iteration in two stan-
dard ways.* One of them, the “growth” estimate, de-
pends on Eq. (17):

Eg=~S'™ . (18)
The other is called the “trial” estimate, based on Eq. (16):
(m) H.nlm
Eg~ <X‘H|§”) ) = L (19)
(xlp'™) iy N

where |y ) is a reference vector, called the “broad state,”
with amplitude c¢; =1 for every basis state. The ground-
state expectation value of any operator Q which com-
mutes with H can also be estimated, simply replacing H
by Qin Eq. (19).

If an operator Q does not commute with H, we must
use two independent trial states to estimate its expecta-
tion value

(m) (m)
($olQldpo) ~ (<¢,(m|ﬁ|p(m))> ’ (20)

where |¢'™) and [¢\™) are two independently evolved
ensembles. We cannot use the same ensemble [¢™) on
either side of Q, because although {n,; ) «c?, it does not
follow that {n?) «(c{)*—in fact that is far from the
truth if (n; ) <1.

D. Variational guidance

If we already know a good approximation to the
ground-state eigenvector, in the form of a vector | Xo>
say, then this can be used to improve our estimates.® !>
The eigenvalue E,, for instance, can be estimated by

{xolHly'™)
EPW 1)

instead of Eq. (19); this latter equation becomes an exact
equality in the case |x,) = |dy).

One way of implementing this'® is to perform a similar-
ity transformation

ly')=Uly) , (22)
H'=UHU !, (23)
where

Uij:<i’X0>81j (24)
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and then to apply the algorithm as before to |4’ ) and H'.
It is easy to see that

Ulx)=lxo) » (25)

where |y) is the “broad state” defined previously and
therefore

lH ) _ xolHIY)
(el (xolw)

Thus the estimate (19) in the transformed system is
equivalent to (21) in the original system.

(26)

III. RELATION TO OTHER APPROACHES

The stochastic truncation technique outlined above is
closely related to the EPMC method of DeGrand and
Potvin,* and that of Nightingale and Blote.” In the
EPMC, one works with an “ensemble” |¢'™), which
merely consists of a set of basis states |/ ), some of which
may be identical with each other. The multiplicity of
each basis state in the ensemble is then equivalent to our
occupation number n/™. The ensemble [¢'™) is em-
ployed as a stochastic approximation to the ground-state
eigenvector in the same way as we have done. The evolu-
tion of the ensemble is carried out somewhat differently
in the EPMC method, however. At each iteration a state
li} is allowed to “branch” into only one new state |f ),
although a number of copies of that state may be pro-
duced.

DeGrand and Potvin* used an operator exp( —HAT) as
“projector” onto the ground state, whereas Nightingale
and Blote® used H itself as we have done. It is technically
easier to use the local operator H as projector, rather
than its exponential: it avoids the necessity for ex-
pedients such as ‘“checkerboarding” the lattice.* One
might expect to pay a penalty in increased “equilibra-
tion” times from the starting configuration, but in prac-
tice we have found that equilibration is quite rapid in any
case.

The EPMC method is also restricted in that the multi-
plicity of each basis state cannot be negative. It is there-
fore only suitable for cases where the ground-state ampli-
tudes c¢? are all real and positive: this is true for a large
class of matrix Hamiltonians in physics, but of course it
is not universally true. Using stochastic truncation, on
the other hand, we can allow the integers n,* to be nega-
tive, or even complex, provided some suitable
modifications are made in the algorithm. There seems no
reason in principle why one cannot handle a general
Hamiltonian matrix—although this remains to be demon-
strated in practice.

Stochastic truncation appears at first sight to have
another advantage, in that each basis state is processed
only once at every iteration, whereas in the EPMC there
are nj™ separate copies to be processed. But this is only
a real advantage if the average of n{™ over all occupied
states (call it 7 (™) is significantly greater than one. The
processing of each state will take longer in the stochastic
truncation case, and each “output” state has to be looked
up in a master file to avoid the duplication accepted in
the EPMC case; so there are some disadvantages to be
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considered also. The average of 7 ‘™ over many itera-
tions may be used as a “figure of merit”: if (7 ) is greater
than (say) 2, then the stochastic truncation method is
probably more efficient than EPMC, whereas if (7 ) ~1
the EPMC method will be preferable.

Stochastic truncation may also be compared with
deterministic truncation schemes, such as those discussed
by Irving and Hamer,'! or Patkos and Rujan.'? In deter-
ministic schemes, one works within a specified subset of
the full space of basis states, and then calculates the exact
ground-state eigenvector and eigenvalue within that trun-
cated subspace. If the matrix H is not too large, or if the
ground-state eigenvector is dominated by a relatively few
basis states, then this will clearly be the most precise and
economical method. In other circumstances, however,
the truncation may introduce an unacceptably large sys-
tematic error: this is likely to occur, for instance, at
weak couplings in a lattice gauge theory.!3

In the stochastic scheme, the truncation does not a
priori introduce any systematic error. The ensemble size
is limited, but if one averages over sufficiently many itera-
tions, every basis state will be sampled from time to time.
On the other hand, there will be a substantial random er-
ror to contend with. As usual, we expect the Monte Car-
lo method to win out for very large matrices, and for lat-
tice Hamiltonians in higher dimensions.

IV. SOME NUMERICAL TESTS

We have carried out some preliminary numerical tests
of the algorithm outlined above for the case of the Z,
gauge model in 2+ 1 dimensions. This is a relatively sim-
ple lattice gauge model, and its Hamiltonian eigenvalues
can be calculated exactly for small lattice sizes.'>'® It is
dual'’ to the 2+ 1 Ising model, and so its phase structure
is well understood.

The Hamiltonian for the model is!’

H=3[1-03(D]—x 3 o,l)o(l)ol3)ol,),
1 P

27)

where [ labels the links on a two-dimensional (2D) square
lattice, p labels the plaquettes, and the {I;,i =1,...,4]}
are the four links surrounding the plaquette p. The o (/)
are Pauli matrices acting on a two-state spin vector at
each link / of the lattice, and x is the coupling variable.
Periodic boundary conditions are assumed. The model
undergoes a second-order phase transition at!® x_ =3.04.

Two sets of calculations were performed, for lattices of
2X2, 3X3, and 4X4 sites. First, exact values of the
ground-state energy and the axial string tension were cal-
culated using standard Lanczos methods.'*!® Second,
the stochastic truncation method was used to obtain
Monte Carlo estimates of the same quantities. This al-
lows us to check the accuracy of the stochastic trunca-
tion scheme.

In order to apply the algorithm, one needs to arrange
matters so that the ground-state eigenvalue is largest in
magnitude (“dominant”). This we did by using (E, ] —H)
as projection operator, where I is the identity matrix and
E, is a sufficiently large energy shift. ‘Within reasonable
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limits, the accuracy of the algorithm is insensitive to E,.
The calculations were performed in a ‘‘symmetrical”
basis, i.e., a basis of states symmetric under translations,
rotations, and reflections. The total number of basis
states is then only a few hundred for the 4 X4 lattice.

A. Approach to equilibrium

The approach to equilibrium was rapid: in most cases
equilibrium appeared to be achieved within 10 to 20
iterations. Figure 1 shows the worst case: namely, the
ground-state energy for a 4X4 lattice at x =3 (close to
the critical point). Even here, it appears that equilibrium
has been attained after about 50 iterations. In general,
one may expect the problem of “critical slowing down”
to become more serious for larger lattices near a critical
point, where the exponential decay of the higher state
correction terms in Eq. (4) becomes slow.

For very small ensemble sizes (N < 50, say), equilib-
rium appears difficult to achieve. Some peculiar prob-
lems of iteration schemes of the present sort at small en-
semble sizes have been discussed by Hetherington.!®

The score S as given by Eq. (10) has been chosen
(following DeGrand and Potvin?) so as to “correct” any
fluctuations in ensemble size, and produce a trend toward
equilibrium. In practice, we have found that this
prescription usually produces an overcorrection, so that
successive scores tend to be anticorrelated. Other
prescriptions are possible, such as

N(m)
S(m)Zas(m—l)_"_(l__a)S(m*l) — , (283)
N(m 1)
where a €[0, 1] is a parameter to be varied, or
N 172
(m) — glm—1)
S S N(m—1D (28b)

We have found that these definitions can sometimes give
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FIG. 1. The eigenvalue estimate against iteration number for
the ground state in the vacuum sector on a 4 X4 lattice at x =3.
The dashed line is the eigenvalue averaged over the region from
the 100th to the 1000th iteration.
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much smoother sequences of eigenvalue estimates and
substantially reduce the statistical error of the final result.
For the time being, however, we continue with the
prescription (10).

B. Error estimates

The simple “growth” estimate, E,= (S ), was used for
the energy eigenvalue in each sector. To find the expect-
ed statistical error in the result, the “blocking” method'®
was used, in which the data are split into blocks, and the
average (S), is computed for each block v. The stan-
dard error obtained by treating these block averages as
independent estimates of (S ) should then be a constant
for all block sizes N', provided that N’ is greater than the
correlation length among the raw data, and the number
of blocks is sufficiently large. This constant value is tak-
en as the estimate of the statistical error.

The error in the final result was found to decrease with
the number of iterations N; in the equilibrium region as
1/vV/'N ;- This is of course the expected statistical behav-
ior.

The behavior as a function of ensemble size is illustrat-
ed in Fig. 2. For the cases discussed here, the statistical
error decreases as 1/{N ), where (N ) is the average en-
semble size. This is easily understood: because of the
stochastic integerization, the basis-state amplitudes n;™
differ from the true values ¢ by amounts of ~ 1. The rel-
ative error in these amplitudes will thus be O(1/{N));
and this relative error will feed through to the final esti-
mate. In this situation, it is clearly more advantageous to
decrease the error by increasing the ensemble size, rather
than increasing the number of iterations.

The argument in the above paragraph only holds, how-
ever, if the set of basis states is “well covered,” i.e., the
figure of merit (7 ) >>1. If the ensemble size is small and
(%) ~1, one would expect each state in the ensemble to
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FIG. 3. Stochastic truncation estimates of w,/M? against
coupling x for M X M lattices with M =2, 3, and 4. The errors,
both statistical and actual, are too small to be shown.

perform an independent random walk, so that the statisti-
cal error should go as 1/V{N).

No sign of systematic error was apparent in the results.
The actual error (i.e., the difference between the Monte
Carlo estimate and the exact eigenvalue) fluctuated in
sign and was consistent with the statistical error in mag-
nitude in most cases. Only for the 4X 4 lattice near the
critical point did the actual errors become significantly
larger than the estimated statistical errors: this is
presumably a residue of the “critical slowing-down”
effect. For very small ensemble sizes, one would certainly
expect to see some systematic effects; but as mentioned
above, we were unable to obtain equilibrium in such cases
anyway.

C. Results

Estimates for the lowest-energy eigenvalues in the vac-
uum and axial string vectors @, and @, respectively, were
obtained for the 2X2, 3X3, and 4 X4 lattices at x =0.5,
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FIG. 2. Logarithm of the statistical error against logarithm
of the average ensemble size Ny (base 10), for a 4 X4 lattice at
x =2 in the vacuum sector.
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FIG. 4. Stochastic truncation estimates of the axial string
tension against coupling x for M XM lattices. The errors are
too small to be shown except for the 4X 4 lattice at x =3 where
the actual error is indicated by a bar.
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semble size N'®=1000. The first 100 iterations were dis-
carded in each case to allow for equilibration. The vacu-
um energy per site is graphed in Fig. 3; and in Fig. 4 is
plotted the axial string tension

T, =(w,~wy) /M (29)

for each M X M lattice.

The statistical error in all of the points plotted is below
the resolution of the graphs (of order 107°, 1074, and
1072 for the 2X2, 3X 3, and 4X4 lattices, respectively).
The actual error is equally small, except in the case of T,
for the 4 X 4 lattice at x =3, where it is represented as an
error bar.

The results clearly show the crossover of the finite lat-
tice string tensions at around x =2, and the scaling to-
ward zero near the critical point at x ~3. The accuracy
would be sufficient to permit a finite-size scaling
analysis!® of the critical parameters; but our aim here is
simply to establish that the stochastic truncation method
is capable of giving accurate eigenvalue estimates.

V. CONCLUSIONS

The “stochastic truncation” scheme which we have
presented in this paper is basically a simple Monte Carlo
version of the power method for calculating a single dom-
inant eigenvalue and associated eigenvector of a matrix.
As such, it may have applications beyond the arena of
lattice Hamiltonian field theory which we have envisaged
here. If the matrix in question is large or infinite, and
cannot be truncated deterministically without introduc-
ing unacceptable systematic errors, then a Monte Carlo
scheme of this sort may be useful.

The method is closely related to the EPMC method of
DeGrand and Potvin,* and a similar method of
Nightingale and Blote.’ We have defined a “figure of
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merit”’: namely, the average occupation number (7 ),
which should indicate the preferred method in a given
situation. If (7 ) is greater than (say) 2, stochastic trun-
cation should be more efficient; but if (7 ) ~1, then the
EPMC method will be preferable, because it will be
quicker to process an individual basis state. For lattice
gauge theory in a strong-coupling basis, for example, the
ground-state eigenvector will be dominated by a few basis
states in the strong-coupling region, and stochastic trun-
cation will be most accurate. At weak couplings, more
and more basis states will contribute, and {7 ) will de-
crease toward unity. This is the region of more physical
interest, of course; and here EPMC probably has the ad-
vantage. Nevertheless, we feel that the approach dis-
cussed here provides a useful new perspective and insight
into Hamiltonian Monte Carlo methods. Furthermore,
our approach is not necessarily limited to cases where the
ground-state amplitudes are positive definite. So it may
be useful, for instance, in lattice gauge theories involving
dynamical fermions.

We have performed some preliminary numerical tests
of the method using the Z, gauge model in 2+ 1 dimen-
sions. It was shown that the method was capable of giv-
ing accurate estimates of eigenvalues; and it was also
demonstrated that in general one should work with an
ensemble size as large as can be comfortably accommo-
dated.
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