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Conformal properties of the superstring-ghost Thirring model:
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It is known that the free theory of superstring-ghost fields can be extended by adding the
superconformal-invariant quartic interaction QJJ where J =bc +py is the total ghost number
current. We use functional techniques to compute correlation functions of the elementary fields and
currents of the theory to all orders in the coupling constant Q, and we use these to obtain the impor-
tant operator products. The model is then shown to bosonize in terms of the same fields used for
the free system, and we obtain bosonization formulas such as c(z,z)=:exp[a, y, (z)
+a, yz(z)+b&g, (z)+b2g&2(z)]:, where a; and b; are algebraic functions of Q, such that az, b„and
62 vanish in the free limit. The model thus exhibits the nonholomorphic behavior characteristic of
the Thirring model as well as novel mixing of the scalar fields y~ and y2. It does not seem possible
to construct an operator in the interacting theory with the properties of the Becchi-Rouet-Stora-
Tyutin current.

I. INTRODUCTION

Two years ago a generalization of the standard free
field theory of superstring ghosts was obtained' contain-
ing superconformal-invariant quartic interactions. The
motivation was to develop possible new superstringlike
theories with interacting ghosts. Shortly thereafter a su-
perspace version of the theory appeared, ' and the con-
forrnal anomaly was calculated.

In this paper we explore the structure of the theory as
a two-dimensional sup erconformal field theory.
Specifically we show how to calculate exactly correlation
functions on the Minkowski plane among the elementary
fields and important composite operators such as currents
and stress tensor. This determines the operator structure
of the theory. We then bosonize the theory on the Eu-
clidean sphere by generalizing the known bosonization
construction for free superstring ghosts. We will report
elsewhere on the bosonization of the model using the
superfields of Martinec and Sotkov, and on the exten-
sion of the bosonization to the cylinder and the torus and
the calculation of the partition function in both the fer-
mionic and the bosonic versions of the theory.

Before presenting the supersymmetric model, it is in-
structive to discuss first the bosonic string truncation of
the model. This theory was studied earlier using an
auxiliary-field formulation in which the action is

real and anticommuting. The world-sheet metric g„has
the Lorentz signature (+ —), and V„ is the covariant
derivative with metric connection. The vector auxiliary
field A„can be integrated out to produce an equivalent
action with current-current coupling —,

' tr QJ Jt" with
J"=b"c . This makes it clear that the ghost theory is

very closely related to the spin- —,
' Thirring model, and,

indeed, the correlation functions and bosonization of the
two theories are very similar.

The complete action' of the superstring-ghost Thirring
model is very complicated in its general form which in-
volves the coupling to N=1 world-sheet supergravity
and requires two vector auxiliary fields. In this paper we
consider only situations where the world-sheet gravitino
is absent. The action of Ref. 1 then simplifies consider-
ably and can be written as

S [b"',c,P ",y ]=Id x &—g g t' A
1

2~Q

ib" (V„+—A„)c

iP "(V'„—+ A„)y

(1.2)

S[b",c„,A„]=Jd x& g—g" A„A
1

ib" (V„+A„)c—

(1.1)

Here b" and c are trace-free symmetric tensor anti-
ghost and vector ghost fields, respectively, and both are

where p ~ is a I traceless vector spinor antighost and y a
spinor ghost field. Both are real and commuting. Integra-
tion of A„produces the current-current coupling

,'rrQJ„J" with J"=—b"c„+P"y.
The N =2 supersymmetry algebra of the free theory

generalizes to the interacting system. The action ob-
tained from (1.2) after elimination of A„ is invariant un-
der the two distinct superconformal transformations:
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s c„=rr„)+-,'~grr. rp cc, while the operator product of conjugate elementary fields
is

6 q=+ —V„c.r r~~ —~.c.r r~V„~l
+ —

2 P v
1

b(z, z )c (w, w )—
iz —w~& ""+&)(z—w)

(1.6)

+-,'~gr, r.) rr.r~P c
(1.3)

The model is bosonized by a single anti-Hermitian scalar
)I}(z,z ) with the action

8 b)' =+ —er)'1 V )'+ —V urer'p"3I,
+ P

L

S= ' Jd'z&g (ay)'+
2m 2+1+Q

(1.7)

,'~g~r rP cb~~

6+/3"=b" r e+, )erg- /3~—F r"I ~p c .

Invariance holds on a curved world sheet for spinor pa-
rameters e(x) satisfying the conformal Killing condition
V'„E= —,'I I Ve. The Q-dependent terms in (1.3) can be
interpreted as a field-dependent gauge transformation'
and this simplifies the proof of invariance. One should
note that the space-time translation term appears with
opposite signs in the commutators [6+,5+], so that the
% =2 algebra does not have unitary representations.

The auxiliary-field formulation of Thirring-type Inodels
provides a convenient method to calculate correlation
functions and anomalies, and as recently shown, the par-
tition functions. The method is to integrate out the
dynamical fields, using Pauli-Villars regularization or the
families index theorem to obtain the effective action
r[g~, A „](Ref. 8). Fortunately, the results presented in
Ref. 8 for a general spin b-c system allow us to treat the
system (1.2) with little new work required.

We now sketch the properties of the correlation func-
tions and the operator bosonization of the two models
(1.1) and (1.2). Results for (1.1) are taken from Ref. 8
while the results for (1.2) are derived in Secs. II and III
below. The chiral-anomaly term in the effective action is
very important for the dynamical properties of the mod-
els. %'e choose the finite local counterterm arising from
the integration of the dynamical fields, so that the ghost
vector current is anomalous. This is appropriate for
string ghost fields and is automatic in Pauli-Villars regu-
larization. The anomaly term is the nonlocal expression

I' =+ d x& —gB A —8 A (14)1 1

The magnitude of the coeKcient is independent of the
spin of the b-c system which is integrated, and the sign
depends only on the statistics, —(+ ) corresponding to
the anticommuting (commuting) ffeids. Thus the anoma-
ly term occurs with coefficient ( —) in the "bosonic"
ghost Thirring model (1.1) and coefficient zero in the su-
persymmetric model (1.2), because this model contains
two b-c systems of opposite statistics.

It is this simple fact which leads to very different be-
havior of operator products, conformal and current
anomalies, and the bosonization formulas of the two
models. For the "bosonic" model (1.1), the anomalies are

and the operator formulas

(
—

) .cay(z)+py(z).

J(z)= B,g(z),1

1+Q

(1.8)

where )p(z) and qr(z ) are the chiral and antichiral parts of
P, and

1 1

&I+Q

1 1

2 V'I +Q

+&1+Q

1+Q
(1.9)

D (b" c )= (3—Q)R,4~
(1.10)

D (P"y)= ( —2+Q)R

and the operator products of b, c and p, y are

1
b (z, z)c (w, w )-

Z l8

p(z, z )y(w, w )-

The fact that these operator products have the same
value as in the free theory is a striking feature of this
model, although such behavior can only occur because
the theory is not unitary.

The supersymmetric model is bosonized using a pair of
anti-Hermitian scalars P)(z, z) and $2(z, z), and the
c = —2 fermion pair g(z), g(z) and their conjugates. The
g'-q system appears in exactly the same way as in the
noninteracting case Q =0 of the standard superstring
ghost bosonization, but P) and )I}2 (which correspond to
cr and P of Ref. 4) mix for QAO, and b (z,z), c (z, z), etc. ,
are nonholomorphic as is characteristic of Thirring mod-
els. The P„Pz action is

The results (1.6), (1.8), and (1.9) are similar to the spin- —,
'

Thirring model.
In 'the supersymmetric Inodel, the anomalies are

T" = — (15—3Q)R,1

24~

T' = 26—
24~ 1+g

D (b" c )= R,
4m 1+Q

(1.5) S = ' Id'z&g [(ay, )' (ay, )'+—2R (k, y, —k, y, )] .2'
(1.12)



39 CONFORMAL PROPERTIES OF THE SUPERSTRING-CxHOST. . . 3705

The currents bosonize as

:b~ -'=~& ~zV']+ "2~zV'z~

:py:=sla, V i+s2a,
(1.13)

T(z) = —
—,'(ba, c+Pa, y) —

—,'a, (bc) —a, (Py), (1.15)

The bosonization of the fields is generically of the form

c (z z)-:exp[~lyl(z)+~2q'2(z)+bllpl(z)+b2+2(z)]'

(1.14)

The exponential part of the bosonization of y(z, z) is
similar to (1.14) with a, and a 2 interchanged, while
b (z,z) and p(z, z) bosonize with exponentials whose argu-
ments are opposite in sign to that of c(z,z) and y(z, z),
respectively. The constants k;, a;, b;, r;, and s; in (1.13)
and (1.14) are algebraic functions of Q given in Table II
below and in (3.6) and (3.15). The operator product (1.11)
is reproduced in the bosonized theory because of algebra-
ic relations between the coefficients e g a

& az =1
b& =b~, etc. There is a striking contrast between the
complicated Q dependence of many coe%cients in the bo-
sonization formulas and simple linear dependence of the
anomalies (1.10).

The conformal components of stress tensor T(z) and
supercurrents S+(z) [corresponding to the symmetries 5+
of (1.3)] are independent of Q, after equations of motion
are used:

statistics. This cancellation is a consequence of the su-
persymmetric interactions.

This brief summary of the properties of the supersym-
metric Thirring ghost model shows that it is a conformal
field theory, albeit nonunitary, with some novel proper-
ties. The correlation functions and operator products of
the theory are discussed in Sec. II below, and the bosoni-
zation is discussed in Sec. III. In Sec. IV we return
briefly to the original motivation of the theory, namely,
the possible use of interacting ghosts in string theory, and
we discuss several unsuccessful attempts to construct an
operator with the properties of the Becchi-Rouet-Stora-
Tyutin (BRST) current.

II. CORRELATION FUNCTIONS OF THE MODEL

In this section we outline the calculation of the correla-
tion functions and anomalies of the superstring-ghost
Thirring model. %e use the results of Pauli-Villars regu-
larized functional calculations of Ref. 8, which are corn-
patible with earlier work. In a conformally Aat back-
ground metric, g„,(x)=e '"'21„„, &—gR = —2Dcr, and
current source A„(x), the efFective actions of the free b c-
and P-y systems, defined by

e ' ':—fX)b" X)c exp f d x& gb"—(V„+A„)c,

(2.1)

e ' '—:f2)P"2)y exp fd2X& gP"—(V„+A„)y
S—(z) =+ —,'pa, c+ a,pc+ ,'by . — (1.16) (2.2)

Despite this, the standard calculation of operator-
product coefficients among these operators and with ele-
mentary fields is invalid because we have an interacting
theory. Instead we determine these coefficients from reg-
ularized functional calculations using the action (1.2). In
this way we find that anomalous dimensions of all ele-
mentary fields are also linear in Q; see Table I. One way
to describe these results is to say that (Pauli-Villars-
regulated calculations of) correlation functions such as
(T(w)b(y, y)c(z, z)) are one-loop exact The r.eason for
this is that at one-loop order the contributing bc and py
bubble graphs have difterent numerical coefficients, while
higher-order corrections involve a sum of bc and py bub-
bles which is regular at short distances due to opposite

are given by

1,[g, ~]= fd'x& g, ',—( a~) —2 3~„a~~
1

—V A —V.A, (2.3)
1

0

1.,[g, ~]= fd'x& g ———'„'(a„~)'+2~„a~~= 1

+V A —V A . (2.4)
1

0

TABLE I. Charges and conformal dimensions of the elementary fields in the model. See (2.18) and
(2.19). The coe%cients e; (g) and h (y) are obtained by replacing +~—above, e.g., e& (c+)
=e, (c ) = —,

' Q.

el+(X)

e2+(x)

e+(y)

2

2
0

C

Q—1+—
2

2—1

2

2
0

2
1+—

2
1

2

2
0

2
—1 ——

2—1

—1+—
4

3 Q
2 4

1 Q——+—
2 4
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Since ghost mass terms, e.g., m e" c„c or m yI 5y, are in-
variant under dual ghost number transformations, but
not ordinary ghost number transformations (e.g. , invari-
ant under 6c„-e„c and 5y —I 5y, not 5c —c„and
5y-y ), it is an automatic consequence of Pauli-Villars
regularization that these e6'ective actions are invariant
under 5A„=e„()8(x). In other regularization methods
one may choose the coefficient of the finite local counter-
term d x&—g A "to achieve this.2 2

The next step is to implement the Thirring interaction
via the vector auxiliary field in (1.2) and to define

A exp l~, g ~„+C&„

+i I p[g, A„+Ca„]

f d~xv —g A„.(2.5)
2nQ

Looking back to (2.1) and (2.2) we see that Ci and Cz„
are sources for the conserved currents J~& =b" c and
J)2 =/3"y. The Gaussian integration over A„can be per-
formed by a shift of variables discussed in Sec. IV of Ref.
8 with the result

I [g, C), C&]= d2xV' —g —(1—Q)V' Ci —V Ci —2QV C, —V C2
l 1

+(1+Q)V.C2 —'V.C2 —(3—Q)cplap~+(2 —Q)CP2BP~+-,'(5 —Q){BP~)2 (2.6)

This immediately implies that anomalies (1.10) and the current two-point functions

( TJ,„(x)J,.(y) ) =—(1—Q) ~(x,y),l B

Bx" By

( TJ,„(x)Jz,, (y) ) = —Q A(x,y),l B B

Bx" By
(2.7)

(TJ,„( )J„,(y))= ——(1+Q) ~(,y),l B B

'jj Bx" By

where b(x, y) is the scalar Green's function which satisfies i)„(&—gg"'() b(x,y})= —5(x,y) and is given for the fiat

metric, g„„=i)„,by b(x,y)=(i/4m)ln[ —m (x —y)~+i@]
%'e now discuss correlation functions of conjugate dynamical fields using light-cone coordinates

x —=(1/V2)(x +x ').in the fiat plane. To calculate these we again follow Ref. 8 and consider the generating functional
r

W[B„,CP]= f2)A„2W" 2)cP)f3"Xlyexp f d x A +b" ((3„+A„)c +P"(s3„+A„)y+b„B" +C cP

(2.8)

The ghost integrals are regulated and after a shift, they are evaluated as in (2.1)—(2.4) with (T(x)=0. The chiral anoma-

ly cancels due to opposite statistics of b, c and P, y, and we obtain

W[B,CP]= fXiA exp f d x A„—C+ B++ —C (2.9)

The A„ integral may be evaluated using the representation A„(x)=c}„s(x)+e„()„p(x), or equivalently A+ =8+(s+p)
and using the results

A„=(()„)—(B„p) +28„(e"sB,p),
}
—1 —(s+p)g —1 (s+p)

(2.10)

(2.11}

Converting the functional integral over s and p to Dyson-%ick form and differentiating with respect to sources, we find

the correlation functions

( Tb +——(X)c (y) ) =exp[ —(s(x)s (y) ) —(p (x)p (y) ) ]
B+

x,y

(2.12)

Eiowever, the Wick contractions satisfy (s(x)s(y) ) = —(p(x)p(y)) because of the relative —sign in (2.10) and the
two-point functions are therefore independent of the coupling constant Q. Note that

B+
x,y

l 1

2' (x —y)+
=2()+ (x,y) =—1 i (x —y}—

ir —(x y) +ie— (2.13)
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If the chiral anomaly had not canceled, the coefficient of (Bs ) and (Bp ) would not be of equal magnitude, but opposite
sign in the integral which replaces (2.9). The result (2.12) would hold, but the Wick contractions would lead to a Q-
dependent anomalous dimension term in the correlation function.

An identical calculation with sources for P" and y gives the correlation function

1
( TP+(x)y+(y) ) = l 1

2vr (x —y)+
(2.14)

which is again equal to its value in the standard theory of free superstring ghosts. (We use P+ to denote the spin +—,

component of the field Pz .)
We also need three-point correlation functions of the currents and ghost fields, such as ( TJ~~(x)b ——(y)c+(x) ). This

may be obtained from the generating functional

8"[x,B,C ]= f2) A 2)b" X)c X)P"2)y exp f d y A

E

exp f d'z[b "~(a,+ A. +Z„)c,+P (a.+ A. )y+b "~B.,+C'c,
6Z„(x)

(2.15)

The integral can be evaluated by straightforward extension of the techniques used previously. One finds results such as

( TJ", (x)b (y }c+(—z—) ) = — [(1—Q}g""+e"']2'
X

—(x y) +—ie
x z

—(x z) +—ie
( Tb (y)c —(z—) ),

(2.16)

( TJ",(x)b+ (y)c+(z—)
—) = Q2&

Xp yp
—(x y) +—ie

X"—ZP

—(x z) +i—e (Tb + (y)c+(—z—)) .

As discussed in Ref. 8, the Q-dependent terms in these
expressions describe rescalings of the vector ghost
charges due to the Thirring interaction. From (2.16) one
can extract operator-product relations such as

J,+(x)c —(y) ——(1—
—,'Q) i c —(y)

27r (x —y)-

J,+(x)c-(y)- ——Q
+ 1 i c +—

(y)
2~ (x —y) +—

(2.17)

J,+(x )y(y) -e, +(y) x(y)
2') (x —y) +—

(2.18)

The charges e, +(y) are given in Table I. One can observe
using the table that the charges of the total ghost number
current J"=J", +J~z are independent of the coupling Q.

Let us now turn our attention to the conformal proper-
ties of the ghost fields. The conformal dimensions h+(g)
of the field g are specified by the coefficient of the
second-order pole in the operator-product expansion with
the stress tensor: namely,

Let y(y) denote a chiral component of one of the an-
tighost or ghost fields. Then the operator-product rela-
tions which can be extracted from the full set of three-
point functions of the type given in (2.16) can be written
generically as

h+(b++ )+h+(c+)=1,
h (b++ )+h (c+)=0,
h + (/3+ ) +h + ( y + ) = 1,

(2.20)

h (P+ )+h (y+ ) =0
together with four identical relations with +~—.

The stress tensor and supercurrent of the Thirring-su-
perghost model can be obtained by functional derivatives
of the supergravity-coupled action of Ref. I with respect
to zweibein and gravitino. This gives

3l-T = —2ib B c~ ia b c~— f3 B—y—PV PP V V PP P V

——B P„y+ ,'rrQg„J&J—

correlation functions of the form ( TT++(x)y&(y)g2(z)).
However, the functional methods developed in Ref. 8
cannot be directly applied to calculate the correlation
functions of T++ and we therefore use an indirect
method to determine the h+(y) using previous results to-
gether with the "charge conjugation" symmetry of the
action (1.2).

%'e first note that from the action of the Virasoro gen-
erator Lo and Lo on the two-point correlation functions
(2.12) and (2.14) we learn the following information about
the conformal dimensions:

h+(X)X(y)
T+~(x)y(y)- +

[(x —y)-]'
1

x(y) .
(x —y) — By+- S„-=+-,'f3.a„c +ay.c ——b„.r y2

(2.21)

(2.19)

These operator products could be directly obtained from

+ vrQ[J (P„c —P c„)—J„P—.c) .
4

The stress tensor is conserved symmetric and traceless on
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Next we observe that the action S in (1.2) is invariant un-
der the conjugation transformation b++~c+— and
p++-+ —y+ and A+ ~ —A+. The currents J;+(x) are odd
under this symmetry, while T++(z) in (2.22) is expressed
as a sum of T'++'(z), which is even, plus odd terms involv-

ing the currents. Invariance of the whole theory under
this symmetry requires that the set of operator-product
expansions (OPE's) transform into itself. Then, for exam-
ple, applying the symmetry transformation to

T++ (x)b++ (y)—
h+(b++»++(y)

[(x —y)']'
1 B+ + + b++(y)

(x —y)+ By+
(2.23)

gives

[T'+'+ (x)+—', iB+Ji+ (x)+i B+J2+ (x)]c+(y)

h+ (b++ )c+(y)
+ c+(y) . (2.24)

[(x —y)+ ] (x —y) By

But from the definition of h+ (c+ ) contained in (2.19) we
also have

[T'++ (x)—-', i B+J,+(x)—i B+J,+(x)]c+(y)

h+ (c+ )c+(y)
+ 2

+ + + "(y). (2.25)

In the difference between these two equations, only the
operator products of B+J;+(x) with c+(y) contribute,
and these may be evaluated by taking the derivative of
the current-field OPE (2.17). In this way we obtain

h+(b++ ) —h+(c+)=3(1—
—,'Q)+2 —,'Q =3—

—,'Q . (2.26)

Proceeding in a similar fashion using (2.18) and the
charges e;+(y) in Table I, we obtain the additional results

h (b+~ ) —h (c+)=—
—,'Q,

h+ (P+ )—h+ (y+ )=2—
—,'Q,

h (f3 ) —h (y )= —1g.
(2.27)

There are four additional relations obtained from (2.26)
and (2.27) by +~—.It is now easy to solve (2.20), (2.26),
and (2.27) to obtain all the conformal dimensions h+(y),
which we have listed in the last row of Table I. Note that
the difference between h+(y) and h (y) for each field y
is independent of Q and is equal to the integer or —,

'-
integer spin of the field. One further check of the con-
sistency of these conformal weights can be made using
the fact that the 'conformal supersymmetry algebra re-

shell, while the supercurrent is conserved and I traceless.
The light-cone components of T„can be written as

r+ ——r~++' —-i.B+J,+ —i B+J,+,[a) 3 ~

(2.22)

T++ ( b++ a+c +P+a+y+ )

K, =COSOJ, +SinOJ2,

K2 = —sint9J, +cosOJ2,
(3.1)

where the mixing angle 0 is chosen so that
( TK1&(x)E2 (y) ) =0. This gives tan28=Q and the
two-point functions

(TK,„(x)E, (y)) = i b,(x,y),f+. a a
Bx" By

(3.2)f . a a-
i -b, (x,y),Bx" By

where f+ =f+(Q) =(1+Q )'/ + Q. Note that f+f
=1. Thus K, and K2 can be bosonized using two anti-
Hermitian scalar fields p, and $2 with two-point func-
tions

(TE2 (x)IC2 ('y)) =—

)y (y) ) = —( Ty ( )y, (y) ) = &(,y).
Comparing (3.3) with (3.2) we identify

1/2 1/2

K

(3.3)

B„P2 . (3.4)a,y„z,„=
In a conforrnally Aat background the usual equations of
motion of p, and $2 are determined by the anomaly (1.10)
in the ghost number currents which yields

Clg;=k;R, i =1,2, (3.5)

( 1+g2)1/4+ Q
8&~ ( 1+g2)1/4

( 1+ 2)1/4 Q
8+m (1+Q )'

(3.6)

quires that the difference between h+ for any positive-
chirality field and for its supersymmetry partner should
be —,

' and that the h value of such a pair of fields should
be equal. This checks with h+ (c+ ) —h+ (y+ ) = —

—,
' and

(c+)=h (y+) and with h+(P+) —h+(b++)= —
—,
'

and h (P+)=h (b++).
III. BOSONIZATION

In this section we study the bosonized representation
of the superstring Thirring model. Using the operator-
product expansions of fields and currents we express the
field operators in terms of two scalar fields p, and $2, and
the fermion fields g, il. Our derivation combines the bo-
sonization of the standard Thirring model' (and/or the
bosonic string Thirring ghosts ) with the bosonization of
the free superghosts of Ref. 4. In the first part of this sec-
tion we will work in the Lorentzian signature plane and
derive the bosonization rules for currents using the re-
sults from the previous section. In the second part we
perform the Euclidean continuation and use conventions
similar to Ref. 4. This should allow the reader a more
straightforward comparison of our results in the interact-
ing model with the corresponding ones in the free model.

Let us first consider the bosonization of the ghost num-
ber currents J& and J2 whose two-point correlation func-
tions are given in (2.7). It is convenient to take linear
combinations of these currents,
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Equations (3.3) and (3.5) correspond to the actions

S[P;]=&;J d x&—g ( ,'g"—B„P,BP. , +k, RQ, ),
e& =+ 1~ ez= —1

(3.7)

where J, (z) and Jz(z) are the currents of Sec. II]

j,(z)=Qf+cosOB, @,(z)+Qf sinOB, @2(z),
(3.15)j 2(z) =+f+ sinOB, y, (z) —Qf cosOd, @2(z)

from which we find the energy-momentum tensors

r„"„'=e,(a„y,a.y, ,'g—„,g—"a,y, a.y,

—2k,.B„B P,. +2 k,. g„,Clg,. ) . (3.8)

r'"(z) =
—,'a, q, a, q, +co,a, a, q, ,

7'2)(z) = ,'a,—q,—a,g, +~,a,a,g, ,
(3.16)

Adding the traces of T„"'s we find that the trace anoma-
ly, including the quantum contribution from each scalar
field, is

(T" )= 2k, —2k~+ R
2

24~

where co i
= 2i—v hark, and co2 = —2i &vrkz

It is straightforward to write the OPE's (2.17)—(2.19)
for the Euclidean fields and currents. One obtains, e.g.,

j,(z)c(w, w )-(1—
—,'Q) c(w, w)

Z M
(3.17)

( —13+3Q)R .1

24m
(3.9)

j, (z)c(w, w)- ——Q
1 c(w, w)

Z l8

and generically
The value of the conformal anomaly in the superstring
Thirring ghost model was previously calculated in Ref. 3
and its coefficient turned out to be —15+3Q. This shows
that the difference with (3.9) is precisely the same as in
the free model and thus will be compensated by adding
the standard g-g fermion system. If this is indeed correct
we should now be able to express the fields of the original
theory using the scalar fields P„and $2 and the fermion
fields g, g.

At this point it is convenient to make the continuation
to the Euclidean plane with complex coordinates z, z
(z =x'+x ), and make the following identification of the
fields:

c (z z)~ —c(z z), c (z z)~ —c(z z),1 1

1T 'Ir
(3.10)

l lb++(z z)~ b(z z), b (z z)~ b(z z),
2~ ' ' '

2~
1 1

y+(z, z)~ —y(z, z), y (z,z)~ —y(z, z),
(3.1 1)

p+(z, z)~ p(z, z), p (z,z) —+ p(z, z) .
277

' ' ' 2'
The new fields have the "canonical" OPE's

c(z,z)b(w, w)-, c(z,z)b(w, w)-, (3.12)
1

Z W Z W

1
y(z, z )p( w, w )—

Z W
y(z, z )P(w, w )—,(3.13)

1

Z W

which trivially follow from (2.12) and (2.14). Similarly we
define the chiral components of the scalar fields

i + [+1( ) Pi2&7r

$2(z, z ) = + —[y2(z)+yz(z )]
2 7r

(3.14)

so that y, (z)y, (w)-ln(z —w) and y2(z)yz(w)
——ln(z —w). In terms of these fields the holomorphic
components of the ghost number currents and the stress
tensors are [note that j, (z) = —J, (z) and j2(z) = —J2(z),

j, (z)y(w, w)- —e, (y) y(w) (3.18)

4i(z, z)
c(z,z)=e

—W)(z, z)
b (z,z)=e

+2(z, z )

y(z, z) =q(z)e

(3.19)

(3.20)

(3.21)

p(z, z) =B,g(z)e

where

~'i(z z)=a]yi(z)+~//2(z)+bi@i(z)+by@2(z),

(3.22)

@'2(ziz)=ci%i(z)+C2yq(z)+d&y~(z)+dzq&z(z) . (3.24)

This generalizes the usual bosonization rules from the
noninteracting model in two respects. First, we accom-
modate the nonanalytic behavior characteristic of the
Thirring interaction, and we incorporate the mixing of y&
and y2 necessary to produce currents of the form (3.15).
The g-g system enters in the same way as in the conven-
tional model in order to compensate for the conformal
anomaly. The constant coefFicients a„.. . , dz depend
upon the coupling constant and can be uniquely deter-
mined by requiring that the fields in (3.18)—(3.21) repro-
duce the two-point functions (3.12) and (3.13) and the
OPE (2.17) and (2.18) with the ghost number currents.
The result is given in Table II. Finally, the conjugation
of (3.19)—(3.22) gives the bosonization of the fields
c, . . . , p.

We have written on purpose the bosonization rules in
(3.19)—(3.22) in the same form as in the standard treat-
ment of the free b cand p-y sys-tems, except that the sca-
lar fields @&(z,z) and 42(z, z) are not purely holomorphic
in the presence of the interaction. However, the antiho-
lomorphic terms in +, and Nz cancel in the ghost number
currents and the energy-momentum tensor. Therefore,

To establish the bosonization of the field operators let us
consider the Ansatz
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TABLE iI. CoefFicients which appear in the bosonization
formulas (3.16) and (3.19)—(3.24).

a, =c2 = =—(1+ ')' +cos 0 1 1

&cos20 2 (1+Q2)'/

—3 Jl(w) a J' (w)
T(z)j, (w)= +

(z —w) (z —w)2 z —w

j2(w) a„j2(w)
(z —w)' (z —w)

(3.30)

sin 0 1 2 1/4a, =c, = =—(1+g')'"—
&cos20 ( 1+g2)1/4

2 &cos28 2 (1+Q')'

a2, =—'{3a,—2a, +b, ) = —(1+Q )'/ +
( 1 + g2)1/4

1 5 —A
a22= —,'(3a2 —2a, +b2) =—(1+Q )'/—

4 ( 1 +g 2
)

1 /4

This confirms the value for the ghost number anomalies
in (1.10) and shows explicitly that j, (z) and j2(z) have
conformal weight one. The total ghost number current is
j(z)=j,(z)+j2(z) and it does not depend explicitly on
the coupling constant.

The Sugawara-Sommerfield form of the stress tensor
can be obtained by solving (3.29) for a, 4I21 and a, 4I&2 and
substituting in (3.26). The result is

T ' '=
—,'(J' +J' )[(1+Q)J,—(1—Q)J' ]

Q Q =1, a, b, —a b2= ——'Q
2 + 2'&+BJ2 . (3.31)

the algebraic structure of the operator-product expan-
sions of these currents is the same as in the free theory,
but with modified conformal dimensions of fields, as we
have already seen in Sec. II.

To see this more explicitly we solve (3.23) and (3.24) for
cp( and cpp.

'

It is also straightforward to construct the super-
currents S—(z) in terms of 412„4112, and g-q. One simply
takes the bosonized supercurrent from the free theory"
and substitutes the modified conformal weight. This
gives

S—(z) = + —,'a, (a, 4I21e ' '
(
—1+—,

' Q)a, (a,(e ' ')
q&, (z) =a, @,(z, z ) —a24I~2(z, z ) —b, [C&,(z, z ) —@q(z,z )],

(3.25)

—41+42
2

'ge (3.32)

„,(z) = —a,e, (z,z)+a, C,(z,z) —b[@,( ,zz) —@,(z, z)] .

Substituting (3.25) into (3.15) and (3.16) we obtain the
energy-momentum tensor of the scalar fields:

T ' '(z)= —,'a, &,a, 4', ++(—,
' —

—,'Q)a, a, @,

Note that 412,(z,z) —422(z, z) is purely holomorphic. It
should be obvious that the OPE's of T(z) and S—(z) are
the standard ones of the N =2 superconformal algebra
with the central charge c = —10+2Q.

The antiholomorphic components in N& and Nz be-
come important when we consider the original elementa-
ry fields. For example, using (3.19) and (3.26) —(3.28) we
find—

—,'a, e,a,c,+( —1+—,'g)a, a,e, , (3.26)

which depends only on the holomorphic part of N, and
Nz. We also have

h, c(w, w) a c(w, w)
T(z)c(w, w)- +

(z —w) z w
(3.33)

(4', (z, z)412 ( ,ww)) =e, 5,"in(z —w), i,j, =1,2, (3.27)
as well as

(112,(z,z)@.(w, w)) = ——In~z —w~, i,j, =1,2 . (3.28)

j,=(1—
—,'Q)a, @,+ —,'Qa, C&2,

J,=-,'ga, e, —(1+,g)a, c, .
(3.29)

Using (3.26) we calculate the OPE of these currents with

the full energy-momentum tensor, T(z) = T (z)
+ T~~(z):

Comparing with the standard bosonization formulas we
see that the holomorphic parts of W, and Nz can be
viewed as the chiral scalar fields which bosonize free b-c
and P-y systems with the conformal weight A, '=2 ——„'Q
and i/~ =

—,
' ——'Q, respectively.

The ghost number currents are given by

h, c(w, w)
T(z)c(w, w)- +, (3.34)

(z —w) z —w

which show that the holomorphic and antiholomorphic
conformal dimensions of c(z,z) are h, = —1+Q/4 and

h, =g/4, respectively. Similarly, we can determine the
conform al dimensions of other fields, and the result
agrees with the previous calculation summarized in Table
I. In our opinion this provides a nontrivial check of the
bosonization.

The bosonized representation also allows us to define
the composite operators in terms of the elementary fields.
%'e will restrict our analysis to operators which are bilin-
ear in the fields, and regularize the products of fields us-
ing the point-splitting method. It is known that the lack
of analyticity of the elementary fields in the standard
Thirring model makes the construction of the composite
operators rather cumbersome. It seems that the super-
symmetric theory considered here is les's complicated and
this can be traced to the simpler two-point functions
(3.12) and (3.13) of elementary fields.
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—:—a,e, (z, z) — a,e, (z, z )+z w I
Z W Z W

L

+O(iz —wi), (3.35)

which shows that j, cannot be constructed from b(z, z)
and c(z,z) alone. In addition one must use not only
p(z, z ) and y(z, z) but also the complex-conjugated fields.
The latter are necessary to cancel the terms with factor
z —w /z —w so that the final result is independent of how
we evaluate the limit w~z. We then find that the
correct point-splitting prescription for j, and j2 is

j,(z)= lim —(1 —
—,
'

Q) b( z, z) c( w, w)

+ ,' QP(z, z —)y(w, w ) +
Z W

——Q [b(zz)c, (ww),1 z w

2 z w

Let us first consider the ghost number currents j, and

j2. Forz~w wefind

b(z, z )c (w, w)

S—(z) = lim [+(——', +—„' Q)P(z, z )8 c ( w, w )

+( —1+—,
' Q)B,P(z, z )c (w, w )

+ —,'b (z, z )y(w, w )] . (3.40)

It is easy to check that the limits in (3.39) and (3.40) are
well defined and that we reproduce the bosonized
currents in (3.26) and (3.32)

The relation between the Q-dependent formulas (3.39)
and (3.40) and the Q-independent formulas (1.15) and
(1.16) for the same quantities is the following. Equations
(1.15) and (1.16) are classical Noether currents which can
be used in quantum theory defined by Pauli-Villars-
regularized functional calculations as in Sec. II, while
(3.39) and (3.40) are operator expressions for the quantum
theory regularized by point splitting. Both sets of expres-
sions lead to the same correlation functions.

The operators T(z) and S—(z) transform in a multiplet
of the X =2 supersymmetry together with a dimension-
one current with classical Noether form 0"
=b"'c + —,'p"y. The point-splitting prescription for this
current is

+P(z, z )y(w, w )], (3.36)
~ (z) = —( 1 ——'Q)j i (z) —( —' —

—,
' Q)j2 (z) . (3.41)

Using (3.36) and (3.37) this leads to the bosonized form
j2(z)= Iim ,'Qb(z, z—)c(—w,w)

t8 ~Z H(z) = —(1—4Q)B@,+(—,
' —

—,'Q)8@2 . (3.42)

—(1+—,
' Q)P(z, z )y( w, w )—

+ —Q [b(z,z)c(w, w )
1 Z W

2 z w

z w
The bosonized version of the theory is convenient for

the direct calculation of operator products because y&
and cp2 are free scalar fields. For example, one can easily
compute

+P(z, z )y(w, w )] . (3.37) b(z, z)c(w, w ) —~z
—w~~exp[@, (z,z) —@,(z,z)] . (3.43)

On the other hand, when we consider the total ghost
number current, we find, in agreement with the previous
observations,

j(z)=ji(z)+j2(z)
= lim [b (z, z )c (w, w )+P(z, z )y( w, w )], (3.38)

LO ~Z

which coincides with the prescription one has in the free
theory.

The idea of b-c system with modified conformal
weights can also be used to provide point-splitting
prescriptions for the stress tensor and supercurrents. We
simply consider the point-splitting formulas of the free
theory and insert the conformal weights of Table I to ob-
tain

IV. ATTEMPTS TQ CONSTRUCT A BRST CURRENT

The BRST symmetry of the conventional superstring
action for space-time fields plus free ghosts plays an im-
portant role in superstring theory. At the classical level
this symmetry is lost when the Thirring interaction is
added. This is most easily seen if one notes that the
current

+"=c.~x F~x-P~ — P (4.1)

where Tz and S~ are the stress tensor and supercurrent
of space-time fields, is not conserved but satisfies

This illustrates that it is only the OPE s of conjugate ele-
mentary fields, as in (2.12) and (2.14), which are
unmodified by the Thirring interaction. Because of the
interaction or, equivalently, the mixing of the fields y,
and y2 in the bosonic version, there are other OPE's with
coupling-dependent singularity.

T(z)= lim[( —2+ —,'Q)b(z, z)B c(w, w )
W Z

V d""= ivrQJ 4"—
P P (4.2)

+( —1+—,'Q)B, b(z, z)c(w, w )

+( —,+,Q)P(z, z)a.1(w, w)

+( —
—,'+ —,'Q)B,P(z, z)y(w, w)], (3.39)

if one uses the Euler-Lagrange equations of the action
(1.2), where J„is the total ghost number current.

It does not seem possible to restore conservation by
adding local terms to (4.1). Note, however, that the equa-
tions of motion have the formal solution
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—N
1
+ 2&2—r, BBC,—r, t)ag]e ': +r, :par)e (4 4)

We consider this as an Ansatz for the ghost contribution
to a BRST-type current, and try to determine the
coefficients r„.. . , r7 so that cP satisfies the standard
properties. For example, we impose the requirement

IQaRsr, b(w)] —T(w) [or equivalently that the simple

pole term in the OPE cF(z)b(w) is T(w)l(z —w)]. This
leads to the equations

r&
—r4= —1,

ri r4= 1 6Q

c+(x+,x ) =exp i—trQ 1 dy I (y ) c'+(x+ ),
(4.3)

y+(x, x )=exp i—trQ f dy J (y ) y'+(x+),

where c'+(x+) and y'+(x+) are arbitrary functions of
the light-cone coordinate x+. There are analogous ex-
pressions for all other field components. Thus a current
cF'", of the same form as (4.1) but using c' and y', is con-
served classically, although it is nonlocal with respect to
the original fields and carries anomalous dimension
1+—,'Q. These properties are unusual and perhaps al-

ready a negative indication, but nevertheless we choose to
investigate in a more precise way the existence of a BRST
current at the quantum level.

As a generalization of the technique used in conven-
tional string theory' we observe that the limit m~z of
the operator c(z)T(w) —y(z)S(w), with the leading
singular term subtracted, gives an expression in the bo-
sonized theory of the form

8=:[r,(t)C&, )
—r2 (M&~) + r3t)@,t)+2+ r4t)M&,

which are inconsistent unless Q =0.
To further underline this inconsistency we consider the

sum of the Ansatz (4.4) plus the coordinate field BRST
current (4.1) and study the operator-product expansions
of dr(z)d(w). We demand that the simple pole term has a
coeScient which is a total derivative in m, so that
( QBRsr ) =0. The equations for the coefficients
r &, . . . , r7 obtained in this way are again consistent only
for Q =0.

The Ansatz considered above is not purely holomor-
phic, but contains the overall antiholomorphic factor
exp[b, (g, —y2)] =exp[ —

—,'Q (Nt —52)]. This operator
has a nonsingular OPE with itself and with other opera-
tors involved in the ca1culation above. Thus the same in-
consistent equations are obtained whether or not the
nonholomorphic factor is included. Omission of this fac-
tor corresponds to the use of c' and y' fields (4.3) to form
a candidate BRST current, and it is unfortunate that this
candidate fails the test.

An even more general Ansatz for ot involving nonholo-
morphic operators, such as BN BN, in addition to those in
(4.4), and an exponential factor exp(tt, @,+tr242) with
free parameters was also considered. One still finds that
the equations to fix the parameters are inconsistent for
QWO. Since the various Ansa tze we 'have considered do
not seem to lead to the current with usual properties of
the BRST current if QWO, we conclude that it is unlikely
that such a current exists for the Thirring superghost
model.
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