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Within the framework of the spin-structure construction of fermionic string models, we de-
scribe a computerized method for generating four-dimensional heterotic models and analyzing
their massless spectrum. Thus, starting with the spin structure, we easily identify the low-energy
gauge group and all the massless representations, including any U(l) charges. We attempt a
systematic and complete generation of all four-dimensional heterotic string models based on
world-sheet periodic and antiperiodic complex fermions and compare this with the generation
of models from the same category obtained by randomly generating spin structures. We thus
explicitly construct over 900 four-dimensional models having N = 4 supersymmetry, and over
32000 models having N = 1 supersymmetry. Some phenomenologically interesting examples
are presented.

I. INTRODUCTION

In recent years superstring theory has drawn a consid-
erable amount of interest and is a serious candidate for a
unified, fundamental theory of nature including gravity
and the other known interactions. The heterotic theory
of closed strings is especially interesting. Originally, it
was only formulated in ten space-time dimensions, and
it was known that only a few classical ground states ex-
isted. By a classical ground state we mean a ground
state of the string field theory in the classical approx-
imation to its eAective action. Presumably, the (not-
yet-formulated) correct string field theory has a unique
ground state, and it was assumed that, in tha& state, six
of the ten space-time dimensions would be compactified.
However, the notion of compactification is not essential,
because all that is required from a classical ground state
of the string is that it still display the symmetry of the
original first-quantized string action, i.e., conformal in-
variance. In general then, a classical ground state of the
heterotic string in four space-time dimensions will be de-
scribed by left-moving string coordinates associated with
a c = 22 two-dimensional conformal field theory, and by
right-moving string coordinates and transverse fermions
associated with a c = 9 two-dimensional superconformal
field theory.

Recently, conformal field theories involving para-
fermions have been investigated, 4 but it remains sim-
pler to consider conformal field theories built out of
bosons (c = I) and real fermions (c = 2). In this case
many classes of solutions (i.e. , classical ground states)
have been found, some of them overlapping. A class of
solutions was found by imposing conditions on the mo-
mentum lattice of the world-sheet bosons, or equiva-
lently the charge lattice of world-sheet complex fermions.
Another large class of solutions was found in the re-
lated orbifold construction. ie Alternatively, imposing
constraints on the boundary conditions, i.e., the spin

structure, of world-sheet fermions as they go around non-
contractible loops led to the discovery of still another
large class of solutions. ' More recently, the existence
of additional solutions was shown by investigating right-
moving supercurrent built from bosonic fields. 4 Need-
less to say, the number of classical ground states of the
heterotic string is very large, and all of these are equally
worthy of study, short of a comprehensive string field the-
ory. However, not all classes of string ground states can
be analyzed with the same ease; therefore, if we wish to
conduct a search for an attractive string model on which
to base more detailed analysis, the facility with which we
can examine these ground states is a major factor.

For this reason the spin-structure construction of
Kawai, Lewellen, and Tye is very useful, as a comput-
erized search may be set up relatively easily. The hope is
to generate and classify all classical string ground states
reached by using free periodic or antiperiodic complex
world-sheet fermions, entertaining the idea that these
form a representative fraction of all string ground states.
It is interesting to have an estimate for the fraction of
that restricted set of ground states which is phenomeno-
logically close to our low-energy universe, and to find a
few viable models as well as a few generic properties of
that class of classical ground states. VVe have devised
a computerized method for rapidly generating consistent
spin structures of the world-sheet fermions, and for ob-
taining the massless spectrum of the so-specified string
ground states. Our method relies mainly on the random
generation of spin structures, but is shown to be fairly
complete by comparison with a more systematic gener-
ation. Ground states having N = 4 supersyrrimetry are
relatively few, and over 900 of them have been explicitly
constructed using this method. There are considerably
more ground states with N = 1 supersymmetry at the
Planck scale. Over 30000 of them have been explicitly
constructed. Conditions have been imposed on the mass-
less spectrum corresponding to a few phenomenological
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low-energy scenarios, and string models (as we loosely re-
fer to classical ground states of the string) obeying these
conditions have been obt, ained. The scenarios envisaged
include a direct embedding of the SU(3) xSU(2) x U(1)
standard model in the string massless spectrum, as well
as embeddings of larger gauge theories, such as the
SU(4)xSU(2)L, xSU(2)n theory of Pati and Salam and
the SU(5) grand unified theory, with Hipped quark and
lepton assignment, or without. Of course not only the
massless spectrum but the whole spectrum is given by
the spin-structure construction. Moreover, the interac-
tions between different string states are determined, and
t}ie perturbation expansion is shown to be consistently
defined. We hope to describe a similar search for non-
supersymmetric models in a later publication, as well as a
deeper analysis of particular examples obtained through
this work.

This paper is divided as follows. In Sec. II we present
a brief review of the spin-structure construction from a
practical point of view; the goal is to describe a set of
rules constraining the spin structure of the world-sheet
fermions so as to make the theory modular invariant. In
Sec. III we describe the general pattern of the massless
spectrum coming from this construction. In Sec. IV we
describe the general features of the computing algorithms
attempting this model generation and analysis. Section
V deals with conditions imposed on the massless fermion
spectrum of phenomenologically interesting models. Fi-
nally, Sec. VI gives some examples.

II. A REVIEW OF THE SPIN-STRUCTURE
METHOD

If we assume the compactified degrees of freedom of
the string to be free fermions, then we must specify the
boundary conditions of these fermions around noncon-
tractible loops on the world sheet (the spin structure).
Furthermore, if we want the theory to be modular in-
variant, i.e., invariant under global diA'eomorphisms not
connected to the identity, we must include several differ-
ent spin structures in the theory, since modular trans-
formations change spin structures into each other. A
set of easily implemented rules has been devised in Ref.
11 to ensure that all the spin structures necessary to
make the one-loop partition function modular invari-
ant are included, and that a proper Gliozzi-Scherk-Olive
(GSO) projectionis is realized, thereby ensuring higher-
loop modular invariance. In this section we summa-
rize these results as applied to four-dimensional heterotic
string models.

In the light-cone gauge we take the degrees of free-
dom of the four-dimensional heterotic string to be 44
left-moving and 20 right-moving Majorana fermions, in
addition to the bosonic string coordinates. These num-
bers are fixed by the requirement that the conformal
anomaly of the two-dimensional world-sheet field the-
ory vanish, or alternatively that the one-loop partition
function be modular invariant. It is believed that if the
latter is modular invariant and can be interpreted as a

trace over fermionic and bosonic states (the requirement
for a proper GSO projection), then the multiloop am-
plitudes are modular invariant as well; therefore we may
concentrate on the one-loop partition function. If we

then parametrize the world-sheet torus by o~ + o.27, 7

being its modular parameter, the fermions must be pe-
riodic or antiperiodic as o; ~ o;+ 1. Moreover, world-
sheet supersymmetry requires that the two right-moving
transverse fermions (i.e. , the world-sheet fermions car-
rying space-time indices) have the same periodicity (or
spin structure), and that the remaining 18 right-moving
fermions may be arranged in tripleis, such that the prod-
uct of all three members has the same periodicity as the
transverse fermions; this ensures that their interaction
term with the world-sheet gravitino is periodic, i.e. , well
defined. The left-moving fermions are not part of any
world-sheet supersymmetry and therefore their 44 spin
structures are independent. Moreover, one is allowed to
perform SO(44) rotations among them as oi ~ oi+1 and
o.~ ~ o2 + 1. Since the two rotations must commute, we
may simultaneously diagonalize them, in terms of com-
plex fermions and real fermions g (oi, o2), resulting in
the conditions

ql( + 1 )
—2wsw'y i

(2.1)

@1( + 1) -zwaw" @i

In general, combinations of rotations and sign changes
cannot be diagonalized by complex fermions or real
fermions alone. However, we will concentrate on the
case where only complex fermions are needed; this also
assumes that the right-moving fermion triplets can be
paired to form complex fermion triplets. We then end
up with 10 right-moving and 22 left-moving free com-
plex fermions satisfying the above periodicity conditions,
where the Wi's and the W" 's form (10+22)-dimensional
spin-structure vectors W and W'. Given the spin struc-
ture we can calculate the fermionic partition function
ZwW, (7) and its change under the modular transforma-
tions 7 i 7 + 1 and 7 ~ I/7. Only by taking a linear
combination

of partition functions from different spin structures can
we form a modular-invariant function. In addition, if we

require that, keeping YV constant, the sum over included
~ir 0~ ~RVf"s give a factor of 0, 1, or —1 times e

that is, if we require a proper GSO projection, we arrive
at the following conditions for the spin structures and the
states entering the model.

First, the spin-structure vectors are generated by a ba-

sis Mo, Vf~, . . . , W„as follows. If m; is the smallest
integer such that rn;Vf; has only integer components,
then the set of spin structures is given by all possible

combinations nW = P n;W, with n; = 0, 1, . . . , m; —1.
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Here = means equality modulo 1. The vector

~o = ((-,')" l (z)")

32 10
v w'=") vow~ —) v&w&. (2.7)

must always be part of the basis. To each combination
o.R' corresponds a sector of states with right and left
fermionic Hamiltonians H+lv, H~lv with vacuum ener-
gies

The trip/et constraint on the right-moving spin structures
imposed by world-sheet supersymmetry may be written

10

z." = —,
' ) [(nw')' —nw'+ —,'], ~8+ ~9+ ~IO (2.8)

E=1

(2.2)

E.' = —,
' ) [(nw')' —~w'+ -,'].

If we add to this the contribution from the string coor-
dinates, we have the following expression for the energy
levels of the left-moving part of the string:

32 oo

ml ——E vl. + ) ~ ) [(q —nW')n'q

Note that if, for simplicity s sake, we restrict the complex
fermions to be periodic or antiperiodic only, i.e., W; = 0
or z, and m; = 2, then the above constraints amount to
the following: The product Vi7; . Vi7; must be integral,
W; VV& must be a multiple of 2, the elements of the
k matrix are either 0 or 2 and only the ones below the
diagonal are independent.

Third, the allowed states in the sector alV, i.e., those
which are not eliminated by the GSO projection, must
have fermion number N~~ such that

)=11 q=1

+(q+ nW' —i)n', ] ~

1
VV; N~lv = s;+ ) k;l. a~ + ko; —W; aW .

2

(2.9)

+ ) ) qM,
*' ——,', {D—2),

i =1 q=1
(2.3)

M'~ is the occupation number for the ith string coordi-
nate in the qth Fourier mode, D = 4 is the dimension of
space-time, and i runs from 1 to D —2 since we work in
tile light-cone gallge. z4(O —2) ls the contrlbutlon to the
vacuum energies from the string coordinates. The corre-
sponding expression for the right-moving part is similar:
l is summed from 1 to 10 instead. Occupation numbers
must be such that mL ——rnid., physically this means that
the states are invariant under shifts o.1 ~ o.1+const of
the first world-sheet coordinate. rn& L is then the mass
of the string state in units of the Planck mass.

Second, the spin-structure basis vectors %V; must sat-
isfy the following constraints:

(2.4)

1
rn, k,, =0, (2.5)

k -+kp+s ——W W;1 0, (2.6)

where s; = W;, the space-time part of the spin struc-
ture, and where (k;&) is some auxiliary matrix related to
projection choices. We use the inner product

where n' and n are the lth complex fermion's occupation
numbers in the qth Fourier mode; they each may take the
value 0 or I, and one defines the Ith fermion number

u'~ = ) (n', —n', ) .

1q w m' = s;+&*.o+) Ir,;,~, .
2

(2.10)

Given the above rules, it is then straightforward to find
the spectrum of the madel. Many examples have been
given in Ref. 6; the next section will describe the content
of a generic massless spectrum.

III. GENERAL REMARKS ABOUT THE
MASSLESS SPECTRUM

Only sectors with vacuum energies &0 will contribute
to the massless spectrum. Moreover, one sees from Eq.
(2.3) that only the first Fourier modes (q = 1) contribute
as well. If the Ith fermion is antiperiodic (nW1 = 2), then
n1 or n1 may be l, thus raising the energy by 2 unit each
and giving a charge Q' ~ ——1, —1 (or 0 if they are both
equal to 1). If the fermion is periodic, i.e. , if it has a zero
mode, then only n1 may be 1, in which case it does not
raise the energy and gives a charge Ql ~ —

2 (or —
z if

it is not excited at all). Bosonic oscillators of course do

A state is a space-time fermion or boson depending on
whether as (= nW ) is 0 or lz. All of this remains
valid if we have Majorana fermions along with com-
plex ones; in such cases the above formulas have to be
slightly modified. A weight of z must be introduced in
the I orentzian inner product in front of the spin struc-
tures of real fermions, and the antifermion occupation
numbers n must be absent. The advantage of complex
fermions is that we can then define a U(1) fermionic
charge Q' = N ~ + nW' —

2 for each, thereby ob-
taining a charge vector facilitating the identification of
the gauge group and matter representations. The al-
lowed states then correspond to fermionic charge vectors
Q = N —Wo + nW satisfying
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not aR'ect the charge vector Q, but the first Fourier mode
will raise the energy by one unit. It is straightforward to
show, using Eq. (2.3) and the definition of Q ~, that
any massless state has a charge vector such that its left-
moving part Q~ has norm 2 or 0. In general we use
the superscripts R, I to indicate the right- or left-moving
part of a quantity.

Only in the Wo sector, which has the lowest possible
vacuum energies, i.e. , (E ( E ) = (—z ~ 1), can we

excite a bosonic oscillator to obtain a massless state. In-
deed, by exciting the left-moving bosonic ascillators and
the right-moving transverse fermion, we create a tensor
state comprising the graviton, the antisymmetric tensor
state and the dilaton. If instead we excite the other right-
moving fermions, we create right vector bosons belonging
to the graviton supermultiplet (N = 4). Whatever the
spin-structure basis is, however, the graviton will always
be part of the spectrum: its charge vector is

Qsrav
——(+1,0'

I
o")

~

which satisfies Eq. (2.10) for all i.
The massless vector states created by exciting left-

moving fermions and the right-moving antiperiodic trans-
verse fermion are the gauge bosons of the low-energy ef-
fective theory. The corresponding charge vectors Q are
the roots of the gauge group's Lie algebra. For those sec-
tors which contain gauge bosons, O, s is

&
and the vacuum

energies are (—z )
—1), (—z )

—2), or (—2 ) 0). In
the first case, we must excite two left-moving fermions,
resulting in a left charge vector of the form
= (0, . . . , +1, . . . , +1, . . . , 0), or we may take nI = n&
= 1, giving a vanishing Q . This only happens in the Wo

1sector, in which case Eq. (2.10) reduces to Q W'; = 0.
In the second case, there are four left-moving zero modes
which da not raise the energy if occupied; therefore we
must excite one leA-moving antiperiodic fermion and
some zero modes, resulting in a charge vector with four
+ &'s and one +1. In the third case, there are eight left-
moving zero modes, and no antiperiodic fermion must be
excited if the state is to be massless; the charge vector
then contains eight +&'s.

There is a systematic way to determine the Lie alge-
bra fram the set of raats: we simply have to pick a set of
simple roots and calculate the Cartan matrix. A simple
algorithm has been devised to accomplish this t;ask on
a computer, and will be described in the next section.
The algebras arising from this construction can only be
simply laced, restricting the simple factors to be SO(2n),
SU(n+ 1), Es, E7, or Es. If there are U(l) factors in the
gauge group, only part of the 22-dimensional root space
is spanned by the simple roots. Its orthogonal comple-
ment contains the U(1) components of the charge vectors,
and it is always possible to pick an integral, orthogonal
basis (e ) in this subspace; we will refer to it as the U(1)
basis. This basis must be orthogonal in order for the cor-
responding U(1) gauge bosons not to mix. Many bases
are possible, all of them related by orthogonal transfor-
mations and normalization changes.

There are possibly tachyons in the Wo sector. They
are obtained by exciting one left-moving fermion, and
fall into the fundamental representation of SO(44) if no
other constraint suppresses them. In order to eliminate
them all, we must introduce in the spin-structure basis
a vector Vf~ such that W~& ——M and 8~ —0. This
leaves us with two possibilities, of which we select the
one introducing space-time supersymmetry, i.e.,

Wg —(0 (0 ~ 2) ( (~) ). (3 1)

1Q. W; = s+kg . (3.2)

We set k;o equal to zero, a choice that can always be
made. The charge vectors af the positive-helicity grav-
itinos are

Q" = (-' (-'oo) (-'oo) (——,
' oo))

Q" = (-' (-.'oo) (—-'oo) (-'oo))
(3.3)

Q."= (-,', (—,'«), (-,'»), (-,'«)),

Q4 = (2, (—200), (—~ 00), (—~00)) .

It is easy to see what the V7+'s should be in order

Henceforth we assume that the above vector is always
part of the spin-structure basis, as it ensures that no
tachyon will be present in any other sector as well.

Sectors containing massless fermions must have four
right-moving zero modes, since o.8 must equal 0 and E
must be a multiple of &. The vacuum energies are then
(0

~

—1), (0 )
—2), or (0 ( 0). The structure of the

left charge vectors is the same as for the gauge bosons;
they form weight vectors of representations of the gauge
group. At the massless level, these representations are
suf5cient}y small that all nonzero dominant weights, i.e.,
weights with non-negative inner product with all the sim-
ple roots, are highest weights. This makes the identifica-
tion of the irreducible representations straightforward in
terms of Dynkin labels (see Sec. IV). If there are U(1)
factors in the gauge group, we project the charge vectors
onto the U(1) basis vectors, thus obtaining the various
U(1) charges for that state.

Because of the extra right-moving zero modes, a degen-
eracy of weights is possible and as many as four copies
of the same representation can coexist;. This refIects the
presence of space-time supersymmetry in the model. The
number of supersymmetric charges (which we denote by
N) is equal to the number of gravitino states in the
spectrum. Gravitinos are obtained by exciting the left-
moving bosonic coordinate and the right-moving trans-
verse fermion in a fermionic sector; extra right-moving
zero modes may also be occupied. This occurs in sectors
with vacuum energies (0

~

—1), i.e. , mostly in the Wq
sector. For a fixed helicity, there are eight possible occu-
pation configurations for the three extra zero modes, at
least half of which will be suppressed by the constraint
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Ro ——(0, (000), (000), (000)),

~r = (o, (o-,'-,'), (o-,'-,'), (ooo)),

Z, = (0, (000), (0-,'-,'), (0-,'-,')),
& =(o (o-'-') (ooo) (o-'-')).

(3 4)

If two of the gravitinos are to be eliminated, say Q2 and
Qs, then we should introduce some of the following right-
movers:

to preserve N = 4 supersymmetry, or to reduce it to
N = 2, 1, or 0. First, we always have the freedom to add
Wo and Vfy to the other basis vectors to ensure that
s; = 0 and that VT~ and VV; (i & 1) have integer norm
separately. Then the only four right movers preserving
N = 4 supersymmetry are

loop effective action. i7 rs This coupling has the form

) Q, =b, rA,

) Q;. Q;Q;=0 if a, b, cg l. (3.8)

The anomalous U(1) gauge boson will acquire a mass of
the order of the Planck scale, as we can see from the
coupling above.

IV. SOME COMPUTING ALCORITHMS

(B„P+er A„+e2A„+ . .)

and so only one linear combination of the Abelian gauge
fields couples to P, and therefore only one linear combi-
nation of U(1) charges is anomalous. We should then be
able to find a U(1) basis such that

~ = (0, (-,'0-,'), (-,'0-,'), (000))

& =(0 (-'o-,') (-'-'o) (ooo))

a. = (0, (-,'-,'0), (-,'0-,'), (000)),

(0, (-,'-,'0), (-,'-,'0), (000))

For each of these set Ail = &. We caI1 also use +s—11
having the same structure as the above but with the last
two triplets interchanged, and Ri2 i5, with the 6rst and
last interchanged. If we set k;y ——

&
for each of the ba-

sis vectors having YV; = R4 y5, then only the fourth
gravitino will survive the constraints, and N = 1 super-
symrnetry will be assured. Of course other prescriptions
are possible if we choose to keep a different gravitino
state. There are also many prescriptions to suppress any
space-time supersymmetry.

In general, a large number of massless scalars will ap-
pear in the spectrum. They occur in sectors having the
same vacuum energies as the sectors containing massless
fermions, with the difference that ns =

&
. The mere

fact that one gravitino state exists implies that for each
massless fermion representation there is a corresponding
massless scalar representation with the same quantum
numbers (except for the adjoint representation, which
corresponds to the vector bosons). In fact the two chi-
ralities of the massless fermion correspond to the scalar
and its complex conjugate, as only complex scalars are
present.

Finally, let us say a word about U(1) anomalies. Even
though our string models are consistent, there may ap-
pear anomalies in the triangle diagrams at one loop, with
one or three U(l) gauge bosons as external legs. This
apparent anomaly is canceled according to the Green
and Schwarz mechanism, through a coupling between the
U(1) gauge fields A'„and a pseudoscalar field P related
to the antisymmetric tensor field B&„,arising in the one-

This section is concerned with the practical work of
generating and analyzing string models in the spin struc-
ture formalism with periodic or antiperiodic complex
fermions. Readers not interested in the details of the
algorithms may skip the following and proceed to the
next section.

The reasons for our restriction to complex world-sheet
fermions are practical ones: the existence of fermionic
charge vectors makes the identification of representa-
tions easy, and the restriction to periodic or antiperi-
odic fermions makes a systematic generation of models
in that class a (barely) tractable task. Part of the soft-
ware written in the course of this research is devoted to
the analysis of the massless spectrum determined by a
given spin-structure basis, and other parts attempt to
generate as many such bases as possible.

First let us describe a few algorithms which identify
the gauge group and the fermion representations for a
given spin structure and k matrix. I et us assume that
we have found all the root vectors Q~ of the gauge bosons
by sweeping over all sectors possibly containing them and
trying the candidate roots against the constraint

&w~ =)
The reader is referred to any good text on semisimple I ie
algebras for missing details. In the space of root and
weight vectors, which we refer to as root space, even if it
also contains U(l) charges, we must define an ordering.
A dictionarylike order is the simplest possibility: a vector
g is defined to be positive if its first nonzero component
is ( 0 and vice versa; Qr & Qz then means that Qr —Q2
& O. In fact, we need only to have at our disposal the set
of positive roots. Next we find a set of simple roots (a;),
i.e. , positive roots which are not the sum of two other
positive roots; a property of simple roots is that they
have nonpositive inner products with each other. To find
such a set, we use the following recursive procedure: The
smallest positive root has to be simple; all positive roots
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having positive inner product with it cannot be simple
and are discarded; the smallest of the remaining set of
positive roots has to be simple too and all remaining
positive roots having positive inner product with it are
discarded, and so on. Finally, we end up with a number
r & 22 of simple roots. The other 22 —r dimensions are
attributed to U(1) factors. We then compute the Cartan
matrix

A~ =o,; aq.

) Q;—= A' (4.1)

over massless fermions for each charge. The correct
anomalous linear combination of charges is then obtained
by projecting the weights onto the vector

The corresponding Dynkin diagram is made of a dot for
each i and of links between the dots for which A;z g 0; in
general it is made of several disconnected pieces and some
internal representation of it is built in terms of vertices
and leg lengths. From this the computer can identify the
gauge group and put the simple roots in a conventional
order, in view of calculating the Dynkin labels of the
massless representations.

We find the weights in the same way as the roots,
i.e. , by sweeping over all relevant sectors and trying out
all positive helicity candidates (in the case of fermions).
Note that CPT invariance is refiected in the fact that if a
charge vector Q is part of the spectrum, so is —Q; hence
fixing the space-time helicity (Qi) removes some redun-
dancy. Note, however, that whereas roots come in pairs
of opposite sign, weights in general do not, and therefore
negative as well as positive weights must be considered.
Each allowed weight having a non-negative inner product
with each root is called dominant. At the massless level
all dominant weights are also the highest (i.e., largest)
weight of some irreducible representation. The Dynkin
labels of a highest weight are its inner products with the
simple roots, and they specify the irreducible representa-
tion uniquely. The most common irreducible representa-
tions and their Dynkin labels are listed in Appendix A.
We still have to assign U(l) charges to the fermions; this
is done by projecting the highest weights onto an integer-
component, orthogonal basis on the (22 —r)-dimensional
orthogonal complement of the space spanned by the sim-
ple roots. To obtain such a basis, we start from the
canonical Cartesian basis for a 22-dimensional space and
apply a Gram-Schmidt procedure giving priority to a
known orthogonal basis for the simple roots; this U(1)
assignment is of course arbitrary. Given the list of mass-
less fermion representations (of a fixed handedness) and
their U(1) charges, we can check which ones are chiral
by constructing the complex-conjugate representation of
each and looking down the list for a match: nonchiral
representations will occur in pairs, each being the com-
plex conjugate of the other with the same handedness.

We of course check the U(1) anomalies by summing

A ea
eanom =

ea eaa
(4 2)

or a multiple thereof. The remaining charges have to
be redefined, that is a new orthogonal U(1) basis has
to be found for the orthogonal complement of e~ . A
similar procedure must be done when a particular linear
combination of the remaining charges is being considered,
as a possible hypercharge candidate.

So far in this section we did not assume the complex
world-sheet fermions to be periodic and antiperiodic only.
In fact, computer codes obtaining the massless represen-
tations and the gauge group have been written for the
case where the fermions are periodic and antiperiodic
as well as for the case where they acquire arbitrary ra-
tional phases after going around noncontractible loops
of the world-sheet torus. However, in the remainder of
this section, we will restrict ourselves to the periodic-
antiperiodic case, for the sake of simplicity.

I.et us now discuss two ways of generating large num-
bers of periodic and antiperiodic spin structures. The
ambitious one is to devise a large, recursive algorithm
that sweeps over all spin-structure bases, thereby ex-
hausting systematically the class of classical ground
states of the string we are considering. A more practical
way is to sample the space of string models at random,
quickly generating sets of consistent spin structures and
hoping that some saturation occurs. A saturation would
indicate that the space has been scanned almost com-
pletely. In both cases, we only want to generate the left
part of the spin structure, and attach thereon the known
right movers compatible with the desired space-time su-
persymmetry (see Sec. III). It is also very convenient to
work solely with integers, and we therefore multiply spin
structures, the k matrix, and charges by 2 and work in
modulo-2 arithmetic.

The random generation is very simple. The bits of a
random integer are used to form a spin-structure basis
vector (provided the number of 1's is a multiple of 4),
so that a whole vector is obtained from a single random-
number call. It is preferable however for the random-
number generator not to be uniform. Uniformity tends
to give too much importance to numbers having about as
many 1's and 0's in their binary expression, compared to
numbers having very few 1's or very few 0's; in fact the
distribution of the number of 1's is binomial, whereas
we would like it to be more constant. This is easy to
fix, however, and a distribution where the number of 1's
is relatively uniform may be obtained. The right movers
are then added, randomly if choice permits, so as to make
the overlaps W; . Vfz even. The linear independence of
the vectors is directly checked by computing all the sec-
tors nR' and making sure that none of them vanishes if
n g 0. The k;z's below the diagonal are also randomly
set, except for the k;i's (which are fixed by supersymme-
try) and the k;p s (which are always set equal to zero).
This method is not recursive, allowing fairly large bases
to be generated in little time.

A systematic generation of all periodic-antiperiodic
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spin structures is considerably more arduous, the main
difficulty being the enormous redundancy of bases for a
given set of spin structures. The basic problem, as far
as the left movers are concerned, is to generate all pos-
sible vector spaces of 22-component vectors made of 0's
and 1's, of even norm, obeying modulo-2 arithmetic. For
such a vector space of dimension n, there are 2" ele-
ments, which we refer to as sectors, and many possible
bases, especially if permutations of the 22 components
are included. Since we are going to generate bases di-

rectly, such a redundancy of bases is a problem. One
way to avoid this redundancy is to define, for each space,
a standard basis which can be recovered unambiguously
from any other basis. The general idea is to define an
ordering on the vector space, and to pick the largest pos-
sible linearly independent sectors of norm divisible by 4
to be the basis vectors. Because we want the ordering
to be unafIected by permutations of the 22 components,
a dictionarylike order is not suitable; instead we define
a semiordering based on overlaps between sectors. The
sectors are first ordered with respect to their norm, and
we thus end up with several groups, each containing sec-
tors of the same norm; then each group is further sub-
divided according to the sum of overlaps with members
of the highest group, and then with members of the next
highest group, etc. At the end of this iteration, the only
ambiguities left in the ordering are irrelevant. A basis is
then picked among sectors of norm divisible by 4, start-
ing with the longest and going down, eliminating linearly
dependent sectors along the way. This eliminates the re-
dundancy due to the arbitrariness in the choice of the
spin-structure basis, given a space of sectors. Finally, to
eliminate the arbitrariness due to permutations of the 22
fermions, we order them in a dictionarylike way based on
the already fixed order of the basis vectors; this means
that the 1's are stacked to the left as much as possible,
from top to bottom, as in the following example:

W~ = (1111111111111111000000),

Ws ——(1111111100000000111100),

W4 = (1111000011110000110011),

(4 3)

W5 = (1100110011101110101000).

Recall that we scaled all &'s to 1's for convenience.
Once we know how to obtain a standard basis from a

space of sectors, we can generate them recursively in an
intelligent order. First we start with the one-dimensional
spaces, of which there are only five since we require the
basis vectors to have a norm divisible by 4. Then we go to
two-dimensional spaces by adding all possible vectors of
norm 20, 16, 12, . . . to the one-dimensional bases, start-
ing with the longest. The two-dimensional bases thus
obtained are then standardized, and compared with the
ones already obtained to see if they occurred before (in

which case they are not stored). We then go to three-
dimensional spaces, etc. We refer to the norms (in de-
creasing order) of the members of the standard basis as
the composition of that basis. Spaces of a given dimen-
sion are thus generated in order of decreasing compo-
sition, facilitating the bookkeeping. The reason behind
storing all the standard bases is that it saves a tremen-
dous amount of computing to check if a space of sectors
has been obtained previously before going on to further,
time-consuming analysis.

A given basis of left movers may be symmetric under
interchange of one or more vectors. This has to be taken
into account when tacking on the possible right movers
in all ways consistent with the requirement that W; W&
be even. Adding the right movers can also lead to other
redundancies, arising from permutation symmetry of the
trip/ebs and of the last two fermions of each triplet. To
remove this redundancy in the case of N = 1 supersym-
metry, we artificially pick R4 and Rs (or Rio, depending
on the overlaps of the left movers) to be attached respec-
tively to Vf ~ and W3.

At this point the redundancy due to independent per-
mutations of the right- and left-moving components has
been completely eliminated. However, more redundancy
arises from rotational symmetry of the charge lattice;
some of this can be eliminated by Axing k;0 to be 0, and
more by demanding that none of the sectors have both
norm 4 and vanishing right movers. However, some re-
dundancy will remain that cannot be eliminated by easy
means, making a systematic and complete generation of
models slower and slower as the number of basis vectors
increases.

Once the spin structure has been generated, there is
still the problem of sweeping over the possible k matri-
ces. The number of independent k;i's is z(n —2)(n —3)
where n is the number of spin-structure basis vectors
(including Wo); the number of possible k matrices is
then 2&" &&" &~ . The task of generating them becomes
rapidly intractable as n increases. Methods to bypass the
redundancy lying in the k matrix have not so far been
explored.

So far, the systematic approach has been carried out to
n = 5, that is, spin structures involving 32 sectors or less.
If, for the sake of counting, we distinguish N = 1 models
by their gauge group, the number of massless representa-
tions, the number of chiral fermion representations and
the number of chiral fermions, then the number of dis-
tinct models we have constructed for n & 5 is 1532. To
increase this systematic sweep over to n = 6 would re-
quire q, substantial increase in computing time, although
it is by no means impossible. To illustrate this point, let
us mention that the number of bases we generated for the
left-moving part of the spin structure is 1376 for n & 5,
compared with 42927 for n = 6 alone; adding the right
moving parts and sweeping over the k matrices is also
considerably lengthier for n = 6 than it is for n = 5.

The random generation of spin structures is more ef-
ficient and fruitful. We are not limited to small num-
bers of basis vectors since the approach is not recursive,
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and sets of nine basis vectors are trivially generated. To
check if the random sweep is complete, we may compare
its results with those obtained with the more complicated
systematic sweep. The results for n & 4 are encouraging:
out of the 1532 models (as specified above), 1489 were
also found by a random sweep, that is, 97%%uo of them. Had
the sweep run longer, that proportion would have further
increased. Another way of checking the completeness of
a random sweep is to look for saturation in the number
of new models generated compared with the rate of spin-
structure generation. This may be seen for the case of
N = 4 supersymmetry, for which the number of models
is much less. This question is discussed in Appendix C.
As for N = 1 models, their number is much larger and
we expect a saturation to appear much later. As of this
writing, the statistics are as follows: for N = 4 supersym-
metry, 918.distinct models were constructed, after having
generated over two milhon complete spin-structure bases
at random. In that case the saturation in the production
is such that we may estimate the actual number of N = 4
models to be about one thousand. For N = 1 super-
syrnmetry, 32 756 distinct models were constructed, after
having generated over 60 000 spin structures; in that case
almost no saturation was visible, and we may expect the
actual figure to be an order of magnitude larger, if not
more. To illustrate this, let us point out that among
the 32756 N = 1 models constructed, 3249 included
SU(3) xSU(2) x U(1) as a factor in the gauge group; if
we run the program and keep only the models having an

SU(3) x SU(2) x U(1) factor, which is faster, we can con-
struct many more of these models, namely over 30000,
as of this writing.

In practice, to avoid the use of large quantities of com-
puter memory, we choose an embedding scenario for the
standard model, write up a computerized set of condi-
tions on the spectrum for the model to be "interesting, "
and run a random generation for a few days. Only the
models passing the programmed conditions will be kept
to be checked further, by hand. On a typical run looking
for SU(5) models, the computer generated 1 259 165 (not
necessarily distinct) models, of which 10917 explicitly
contained SU(5) as a gauge group factor; of these, only
15 passed the computerized spectrum test, of which one
example will be discussed below. Looking for an explicit
appearance of SU(3) x SU(2) x U(l), the computer gener-
ated 1 667707 (not necessarily distinct) models and found
223 486 with the right group factors, of which twenty or
so passed the computerized spectrum test. Of these, only
seven survived a quick look at the possibilities for a hy-
percharge.

V. EMBEDDINC THE STANDARD MODEL

Presumably only a few of the ground states thus found
can reasonably accommodate the particle spectrum of
the standard SU(3) x SU(2) x U(l) gauge theory. Let us
examine a few scenarios for the inclusion of the elemen-
tary particles we know today in our string models. For
the moment we ignore the question of supersymmetry

TABLE I. Standard-model massless fermion representa-
tion.

Dimension Description

Quark doublet qr,
Lepton doublet lL,

—charged qR
—

3 charged q~1

Lepton l~

breaking for those models that have N = 1 supersymme-
try (SUSY) at the Planck scale.

Our first scenario requires that SU(3), SU(2), and U(l)
appear explicitly as factors of the gauge group. The de-
sired massless fermion representations of a given chirality
are shown in Table I.

The first set of labels gives the dimensions and the
hypercharges of the SU(2)xSU(3)' representations, and
the second set gives the Dynkin labels. The fermions
of opposite chirality live in the complex-conjugate rep-
resentations, and no representation of the same chirality
is the complex conjugate of one of the above, i.e. , they
are cIt, iral representations. Family replication may occur
by direct repetition of the above set or through some
horizontal symmetry, a remnant of a local symmetry for
which the gauge bosons have become very heavy. For
instance, the above representations might also be part of
the 4 of an SU(4) broken at a very high-energy scale. The
number of such families should be at least three and no
more than six; as it turns out, four is by far the most fre-
quent number encountered in this range. Among all the
U(l) factors in the model's gauge group, there must be a
nonanomalous linear combination which fits the standard
hypercharge assignment. Any other representation hav-
ing SU(3)'xSU(2)xU(1) quantum numbers should be
massive enough not to interfere with low-energy phenom-
ena; for instance, this may be achieved if that representa-
tion is not chiral, or is part of a heavy composite bound
by a confining force. Finally, a complex Higgs isodoublet
with hypercharge 1 must be present. Of course every
model has its particularities, and only by going through
an example can we give more details.

We may also consider scenarios where the SU(3)
xSU(2)xU(l) group factors do not appear explicitly
at the Planck scale, but where a grand-unified-theory
(GUT) group appears instead, breaking at some inter-
mediate scale via a Higgs mechanism. For instance,
we might have a Pati-Salam-type gauge group, such as
SU(2)~ xSU(2)L, x SU(4)' (Ref. 21). The desired massless
fermion representations are then (0)(1)(001) [or (1,2, 4)]
for quarks and leptons and (1)(0)(100) [or (2, 1,4)] for
antiquarks and antileptons. Lepton number then plays
the role of a fourth color. The correct hypercharge
arises when SU(2)~ xSU(4)' is broken to SU(3)'x U(1).
This erst stage of spontaneous symmetry breaking oc-
curs through a Higgs scalar belonging to (2, 1,4) (Ref.
22) and its complex conjugate. The branching rules are
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as follows: 16 1.(5) + 5(—3) + 10(1) .

(1 2 4) (2 3)(—-') + (2 1,)(1)

(2, 1,4) ~ (1,3)(s)+ (1,3)(s) + (1,1)(0) + (1,1)(—2).

The second stage of symmetry breaking occurs through
the usual Higgs mechanism:

(2, 2, 1) ~ (2, 1)(1) + (2, 1)(—1) .

The problem of fast proton decay may be remedied by
introducing an additional scalar multiplet in the (1,1,6)
(Ref. 23). This extra representation appears naturally in
the breaking of the 10 of SO(10) and is very common. All
chiral representations that are not singlets under SU(2)L,
or SU(4) should fall in this pattern. Again, the family
structure may arise from distinct representations or from
further horizontal symmetry.

In another example, an SU(5) simple factor appears.
The three representations wanted are the 5, the 10, and
a singlet. In the minimal SU(5) of Georgi and Glashow, ~4

the singlet is a right-handed neutrino. The breaking oc-
curs through an adj oint of Higgs field 24 as follows:

SU(5) ~ SU(2) x SU(3)' x U(1)i

5 - (2, 1)(I)+ (~ 3)(--.')

10- (1., 1,)(--.') + (2, 3)(--.') + (1,3)(-.')
The second stage of symmetry breaking occurs through
a Higgs mechanism in the 5 of SU(5). This scenario
is not likely to occur in our string models with N = 1
supersymmetry, for the following reason: in those mod-
els, only one adjoint represent, ation of massless fermions
is present, and its superpartner is the representation of
gauge bosons; hence there is no adj oint of scalars. The
only way an adjoint of the Higgs field could occur is by
compositeness; for instance, the H iggs field could be a
composite of a (5, 10) of SU(5) x SO(10) and its complex
conjugate. Assuming the SO(10) is confined at a higher
scale than the SU(5) GUT scale, the composite would
reduce to a 24+ 1 of SU(5), singlet of SO(10). How-
ever, such large representations seem to be rare. There
is another way of putting quarks and leptons in SU(5)
multiplets, though, in the so-called flipped SU(5) xU(1)
(Refs. 25—27). In this model the quarks and leptons
live in the three representations 10(2), 5(—z), and 1(2).
The singlet is no longer a right-handed neutrino, but a
right-handed positron; also, the u and d quarks are in-
terchanged in the SU(5) multiplets. The breaking to the
standard model occurs through a Higgs field in the 10(z)
(and complex conjugate), and the usual Higgs field lies
in the 5(—1) (and complex conjugate).

Finally, another scenario could rely on the SO(10)
GUT (Refs. 28—30), in which all above groups are con-
tained. The only necessary representation is the 16, or
(00001). Under the breaking SO(10) ~SU(5) xU(1), we
have the branching rule

This happens with a Higgs field lying in the spinor 16 of
SO(10) and the adjoint 45. The same di%culties men-
tioned above for the minimal SU(5) case still exist here.
For the minimal SU(5), one does not need the adjoint to
break SO(10) ~SU(5), but rather to produce the adjoint
of Higgs field that breaks SU(5). SO(10) can also break
to SU(4) xSU(2) xSU(2), through a symmetric tensor 54
of Higgs field, or a 210, two representations that do not
occur at the massless level of our string models. It seems
therefore that if SO(10) is going to play a role, it will
already be broken at the Planck scale.

VI. EXAMPLES

Before presenting specific examples of models obtained
through our program, a few general, qualitative state-
ments can be made based on a cursory look at hundreds
of models. As far as gauge group factors are concerned,
almost every simple factor of rank less than 22 occurs;
exceptional groups are not exceptional in this respect.
Some groups like SO(44) do not occur, as they are in-
compatible with N = 1 supersymmetry in this construc-
tion. Others such as SU(n) (n & 5) have a complicated
embedding of their root lattice in an integer basis, and
need a lot of elbow room to fit; hence they are very rare
or not seen at all. In fact SU(n) has been seen up to
n = 12. Observations have confirmed the fact that only
the simplest representations are present at the massless
level. For SU(n) these are the fundamental and its con-
jugate, the antisymmetric tensors and their conjugates,
and the adjoint; for SO(2n) they are the vector, the ad-
joint, and the spinor and its conjugate. Anomalous U(l)
charges are very common; in fact, upon verification on
a set of 2337 random models with U(1) charges, it was
found that 1163 of these models had an anomalous U(l),
which is remarkably close to 50Fo.

Let us now present three examples of models that
were selected according to criteria described in Sec. V.
A deeper analysis of each is needed to see if they are
viable models or not. In particular, we do not pretend
that all the couplings needed are present. %'e hope to
present such careful analyses in a later publication. For
the moment only the spectrum will be described, accom-
panied by a few hopeful comments. The reader is referred
to Sec. II for explanations concerning the spin-structure
construction .

In our first example, we consider a flipped SU(5) model,
with the spin structure

Wo = (llllllllll
I
llllllllllllllllllllll)

Wi = (0011011011
I
llllllllllllllllllllll)

W2 = (0101101000 ) llllllllllll0000000000},

W& = (0110000101
I

1110000000001000000000)
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w, = (ololooo11o
I

11o11ooooooooooooooooo),

W& = (0101110000
I

1001010000000111110000)

Ws = (0101000110
I

1101111110000111001000).

We have scaled all the &'s to 1's for convenience. All the
kzj s below the diagonal, except for k;o, k5» and k64, are
set equal to 1. The gauge group is

SU(2) x SV(4) x SU(5) x SU(8) x U(l)

The first U(1) charge is anomalous; the second (call it

4') is the one associated with the SU(5) in the Pimped
model. The representations for the massless spectrum are
listed in Appendix B.There are 84 of them (not counting
the adjoints), of which 38 are chiral. We have four gen-
erations of quarks and leptons (see representations Nos.
9—12, 29—32, and 44—47). Many other chiral representa-
tions exist, of which only nonsinglets under SU(8) have
nonzero Yy. Since SU(8) is likely to confine at high en-
ergies (the P function has been checked to be negative if
we include all states in the spectrum), we expect, these
representations to beome quite massive. The Higgs can-
didates live in representations Nos. 33 and 50. To show
that there are symmetry-breaking patterns in which the
other representations do not aA'ect low-energy physics too
much is clearly a hard problem, given the large number
of parameters and possible minima in the superpotentials
we may construct.

In our second example we consider a direct embedding
of SU(3) xSU(2) xU(l) with some horizontal symmetry.
The spin structure is

Wz = (0101101000
I

1111000000000000000000),

Ws = (0110000101
I

1000111111111110000000)

W& = (0110101000
I
0100111100000001110000)

W& = (0110000101
I

0100000011000001000000)

Ws = (0101000101
I

1111111111111100111111)

W7 = (0101101000
I

1010110000100011001000),

in addition to Wo and Vfq. All the k;j's below the di-
agonal are 1 except for k;o, k4&, k5&, k54, k63 k65 and k74.
The gauge group is

SU(2) x SU(3) x SU(6) x U(l)

Again, Appendix 8 lists the massless representations.
There are 44 representations, 32 of which are chiral. The
first U(1) is anomalous and the second one is identified
with the hypercharge (up to a factor of 6). Four genera-
tions of quarks and leptons are contained in representa-
tions Nos. 2—5, 8, 11, 13—16, 19, 20, 24, and 25. We are
forced to hope that the gauge bosons corresponding to
the third and fourth SU(2)'s are very heavy, as these two
factors provide a horizontal symmetry for family repli-
cation (at least for the quark doublets, the conjugate
nt quarks, and the positron). The only chiral represen-
tations not falling in the standard pattern and having
nonzero hypercharge are nonsinglets under the two SU(6)
factors, which were checked to have negative P functions
and are therefore expected to confine. The Higgs candi-
date lives in representation No. 12.

In our third and last example we consider the
SU(3) xSV(2) x U(1) model with spin structure

W& = (0101101000 I
1111111111111111111100),

Ws = (0110000101 I
1111111111100000000010)

~

W4 = (0101110000
I

1111100000011111100001)
~

W& = (0000110110
I

1000011110011000000001)

Ws = (0110110000
I
0111011101011111011011)

W& = (0110000110
I

1100010010010110000010)~

in addition to Wo and 'W~. All the k,j's below the di-
agonal are 1 except for k'o k32 k53 k62 k63 k65 k72 k74
and k75 ~ The gauge group is

SU(2) x SU(3) x U(l)'

There are 150 representations, and 104 are chiral. This
is a large number and we can see how a detailed analy-
sis could be lengthy. The spin structure has 256 sectors.
There is one anomalous U(l), and another charge may be
identified with the hypercharge. There are four families
of quarks and leptons, without horizontal symmetry. The
spectrum consists roughly of the following: 16 chiral sin-
glets, of which 4 have Y' = —2 and 12 have Y = 0 (in the
conventional normalization); 56 chiral doublets in various
SU(2)'s, with hypercharge Y = +1; the SU(2)iv dou-
blets of course have Y' = 1; there are eight chiral SU(3)'
triplets with Y = z, —

z and eight chiral triplets in SU(3)'
with Y = 0; there are four sextets of SU(3)'xSU(2)pr
with Y = —s and four sextets of SU(3)'xSU(2)' with

TABLE II. Examples of models constructed embedding the standard model.

SU(4)s xSU(3)'xSU(2) xU(l)s
SU(4)z x SU(3)'x SU(2) x U(l) 7

SU(3)'xSU(2)" xU(l)
SU(3) x SU(3)'x SU(2) x U(1)'s
SU(3) x SU(2) x U(1)"

[horizontal SU(2) symmetry]
[horizontal SU(2) symmetry]
[horizontal SU(2) symmetry]
[no anomalous U(1)]
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Y = 0; there are eight chiral quartets in SU(2)xSU(2),
singlets under SU(2)1v and with Y = 0. Finally, there
are some nonchiral representations, including two possi-
bilities for the Higgs field. The representations for this
model are too numerous to be listed in the Appendix.

Among all the models constructed that contained ex-
plicitly SU(3) xSU(2) x U(l), only a few survived a quick
glance at their spectrum. In addition to the two models
mentioned above, we have found the models, all having
four families of quarks and leptons, shown in Table II.

We also constructed many models whose gauge group
contains an SU(2) x SU(2) x SU(4) factor, and imposed
conditions on their spectra as described in Sec. V. As
of this writing, out of over 240000 randomly gener-
ated models containing the Pati-Salam gauge group as
a factor, only one has the required massless representa-
tions. The family replication in this model occurs by
some SU(2) x SU(2) horizontal symmetry, with no appar-
ent hope for these two factors to break spontaneously.
We are still trying to find an interesting model in this
category. We hope to provide in a future publication a,

more detailed analysis of some of the models we found.
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APPENDIX A

We present a short list of "basic" representations with
the corresponding Dynkin labels. s~ They are useful in
identifying the representations listed in Appendix B. See
Table III.

APPENDIX C

In this appendix we briefly discuss the problems in-
valved when trying to guess the total number of models
in a set by looking at the saturation of a random genera-
tion of models from that set. I et us consider the following
elementary example. Suppose that we have a set of N
objects, and that we select them at random without re-
moving them from the set. The probability p„ that after
n picks we reach for an object that we have not chosen
before is

( 1)"
pn =

I
1 —

~)l
provided every object is equally likely to be picked each

TABLE III. Dynkin labels for common representations.

Algebra

SU(n+ 1)

SO(2A)

Es

Dynkin labels

(100. . .0)
(0. . . 001)
(10.. . 01)
(010.. .010)
(1oo. . . o)
(o1oo. . . o)
(o. . . oo1)
(o. . .o1o)
(100000)
(000010)
(000001)
(0000010)
(1oooooo)
(00000010)

Dimension

A + 1
++1
n(n+ 2)
-'n(n + 1)
2n
n(an —1)
2'
2A —1

27
27
78
56
133
248

Representation

Fundamental
Fundamental conj.
Ad joint

Vector
Adjoint
8pinor
Spinor conj.
Fundamental
Fundamental conj.
Adjoint

Adjoint
Adjoint
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TABLE IV. Massless representations of SU(2) x SU(4) x SU(5) x SU(8) x U(l)

39

Label
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

Dimension
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1'

1
1
1
1

1

4

4
4
4

5
5
5
5
5
5
5
6
6
6
6
6
6
6
10
10
10
10
10
10
10
16
16
16
16
16
16
16
16
24
32
32
70

Dynkin labels

0,0,000,0000,0000000
0,0,000,0000,0000000

*

0,0,000,0000,0000000
0,0,000,0000,0000000
0,0,000,0000,0000000
0,0,000,0000,000QOOO

0,0,000,0000,0000000
0,0,000,0000,0000000
0,0,000,000Q, OOOO GOO

o,o,ooo, oooo, oooo ooo
0,0,000,0000,0000000
0,0,000,0000,0000000
0,0,000,0000,0000000
0,0,000,0000,0000000
o,o,ooo,oooo, ooooooo
Q, o,ooo,oooo, oooo ooo
0,0,000,0000,0000000
O, O, OOO, OOOO, OOOO OOO

o,o,ooo, oooo, ooooooo
0,0,000,0000,0000000
o,o,ooo, oooo, oooo ooo
1,1,000,0000,0000000
1,1,000,0000,0000000
1,1,000,0000,0000000
1,1,000,0000,0000000
1,1,000,0000,0000000
1,1,000,0000,00GOOOO

1,1,000,0000,0000000
0,0,000,0001,0000000
0,0,000,0001,0000000
0,0,000,000].,0000000
O, O, OOO, OOO1, OOOOOOO

0,0,000,0001,0000000
0,0,000,0001,QOQOQOQ

O, O, OQ0, 0001,0000000
0,0,000,0001,0000000
0,0,010,0000,0000000
0,0,010,0000,0000000
0,0,010,0000,0000000
0,0,010,0000,0000000
0,0,010,0000,0000000
0,0,010,0000,0000000
0,0,010,0000,0000000
O, O, OOO, O1OO, QOQOOOO

0,0,000,0100,0000000
0,0,000,0100,0000000
0,0,000,0100,0000000
O, 0,000,0100,0000000
0,0,000,0100,0000000
0,0,000,0100,0000000
0,1,000,0000,0000001
G, 1,000,0000,1QOQOOO

0,1,000,0000,1000000
0,1,000,0000,1000000
1,0,000,0000,0000001
1,0,000,GOGO, 1000000
1,0,000,0000,1000000
1,0,000,0000,1000000
1,1,010,0000,0000000
0,0,001,0000,0000001
0,0,100,0000,0000001
0,0,000,0000,0001GOO

0
0
0
0
0
0
0
0

10
10
10
10

0
0
5
5
5
5
5
5

10
0
0
0
0
0
5
5

—6
—6
—6
—6

4
—6
—1
—1

0
0
0
0
0
5
5
2
2
2
2

—3
—3

2
5

—5
0
0
5

—5
Q

0
0
0
0
0

—24
—24
—24
—24
—24
—24
—24
—24

6
6
6
6
0
0

15
15
15
15

—33
—33
—18
—16
—16
—16
—16
—8

7
7
6
6
6
6

—18
—3
—3
16
16
16
16
—8

7
7

—2
—2
—2
—2

7
7

22
—5
—3
12
12
—5
—3
12
12
0

—8
—8

0

—2
—2
—2
—2
—2
—2
—2
—2

6
6
6
6
0
0
4

4
4
0
0
4
6
6
6
6

—8
—4
—4

6
6
6
6
4
4
8
8

—6
—6
—6
—6
—8

4

—2
—2
—2
—2

4

0
—5
—3

1
1

—5
—3

1

0
3
3
0

U(1) charges

—1
1
0

0
—1

1

0
—1

1

2
—2

2
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TABLE V. Massless representations of SU(2) x SU(3) x SU(6) x U(1) .

Label Dimension Dynkin labels U(1) Charges

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

1
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3

6
6
6
8
8
12
12
12
12
12
12
12
12
12
12
15
15
15
15
36

0,0,0,0,0,00,00000,00000
0,0,0,0,1,00,00000,QQQOO

0,0,0,0,1,00,00000,00000
0,0,0,0,1,00,00000,00000
0,0,0,0,1,00,00000,00000
0,0,0,1,0,00,00000,00000
0,0,0,1,0,00,00000,00000
0,0,0,1,0,00,00000,00000
0,0,1,0,0,00,00000,00000
0,0,1,0,0,00,00000,00000
0,0,1,0,0,00,00000,00000
0,0,0,0,1,00,00000,00000
0,0,0,0,0,10,00G00,00000
0,0,0,0,0,10,00000,00000
0,0,0,0,0,10,00000,00000
0,0,0,0,0,10,00G00,00000
0,0,0,0,0,10,00000,00000
1,1,0,0,0,00,00000,00000
0,0,0,1,0,10,00000,00000
0,0,1,0,0,10,00000,00000
0,0,0,-0,1,01,00000,00000
1,1,0,1,0,00,00000)00000
1,1,1,0,0,00,00000,QOOQO

0,0,0,1,1,01,00000,000QO

0,0,1,0,1,01,00000,00000
0,1,0,0,0,00,00000,00001
0,1,0,0,0,00,00001,00000
1,0,0,0,0,00,00000,10000
1,0,0,0,0,00,10000,00000
0,1,Q,0,0,00,10000,00000
0,1,0,0,0,00,10000,00000
1,0,0,0,0,00,00000,00001
1,0,0,0,0,00,00000,00001
0,0,0,0,0,00,00000,01000
0,0,0,0,0,00,Q0000, 01000
O, O,O, O, O,OO, OOO1O, OOGOO

0,0,0,0,0,00,00010,00000
0,0,0,0,0,00,00001,00001

—1

—1
—1
—1

3
—1

3
6

—1

—1
—1

4
0
3
3
2
I
1
3
3
1

—1
—1

1
2
2
2
2
3
3
3
3
0

—12
6
6
6
6
0
0

—12
0
0

—12
6

8
0
8
8

—2
0
0

—2

6
—6
—6

6
0
0
0
0
0
0
0
0
0

0
3

—3
3
3
0
0
0
0
0
0
0

3
3
0
0
0
0
0
0
0
0
0

—2

2

2
2
2

—2
1
1

—1
—1

2

—12
—9
—9

9
—9
15
15

3
15
15

3
6

—9
—9
—9
—9

—12
0
3
3

18
—15
—15

3
3
1

—1
—1

1
10
10
10
10
—5
—5
—5
—5

0

0

1
—I

1
—2

2
0

—2
2
0
0
]
1

—1
1
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

—1
1

—1
1
0

time. It follows that the average number of objects that
have been chosen at least once after n picks is

( I b"

We see that the saturation as n &) N is purely expo-
nential, like a charging capacitor in fact. This idea is too
simple to be applied to our random generation of models,
since not all of them are equally likely to be generated.
Instead, the number of models having a probability be-
tween z and z+ dz to be picked is some function h(z)dz,
such that

1 1

h(z)dz = N, zh(z)dz = I
0 0

and the average number of distinct models obtained after
n random generations is

1

f„=N — h(z)e " dz .
0

If we substitute Nb(z —IjN) for h(z), we recover the
equal-likelihood case. Without the knowledge of h(z), it
seems hard to fit the known results for n and f„ to an
expected saturation curve in order to obtain a value for
¹ Moreover, it is easily seen that the saturation (i.e., the
way f„ap pr oache sN) no longer has to be exponential.
For instance, if we assume the distribution

N2 ( 2l
h(z)= i

z& —
i

2lh(z)=0 i
z& —i,

Ny

we then have
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N2
(I —2n/rv

)2n
VVe see in this case that the saturation occurs accord-
ing to a power law, i.e., much more slowly than for the

uniform-likelihood case, even if the exponential compo-
nent is faster. It would be interesting to know what h(z)
really looks like, knowing the values of f„Such an in-
version appears difBcult.

M.B. Green and J.H. Schwarz, Nucl. Phys. B255, 92
(1985); J.H. Schwarz, Phys. Rep. 89, 223 (1982); M.B.
Green, J.H. Schwarz, and E. Witten, Superstring Theory
(Cambridge University Press, Cambridge, England, 1987).
D.J. Gross, J.A. Harvey, E. Martinec, and R. Rohm, Nucl.
Phys. B256, 253 (1985); B267, 75 (1986).
D. Gepner, Phys. Lett. B 199, 380 (1987).
J. Distler and B. Greene, Nucl. Phys. B309, 295 (1988).
K.S. Narain, Phys. Lett. 169B, 41 (1986); K.S. Narain,
M.H. Sarmadi, and E. Witten, Nucl. Phys. B279, 369
(1987).
P. Ginsparg, Phys. Rev. D 35, 648 (1987).
N. Lerche, D. Lust, and A.N. Schellekens, Nucl. Phys.
B287, 477 (1987).
L. Dixon, J. Harvey, C. Vafa, and E. Witten, Nucl. Phys.
B261, 651 (1985); B274, 285 (1986).
K.S. Narain, M.H. Sarmadi, and C. Vafa, Nucl. Phys.
B288, 551 (1987).
L. Dixon and J. Harvey, Nucl. Phys. B274, 93 (1986).
H. Kawai, D.C. Lewellen, and S.-H. H. Tye, Phys. Rev. Lett.
57, 1832 (1986); 58, 429(E) (1987); Nucl. Phys. B288, 1
(1987).
I. Antoniadis, C. Bachas, and C. Kounnas, Nucl. Phys.
B289, 87 (1987); I. Antoniadis and C. Bachas, ibid. B298,
586 (1987).
S. Chaudhuri, H. Kawai, and S-H.H. Tye, Nucl. Phys. B
(to be published).
A.N. Schellekens and N. P. Warner, Nucl. Phys. B308, 397
(1988).
F. Gliozzi, J. Scherk, and D. Olive, Nucl. Phys. B122, 253

(1977).
D.C. Lewellen, Ph. D. thesis, Cornell University, 1987.
M. Dine, N. Seiberg, and E. Wit ten, Nucl. Phys. B289,
589 (1987).
J.J. Atick and A. Sen, Nucl. Phys. B292, 109 (1987).
W. Lerche, B.E.W. Nilsson, and A. N. Schellekens, Nucl.
Phys. B289, 609 (1987).
N. Jacobson, Lie A/gebras (Dover, New York, 1962); J.E.
Humphreys, Introduction to Iie A/gebras and Representa-
tion Theory (Springer, Berlin, 1972).
J.C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974).
J.C. Pati, S. Rajpoot, and A. Salam, Phys. Rev. D 17, 13]
(1980).
I. Antoniadis and G.K. Leontaris, Phys. Lett. B 216, 333
(1989).
H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32, 438
(1974).
S.M. Barr, Phys. Lett. 112B, 219 (1982).
J.-P. Derendinger, J.E. Kim, and D.V. Nanopoulos, Phys.
Lett. 139B, 170 (1984).

"I. Antoniadis, J. Ellis, J.S. Hagelin, and D.V. Nanopoulos,
Phys. Lett. B 194, 23 (1987).
H. Georgi, in Particles end Fields 197$ (A—PS/DPF
Williatnsburgh), proceedings of the 1974 Meeting of the
APS Division of Particles and Fields, edited by C.E. Carl-
son (AIP Conf. Proc. No. 23) (AIP, New York, 1975).
H. Fritzsch and P. Minkowski, Ann. Phys. (N.Y.) 93, 193
(1975).
S.Rajpoot, Phys. Rev. D 22, 2244 (1980).
See, for instance, R. Slansky, Phys. Rep. 79, 1 (1981).


