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We present the results of a numerical simulation of the fragmentation of single cosmic-string
loops in flat spacetime. The analytic solution for the motion of the fragmenting loop is derived, and
this solution is followed forward to determine the trajectories of the daughter loops. We find that
loop fragmentation is not stochastic; the loop fragmentation probability decreases with fragmenta-
tion generation, and a universal loop fragmentation probability is not well defined. All of the loops
sampled eventually reached nonintersecting trajectories. We see no evidence for fragmentation
down to arbitrarily tiny loops. The final loop size distribution is approximately a lognormal distri-

bution. The mean final loop velocity is v ~0. 6c.

I. INTRODUCTION

Cosmic strings are topological defects which may form
during a phase transition in the early Universe; they are
of interest as possible seeds for the formation of galaxies
and large-scale structure (see Ref. 1 for a recent review).
However, an understanding of the astrophysical effects of
cosmic strings requires a knowledge of the way in which
strings form during the phase transition and evolve to the
epoch of galaxy formation. While the initial
configuration of cosmic strings is relatively well under-
stood,2 > considerably more uncertainty remains regard-
ing cosmic-string evolution. The nonlinear partial
differential equations governing string motion in an ex-
panding background have been studied both numerical-
ly®? and analytically.®® The analytic work, based on
considerations of energy transfer in the string network
between long strings and closed loops, provides insight
into the gross features of string evolution, but it cannot
be applied to detailed questions regarding the spatial dis-
tribution of the strings. The full numerical integrations
of the string equations of motion by Albrecht and Turok®
and Bennett and Bouchet’ provide the most detailed in-
formation regarding string evolution, but they are limited
in their ability to resolve the behavior of the smallest
loops in the simulation.

In this paper we deal with a much simpler problem:
the evolution of a single loop well inside the horizon. In
this case, the equations of motion can be solved analyti-
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cally, and the motion of the daughter loops which form
from the fragmentation of the original loop can be calcu-
lated analytically from the original string trajectory.
This approach is complementary to the Albrecht-Turok
and Bennett-Bouchet simulations. Those simulations in-
dicate that loops typically form with radii smaller than
the horizon. Our simulation allows us to evolve such
loops forward with high accuracy to determine their ulti-
mate fate.

The main questions of interest are whether typical
loops cease fragmenting at some point, or continue to
chop themselves up into smaller and smaller pieces, and
whether or not there exists a “‘universal” fragmentation
probability for the loop trajectories. Previous discussions
of the behavior of cosmic strings in flat spacetime are
given in Refs. 10-15.

In the next section we derive the solution for the equa-
tions of motion governing a fragmenting loop, and we in-
dicate how the trajectories of the daughter loops are re-
lated to the original loop trajectory. Our numerical
simulation is described in Sec. III, and our results and
conclusions are presented in Sec. IV.

II. EQUATIONS OF MOTION
FOR A FRAGMENTING LOOP

Consider the trajectory of an isolated cosmic-string
loop well inside the horizon.!® The motion of the loop
can be parametrized in terms of two independent vari-
ables: o, the invariant length along the string, which is
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proportional to the energy of the string measured along
the string from a fixed point, and ¢, the time. The trajec-
tory of the string is given by x(o,t), the position in
three-dimensional space of the point o on the string at
the time ¢. In flat spacetime, the equation of motion for
the string takes the simple form

x=x", (1)

x-x'=0, (2a)
x2+x?=1, (2b)

where x=0x/0¢ and x’=0x/9dc. The general solution to
Egs. (1) and (2) is

x=1[la(c+1t)+blo—1)], (3)

where a and b are arbitrary functions satisfying
a’?=b"’=1and alc +L)=a(o), blc +L)=b(0o); L is the
total invariant length of the string loop. Thus a and b are

simply arbitrary closed curves of equal length
parametrized by their length.
The condition for the string to intersect itself is
x(o,1)=x(0,,1) . 4)
In terms of the a and b functions, this becomes
a(o,+t)+blo,—t)=alo,+1)+blo,—1) . (5)

It is convenient to work in terms of the variables o 4, 0,
and A defined by o, ,=0,+t, op=o,—t and
A=o0,—0,. Then Eq. (5) can be rewritten as

alo ,+A)—a(o ;)=bloz)—bloz+A) . 6)

Because the a and b curves have a’>=b"2=1, Eq. (6) has a
simple geometrical interpretation: self-intersection of the
loop occurs if there exist points 4, 4, on curve a and
B,,B, on curve b for which the arc lengths from 4, to
A, and B, to B, are equal, and the chords from 4, to
A, and B, to B, have the same length and direction (see
Fig. 1).

Suppose that self-intersection does occur. It is thought
that the probability for two intersecting string segments

%A

a b

FIG. 1. The cosmic loop defined by the curves a and b inter-
sects itself because the arcs o 4,0 ,+A and op,05+A have
equal length A, and the chords from o 4 to 0 ,+A and o4 to
o p + A have equal length and direction.

to break and exchange partners upon reconnection is
quite close to unity,!’-and we shall assume in this paper
that such an exchange of partners always occurs, so that
each self-intersection of a single loop produces two
“daughter” loops. Each daughter loop also obeys Eqgs. (1)
and.(2) and can be characterized in terms of a solution of
the form given by Eq. (3). Suppose that the original loop
is defined by the curves a and b and fragments at a time ¢
at points o, and o,. It will be convenient to work in
terms of o 4, 0, and A defined above. After fragmenta-
tion occurs, consider the daughter loop corresponding to
the points o, <o <o, on the parent loop, or equivalently,
the points o, ,<0<o,+A on curve a and
ocp<o=op+A on curve b. This daughter loop is
characterized by the new curves a, and b,. The position
and velocity of this daughter loop immediately after frag-
mentation are identical to the position and velocity of the
parent loop immediately prior to fragmentation, so we
must have

a,(o)=alo) (7a)
foro ,<o0=<0,+Aand
b,(0)=blo) (7b)

for 05 <o <oz+A. However, the daughter loop has a
new invariant length A, and so the position and velocity
of the loop must be periodic with period A:

a,(c+A)+b,(c+A)=a,(o)+b,(0), (8a)
a,(c+A)—b,(c+A)=a,(o)—b,(0), (8b)
for all o. The solution to Eq. (8)is
a,(c+A)=a,(o)+d, (9a)
b,(c +A)=b,(0)—d, (9b)

where d is the constant vector defined by the intersection
points on the original loop:

d=a(o ,+A)—alo ,)=blog)—bloy+A) .

Thus, while the daughter loop can be described by Eq.
(3), the new a and b curves are no longer closed curves.
Again, Egs. (7) and (9) have a simple geometric interpre-
tation (see Fig. 2). When fragmentation occurs, the a and
b curves fragment at the points o 4,0 ,+A and
op,0p+A, and the sections of the a and b curves which
lie between these fragmentation points are simply extend-
ed periodically in space to form the new curves a, and
b,. The velocity of the new daughter loop appears natu-
rally in this derivation. From Fig. 2, it is clear that the
center of mass of the daughter loop is displaced by a dis-
tance d during a single loop period A, so the velocity of
the center of mass of the daughter loop relative to the
parent loop is simply d /A (in units where ¢ =1). Veloci-
ties near 1 correspond to arcs which are almost straight
lines, and it is clear geometrically that d /A is always less
than 1.

This derivation indicates a relation between fragmenta-
tions of the daughter loops and self-intersections of the
parent loop. Suppose that the intercommutation proba-
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On

FIG. 2. After self-intersection, the new curves a, and b, are
derived by extending the corresponding sections of the old a
and b curves periodically in space. The velocity of the daughter
loop is d/A.

bility were O, so that the parent loop could self-intersect
without fragmenting. Then each self-intersection of the
parent loop would correspond to a geometrical
configuration such as that shown in Fig. 1. However,
since a given daughter loop is composed of segments
from the a and b curves of the parent loop, self-
intersection of the daughter loop corresponds to a self-
intersection in the trajectory of the initial parent loop.
See Fig. 3; the points A4,,4,,B;, B, correspond to a
self-intersection of the indicated daughter loop. On the
other hand, they would also correspond to a fragmenta-
tion of the parent loop if this parent loop had not already
fragmented. In fact, it is possible for fragmentation to
eliminate potential intersection points. See Fig. 4; the
points 4,, A,,B,B, and 4,, A,,B;,B, both satisfy con-
dition (6) and therefore both represent self-intersections
of the parent loop trajectory. However, when the
daughter loop corresponding to 4, A,,B,B, fragments
off of the parent loop, the points 4;,B; and A,,B, end
up on different loops, so they do not correspond to self-
intersection of any daughter loops.
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FIG. 3. The points A4,,A4,,B,,B, correspond to a self-
intersection of the daughter loop which was also a self-
intersection of the parent loop.

A, Az

a b

FIG. 4. The elimination of an intersection point through
fragmentation: the fragmentation at A4,, 4,,B,,B, eliminates
the potential self-intersection at A3, A4,B;,B,.

If this were the only process operating, then the num-
ber of self-intersections of the parent loop trajectory
would represent an upper bound on the number of
daughter loops produced by fragmentation. However, it
is also possible for fragmentation to produce new self-
intersections in the loop trajectories. Consider the
daughter loop trajectory shown in Fig. 5. The points
A, A,,B,B, satisfy Eq. (6) and therefore represent a
self-intersection of the daughter loop. However, this
self-intersection was not present in the initial parent loop
trajectory. The reason is that 4, and 4, straddle the in-
tersection point, while B; and B, do not. Thus 4, and
A, have been displaced relative to each other by the pro-
duction of this daughter loop, producing a new intersec-
tion. [If both 4,, 4, and B, B, straddled the intersec-
tion point, one could simply translate 4, and B, by the
vector d (Fig. 2) and arrive at an intersection point which
was also present in the parent loop trajectory.]

It is clear that the creation and destruction of intersec-
tion points are crucial to the eventual fate of the frag-
menting loop. It is often assumed®!! that the behavior of
a fragmenting loop is stochastic; i.e., the fragmentation
probability for all the daughter loops produced in a cas-

B2
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FIG. 5. The creation of a new intersection point through

fragmentation: the self-intersection of the daughter loop at
A,, A,,B,,B, was not present in the initial parent loop.
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cade of fragmentations can be characterized by a single
number g. Although our formalism clearly indicates the
deterministic nature of the trajectories of the fragmenting
loops, the fragmentation could appear stochastic if the
creation and destruction of intersection points with each
fragmentation were sufficiently high as to represent a new
“throw of the dice.” On the other hand, if the creation of
new intersections occurs at a low enough rate, the frag-
mentation probability will decrease with each generation
and the fragmentation process will eventually come to a
halt. These questions will be addressed in Sec. IV.

III. THE NUMERICAL SIMULATION

We work only with the analytic equations of motion
given by Eq. (3). Then the procedure outlined in the pre-
vious section allows us to calculate the trajectories of the
fragmenting loops as accurately as desired. The disad-
vantage of such an approach is that it requires specific as-
sumptions regarding the type of loop trajectories to be
sampled. For this project, we have chosen to sample two
widely different sets of loop trajectories. We will draw
general conclusions only about the results which are com-
mon to both sets of trajectories. We work in terms of the
a and b functions, which we express in the form

M
a(s)= 3 ay, cos(ms +¢,,),

m=1

(10a)

M
b{s)= 3 b,,, costms +¢,,), (10b)

and similarly for the y and z components. The ¢,,’s are
random numbers chosen uniformly between O and 2.
The two cases sampled here are (A) a set of trajectories
with large high-frequency modes: we take M =10 and
the a,,’s and b,,’s are random numbers chosen uniformly
between 0 and 1 and (B) a set of trajectories with little
high-frequency amplitude: M =10 and the a,,’s and b,,’s
are random numbers chosen uniformly between O and
1/m?2. In Eq. (10), s does not give the length along the
curve, so we calculate o(s) numerically. The a and b
curves are then normalized to have the same length. A
loop of each type is shown in Fig. 6.

To evolve the loop, we set down N points along the a
and b curves at equal intervals (for this project, we take
N =128). The evolution of these N points is followed us-
ing the analytic solution [Eq. (3)]. We check for self-
intersection by examining when the straight segments
connecting the N points cross. To check for crossing of
two segments, we calculate the volume of the tetrahedron
defined by the four end points of the segments. When
this volume goes through zero, the segments are coplanar
and can then be checked to determine if they actually in-
tersect. This is the same procedure as that used by Ben-
nett and Bouchet.” This procedure essentially amounts to
approximating the smooth a and b curves by closed
curves consisting of N straight chords of equal length.
Because this approximation does not follow the path of
the a and b curves exactly, particularly near kinks, it can
lead to small errors in the determination of the location
of the exact points of intersection on the a and b curves,

FIG. 6. Typical initial loop configurations for (a) case 4 and
(b) case B. Thicker and darker sections of the loop are closer to
the viewer.

or even to spurious intersections. In practice, it was
found that the future trajectory of the curve was extraor-
dinarily sensitive to small perturbations in the location of
the intersection points. Consequently, after a crossing is
discovered, we solve Eq. (6) using the Newton-Raphson
method to calculate exactly where to fragment the a and
b curves. After the fragmentation points are determined,
the new a and b curves for the daughter loops are deter-
mined using the procedure outlined in the preceding sec-
tion. We then set down N points on each of the new
daughter loops and evolve the new trajectories as de-
scribed above.

Because all daughter loop trajectories are expressed in
terms of the original analytic expressions for the a and b
curves, the only loss of accuracy which arises due to the
fragmentation process comes from the error in calculat-
ing the fragmentation points on the a and b curves. Since
all loops in the simulation are divided into the same num-
ber of segments, regardless of their size, the evolution of
the smallest loops should not be any less accurate than
that of the initial parent loop. On the other hand, this
procedure does introduce a minimum cutoff on the ratio
of daughter loop size to the parent loop size for a single
fragmentation: a parent loop cannot produce a daughter
loop smaller than ~1/N of the parent loop size in a sin-
gle fragmentation. However, multiple fragmentation can
produce much smaller loops: we observe daughter loops
as small as 0.0003 of the parent loop size.

Because we are interested in the behavior of isolated
loops, we have ignored any interaction between the frag-
menting loops and other cosmic strings. In addition, it is
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impractical to resolve loop fragmentation to the accuracy
we have used here and also to check for reconnections be-
tween daughter loops produced from the same parent
loop. We have chosen to sacrifice the latter in favor of
the former. However, reconnection of the daughter loops
could have a significant effect on the final loop trajec-
tories, so we have estimated this effect using a much
cruder form of the simulation (N =16 and 32) and check-
ing for reconnection among the daughter loops. We do
not actually reconnect the loops, but simply calculate the
fraction of all of the daughter loops (stable and unstable)
which intersect any other daughter loops in the course of
the simulation. Sampling 10% of the trajectories dis-
cussed in the next section, we find that reconnection is
very rare for case B; fewer than % of the daughter loops
intersected each other in the course of the simulation.
Loop velocities tend to separate the daughter loops after
fragmentation. As expected, reconnection is much more
common in case 4; roughly Z of all of the daughter loops
intersected each other. However, almost all of these in-
tersections took place in the initial stages of the simula-
tion. This suggests that the string configuration eventual-
ly becomes sufficiently untangled that there is a regime
over which our results are applicable. These conclusions
must be considered less reliable than the rest of our re-
sults, due to the crudeness of this form of the simulation.

IV. RESULTS AND CONCLUSIONS

Using the procedure outlined above, we have fragment-
ed 20 parent loops of type 4 and 80 parent loops of type
B. Part of the evolution of one of the type-B loops is
shown in Fig. 7. All of the initial type-A parent loops
were self-intersecting, while 5 of the 80 initial type-B
parent loops were stable. The total number of final stable
daughter loops was 561 (case A4) and 611 (case B). The
mean number and standard deviation of stable daughter
loops produced from each parent loop was 2816 for case
A and 8*4 for case B. Clearly, the mean number of
stable daughters produced per parent is strongly depen-
dent on the initial loop configuration; as expected, a loop
with higher-frequency modes will produce more daughter
loops.

Whenever a fragmentation occurs, we can define a
fragmentation fraction f given by the ratio of the length
of the smaller of the two daughter loops to the length of
the parent loop. The fraction f (0 < f <0.5) gives a mea-
sure of whether loops break roughly in half (f =0.5) or
whether they tend to break off tiny daughter loops
(f=~0). The number of fragmentations with a given
value of f is shown in Figs. 8(a) and 8(b) for cases 4 and
B, respectively. For both cases investigated, the fragmen-
tation fraction is relatively flat; i.e., a loop is equally like-
ly to fragment anywhere along its length. There is no
tendency for the loop to break approximately in half, nor
does the loop tend to break off tiny daughter loops.
There is an artificial lower cutoff on f produced by our
procedure for finding fragmentations (f R 1/N); this pro-
duces a sharp decrease in the smallest bin in both 8(a) and
8(b). However, the number of fragmentations as a func-
tion of f is not increasing sharply just above this cutoff,

FIG. 7. Part of the evolution of a type-B loop, at time inter-
vals of 6% of the parent loop period. Thicker and darker sec-

tions of the loop are closer to the viewer.

and doubling the number of segments to N =256 did not
produce a large increase in such small fragmentations.
We therefore conclude that we are not missing a large
number of fragmentations just below our cutoff. On the
other hand, we cannot rule out the production of tiny
loops far below the size resolution of our simulation, but
such loop production would be difficult to detect in any
numerical simulation.

As noted in Sec. III, one of the most important ques-
tions regarding loop fragmentation is whether or not it is
stochastic; i.e., can we assign a loop fragmentation proba-
bility ¢ which is a constant throughout the fragmentation
process? It is clear from the discussion in Sec. III that
this is not the most natural assumption. Stochastic loop
fragmentation would require the number of fragmenta-
tion points on each daughter loop to be roughly equal
throughout the fragmentation process. This means that
the number of fragmentation points per unit invariant
length would have to increase sharply with each fragmen-
tation. If the creation of fragmentation points were equal
to the destruction of such points, the number of fragmen-
tation points per comoving length would remain roughly
constant, and the fragmentation probability g would de-
crease with each fragmentation. Stochastic fragmenta-
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FIG. 8. The number of fragmentations with a given fragmen-
tation fraction f, where f is the ratio of the length of the smaller
of the two daughter loops to the length of the immediate parent
loop, for (a) case A and (b) case B.

tion would require a much larger rate for the creation of
fragmentation points than for their destruction.

A graph of the fragmentation probability g as a func-
tion of generation is given in Fig. 9 for the two cases sam-
pled. (A loop belongs to the nth generation if it resulted
from n —1 fragmentations.) For this graph, we have re-
tained generations containing ten or more loops. It is
clear that the fragmentation probability decreases with
generation for both cases studied. Loop fragmentation is
not stochastic, and a universal fragmentation probability
for the loops is not well defined.

Further evidence for the nonstochastic nature of the
loop fragmentation is given by the size distribution of the
stable daughter loops. The invariant length distribution
for these loops is given in Figs. 10(a) and 10(b) for cases
A and B, respectively. Although the mean loop size is
smaller in case A than in case B, the shape of the size dis-
tribution is similar in both cases. In neither case do we
see fragmentation down to arbitrarily small loops; all of
our simulations eventually reached a state containing
only stable daughter loops.

Stochastic fragmentation with a flat fragmentation
fraction as given in Fig. 8 would produce a power-law
distribution of sizes.!® Let L be the size of the final
daughter loop in units in which the initial parent loop has
unit invariant length. The distribution of sizes for a sin-
gle loop after n fragmentations is given by!°
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The mean number of daughter loops produced by exactly
n fragmentations is

N(n)=(2q)(1—gq) , (12)

where ¢ is the stochastic fragmentation probability. Mul-
tiplying Egs. (11) and (12) and summing over n, we obtain
the number of loops of a given size L:

N(L)=[(1—g)8L —1)+2q(1—¢q)L ~2]dL . (13)

Stochastic fragmentation with a flat fragmentation frac-
tion produces a power-law size distribution with ex-
ponent between —2 and O, clearly not what is observed.

However, we can show under quite general assump-
tions that the observed size distribution must be unimo-
dal. We assume that the fragmentation fraction is always
flat throughout the fragmentation process (i.e., it does not
depend on generation), but that the fragmentation proba-
bility is a decreasing function of generation. Let g, be
the probability for a loop of the nth generation to frag-
ment, and suppose that g, is a decreasing function of n:
q,>4¢,>¢q3> - --. Then the mean number of daughter
loops produced by exactly »n fragmentations is

N(n)=q,q9, " q,(1—q, 2" . (14)

Since g,, is a decreasing function of n, N (n) is an increas-
ing function for g, ;>4 and a decreasing function for
4, +:<+. In addition, if g, decreases sufficiently gradual-
ly for 4 >g, > 1, then N(n) will have only a single max-
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FIG. 11. The number of stable daughter loops belonging to a
given generation for (a) case 4 and (b) case B.

imum. [The actual condition for this to hold is
4,+1>(3—1/q,)/2 whenever 1>gq,>gq,,;>+.] This
condition is satisfied for our loops, as can be seen from
Fig. 11, where we give the number of stable daughter
loops as a function of their generation. Given a function
N (n) with a single maximum, it is easy to show that the
size distribution must also have a single maximum. In
terms of z=In(1/L), we have

© n—1
—_ z —Z
N(z)—nglN(n)-—(n_l)!e dz . (15)

Then N'(z2)=3 7 [N(n+1)—N(n)lz" 'e ?/(n — 1)\
Descartes’s rule of signs says that I[N(n+1)
—N(n)]z" ~'/(n —1)! can have at most as many zeros as
N (n +1)—N(n) has changes in sign; if N (n) has a single
maximum, then so does N (z).

It is not surprising that the size distributions in Fig. 10
resemble a lognormal distribution. The central limit
theorem guarantees that z" ~'e “2/(n — 1)! will approach
a lognormal as n— . Then if N(n) is sharply peaked
about some large n, as it is in Fig. 11, the sum given in
Eq. (15) will also approach a lognormal. [A lognormal is
a distribution of a random variable x such that Inx has a
normal (i.e., Gaussian) distribution.]

The velocity distribution of the stable daughter loops is
given in Fig. 12. The velocity distribution is quite similar
for the two cases except at the high-velocity end, where
case B produces many more loops with velocities near c.

Both cases yield similar mean velocities: v/c=0.55
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FIG. 12. The number of stable daughter loops with the indi-
cated velocity for (a) case 4 and (b) case B.
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+0.24 for case A, and v/c=0.64%0.25 for case B.
These velocities are significantly larger than the mean ve-
locities reported in the Albrecht and Turok simulations,?°
but they are consistent with the more recent results of
Bennett and Bouchet.?! There is a strong correlation be-
tween loop size and velocity. In Fig. 13 we give a scatter

plot of the velocity versus loop size for all of the stable
daughter loops. As expected, the smaller loops tend to
have larger velocities. This has a simple explanation in
terms of the geometric interpretation of velocity given in
Sec. II. When the daughter loop size becomes smaller
than the typical radius of curvature for the a and b
curves, the ratio of the chord length to arc length for the
daughter loop (Fig. 2) approaches unity. Conversely,
large loop velocities are possible only on length scales for
which the a and b curves are nearly straight.

Our results have several implications for models in
which strings serve as seeds for the formation of galaxies
and large-scale structure. If loop fragmentation contin-
ued indefinitely, the string loops would eventually chop
themselves into sufficiently small pieces that gravitational
radiation would destroy them in less than a Hubble time,
eliminating the possibility of matter accreation. Our re-
sults indicate that this does not occur, since all of our
loops eventually end up in non-self-intersecting
configurations. High loop velocities have important im-
plications for the formation of large-scale structure.
They tend to destroy the preexisting » ~2 loop correla-
tions,”® resulting in a final loop distribution which is
essentially random.?? In addition, such large loop veloci-
ties suggest that spherical accretion is a rather poor ap-
proximation for cosmic strings; the moving loops will
produce more elongated structures.?> The process of

"~ galaxy formation is then more complicated than spherical

accretion around static correlated loops.
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