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Using a recently proposed perturbation expansion called the 5 expansion, we show how to solve

the Langevin equation associated with a gP field theory. We illustrate the technique in zero- and

one-dimensional space-time, and then generalize this approach to d dimensions.

I. INTRODUCTION

Recently, a new perturbative technique, called the 6
expansion, was proposed to solve nonlinear problems in
physics. ' The technique involves replacing in a
differential equation nonlinear terms such as P by i''+
and expanding this term in powers of 6:

oo gnpl+25 y y (1 y2)n
p n.

We then obtain a solution to the differential equation as a
perturbation series in powers of 6. The perturbation pa-
rameter 6 is a measure of the nonlinearity of the theory.
When 6=0 the theory is linear. and typically can be
solved in closed form. As 6 increases from zero, the
effects of the nonlinearity turn on smoothly. Thus, one
would expect and we have indeed found in our research
that the 5-series representation of the solution has a finite
radius of convergence. Furthermore, the 5 expansion is
nonperturbative in all physical parameters such as the
coupling constant g.

As an example of a difIicult nonlinear problem that we
have successfully treated, consider the Blasius equation

y"'+yy"=0, y(0)=y'(0)=0, y'( ac )= 1 . (1.2)

This problem cannot be solved analytically. However, we
can introduce the perturbation parameter 5:

We replace the classical field equation

5S
5$

=( —a'+m 2)y+gy3=0

by the Langevin equation

t)P + 5S
a +ay

or for S[P] given by (1.5) we obtain

(1.6)

(1.7a)

8
y(x, r)+( a+m )y(x, ~—)+gy3(x, ~)=~(x, r) .

7

(1.7b)
This diffusion equation must be solved subject to the ini-
tial condition

apply these same methods to the Langevin equation, a
nonlinear classical differential equation whose solution
can be used to obtain the Green's functions of a quantum
Geld theory. The Langevin equation for a quantum field
theory is obtained by adding two terms to the classical
equation of motion, a random source term g, and a
derivative with respect to a fictitious time ~. For exam-
ple, suppose we want to solve a gati field theory in d
dimensional space-time. The Euclidean action for this
theory is given by

S[P]=J [—,'(B„P) + —,'m i' + „'gtti ]d x . — (1.5)

y'"+y'y" =0 . P(x, ro) =0, (1.7c)

If we represent the solution to this equation as a series in
powers of 6,

(1.4)
n=0

we can easily calculate the coeKcients y, . Even a small
number of terms in the 6 series gives an accurate approxi-
mation' to the exact solution to (1.2).

Our success in solving classical nonlinear differential
equations using the 6 expansion suggests that one could

where 7"p is the time at which the source term q first turns
on. Thus, P is regarded as quiescent before the source
term begins to operate. The source term g represents
white noise. This means that there is no correlation be-
tween the noise at two different points in (x, r) space:

(q(x, ~)~(y,.) &
=2S(x —y)~(~ —r) .

We also assume that ( ii(x, o ) ) =0.
We can express the correlation function of a product of

white-noise sources g in terms of the functional integral:
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'g p 4 & 7'g x, & 'g x),7) g xp)7) ' ' g x„,7„
(g(x„~,)g(xp, 72) g(x„,~„))=

fnqexp —
„' fd'x f "d~g'(x, ~)

(1.9)

Evaluating this functional integral, we find that if n is odd, the correlation function vanishes, and, if n =2m,

(g(x„~,)q(x2, r2) q(x2, ~2 ))

=2 [5(x, —xz )5(r, —~z)5(x3 —x4)5(~3 ~4) 5(x2, —x2 )5(r2, r2 —)+permutations] . (1.10)

In all, there are (2m —1)!!terms on the right-hand side of
(1.10). To obtain the X-point Green's functions Gz(x„
. . .,x~) for the quantum field theory given by (1.5), which
are conventionally expressed as a path integral,

f2)p exp( —S[/] )p(x, ) . p(x~ )

exp —S

I

the first two terms in the 6-series solution of the zero-
dimensional Lang evin equation. We show that the
equal-~ correlation function at large ~ corresponds to the
two-point function of zero-dimensional field theory. In
Sec. III we verify that the unequal-~ correlation function
corresponds to the two-point function of supersymmetric
quantum mechanics. In Sec. IV we show how to general-
ize our procedure to arbitrary dimensions.

we first solve (1.7b) for P(x, r). We regard the classical
field P as a functional of the noise source q Second. , we
calculate the equal-~ stochastic average using (1.10) and
compute the Green's functions from the prescription

G~(x„. . . , x~)= 11111 (f(xi, t)(b(x2, ~) ' P(x~, r))

II. ZERO-DIMENSIONAL LANGEVIN EQUATION

Consider the-massless quantum field theory in zero-
dimensional space-time defined by

(2.1)

(1.12)

For the special case of supersymmetric quantum
mechanics, there is another, and even simpler, procedure
for obtaining the Green's functions. The rules are as fol-
lows. We consider the zero-dimensional Langevin equa-
tion

x+ W(x)=g(~) .

We compute the corresponding Green's function

G2(~, o ) = (x(~)x(o ) )

(1.13)

(1.14)

using (1.10). We then take the limit w+ o ~ oo,
~~ —o. ~=T fixed. The result agrees with the two-point
function of supersymmetric quantum mechanics whose
Euclidean Lagrangian is

L =—,'x + —,
' W (x)——,

' W'(x) . (1.15)

Generalizing this procedure to calculate the Zn-point
Green's function is straightforward. The advantage of
this technique is that it is only necessary to solve a
Langevin equation in the single variable v.. This result is
surprising because quantum mechanics is a quantum field
theory in one-dimensional space-time, and, therefore, the
Langevin equation corresponding to such a theory would
ordinarily require two variables, the fictitious time ~ and
the real time t. Supersymmetric quantum mechanics is
remarkable because it obviates the necessity of introduc-
ing the time t. Supersymmetry allows the one variable ~
to play the role of the fictitious time as well as the real
time.

We organize this paper as follows. In Sec. II we obtain

The vacuum-persistence amplitude for this field theory
reduces to an ordinary Riemann integral:

f dg exp( —
—,'gP +JP)z[J]= f dPexp( —

—,'gP )
(2.2)

To obtain the 5 expansion we first replace 4 everywhere
in (2.2) by 2+25, and instead, we study

f dP exp[ —g(P )'+ /(2+25)+ JP]

f dP exp[ —g(P )'+ /(2+25))
(2.3)

The formula for the two-point function in this theory can
be obtained in closed form by evaluating the integral ex-
actly:

f dP exp[ —g(P )'+ /(2+25)]P
6 — —oo

f dg exp[ —g(P )'+ /(2+25)]
& /(1+ 5)

2+25 I (3/(2+25))
I (1/(2+25)) (2.4)

(2.5)

where

L =f(—', )+ln—2 (2.6)

It is straightforward to Taylor expand (2.4) as a series in
powers of 5:

G =—
I 1 5L+5 [ —1+L+——'L +g'( —')]+=1
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We will now show how to obtain this same expansion
from the Langevin equation. The Langevin equation for
the original P theory is

and so on. From (1.7c) the initial conditions are

4'0(ro) =01(ro)=02(ro) = (2. 1 1)

We replace (2.7) by

Qh +gyl+25-
B7

(2.7)

(2.8)

The solutions to (2.10) and (2.11) are

(t 0( r)=e ' f dte"rl(t),
Q

P, (r) = —ge s' f dt eg'$0(t)lngt)0(t),
Q

$2(r) = —ge 'f dt es'I2$&(t)+ )t(&(t)l F0(t)
Q

(2.12a)

(2.12b)

Next, we assume that (t) has the expansion

4'=40+fi4'i+ o'42+ ' (2.9)

ay,
+g40=2)

B7
(2.10a)

Inserting (2.9) into (2.8), we obtain a sequence of linear
equations:

+ -,
' $0(t) [in/02(t) ]21 . (2.12c)

Note that to each order n in 5, the equation in (2.10) for
P„has the same homogeneous part and an inhomogene-
ous part depending on all previous orders. Therefore, we
can, in principle, compute to any required order in yer-
turbation theory.

+g4 = —g4o»4'o

+gA= —2gd'i —gdi»4'o —
2

40(»ko)'

(2.10b)

(2.10c)

A. Zeroth-order calculation

The next step in calculating the two-point Green's
function is to evaluate the white-noise average of the
product of two fields:

G2(~, r) =
& y(o )(t(r) &

=
& [$0(o )+6),(o )+62)2(o )+ . ][$0(r)+5),(r)+52)2(r)+ . ] &

=
& P,(~)P,(r) &+ fi[& P,(o )P,(r) &+ & y, (o. )P,(r) &]

+5'[&y,( )y, ( )&+&/, (o)y, ( )&+&/ (o-)y ( )&]+ (2.13)

&$0(o )$0(r) &=e ' 'f dt f ds e "+'&q(t)rt(s) &

7P 7Q

Qg(,2r —w —o )——e (2.14)

In this subsection we calculate the first term in this series:
l

previous studies of the 5 expansion. It is surprising that
this one-dimensional result arises from the zero-
dimensional Langevin equation. We return to this point
in Sec. III. Here, we simply set T =0 and obtain the re-
sult

where T=~r —a~. In the limit as r and o approach
infinity, with the time difFerence T held fixed, the result in
(2.14) approaches which agrees with the first term in (2.5).

(2.16)

e gT
(2.15) B. First-order calculation

This is the form of a free Green's function in one-
dimensional space-time, where g plays the role of the
mass. Note that, even though the theory described by
(2.1) has no bare mass term, to zeroth order in 5, a mass
has been generated. We have already seen this efFect in

I

To calculate the contribution to the two-point Green's
function to first order in 5, we must evaluate the correla-
tion functions &()It0(o )(t)&(r) & and &(t), (o )()I)0(r) &. This cal-
culation is nontrivial because the source q appears in the
argument of a logarithm:

2
(t)e(a)t)t(r))+(()t(tr)d (r)) = —gees' + '(f dt r )(t)f dr sftsdse 't)(s)(tt e fds ee t)(s) '+(tr»r) .

7
Q Q Q 7Q

(2.17)

We encountered the analogous problem in our treatment of field theory in Ref. 4, and our approach to this problem
here is similar; to wit, we use the identity

da a=O
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to replace the logarithm in (2.17) by a power a. In the subsequent calculation we regard a as an arbitrary integer,
which allows us to use the identity (1.10). Specifically we have

(y, ( )y, ( )&+&/( )y, ( ))

(, cr + 7.) a+ 1
2a+ 1= —g e ' +'2 '(2a+1)!! dt e ' dr e g" g dz„e "5(t—z, )5(z2 —z3)

dA 0 0 F0

X . 5(zz —z2 +, ) +(o.~7),
a=O

(2.19)

where the factor (2a+ 1)!!occurs because all permutations of (1.10) contribute equally. Performing the trivial integra-
tions over the delta functions by integrating on z „z3, . . . , z2 + i, we obtain

& y,(a)y, (r) ) + ( y, ( )y,( ) &

= —g 2 +'(2a+1)!!e s' +'f dt e 'f dr e '8(r —t) Q f dz2 e
do,'

0 70 1 0
+(crier) . (2.20)

e "'~+'f dr(1 —e '
) f dt e g'8(r t)—

0 1 0
+(o+ r) .

a=O

(2.21)

The integrals over z2, m = 1,2, . . . , u, are elementary:

d 2~+~r(a+ 3)
&y, ( )y, ( )&+(y, ( )(t.(.))=—g„da g I'(,')

g r( —', )
,
,

a=O

(2.22)

At this point, we set o. = r. (We return to the case where o.Wr in the next section. ) Doing the t integration we obtain

d 2+'r(a+-,')
(Po(o')Pi(o ))+(Pi(o )Po(o )) = — e s f dr(e ~" e')(1——e )

0

Now we take the limit o.~ ~:
&y( )y( ) &+ &y( )y( ) &

1 d 2 I (a+ —,
'

)
gl ( —,') da g

(2.23)

This agrees precisely with the order-6 term in (2.5) and
establishes the validity of our computational method.

It is clear now how to proceed to any order in 5. In
nth order we introduce n exponential parameters,
a„.. . , a„, and use the identity (2.18) to replace loga-
rithms by powers. We then regard the parameters a& as
integers so that we can apply the identity in (1.10). Final-
ly, using I functions to analytically continue the com-
binatorial factors, we di6'erentiate with respect to the pa-
rameters, and evaluate the resulting expressions at ak =0.

III. SUPKRSYMMKTRIC QUANTUM MECHANICS

To obtain the two-point Green's function in supersym-
metric quantum mechanics, it is sufhcient to consider
G2(cr, v) in (2.13) at ~c7

—r~ = T&0 in the limit o,r~ ~.
We reevaluate the integral in (2.21) in this slightly more
general case. We find that

Combining this result with (2.15) we find, to first order in
6, that

gT
G2(cr, r) = [1—5L(1+gT)+ ] (3.2)

fX)/exp —S[$]+fJgdt
z[J]=

exp —5 (3 3)

where

S[y]= f dt [ ,'y + ,' W(y)—'I—Ir'{y)].—— (3.4)

The Langevin equation in (2.8) corresponds to the choice

gt(y) gy1+25 (3.5)

If we substitute (3.5) into (3.4) and keep terms of order 5,
we find the approximate action

s[4]=f« .'0'+-.'g'0'+
4

g'0—'»0'

We can verify this result using the techniques de-
scribed in Ref. 4. The supersymmetric quantum-
mechanical theory corresponding to {1.13) is defined by
the vacuum-persistence functional

—(L/2g)e s, cr )r, ——g in/ +O(5 )+const
2

(3.6)

(3.1)
This is a nonpolynomial action. Following the procedure
in Ref. 4, to this order we replace (3.6) by a provisional
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line = (

e sl() (21

g

2
p2+ g2

{coordinate space)

(momentum space)

order ao:

order $':

2A Ioops

syrnrnetry number =
2 {2n)!

vertices =

-(4~ + 2)!6g2/4

„(2n)!6g/2

40 + 2 tines

o. —1 loops

symmetry number =
2 cx t

2~ tines

FIG. 1. The Feynman rules for the provisional action S in
(3.7).

Euclidean action S[P] having polynomial interaction
terms:

S[P]=Jdt ) P2+ ( ~P2+ g P4a+~ g P2a6 6
4 4 4 2

(3 7)

Note that we recover the theory described by S from the
theory described by S by taking one derivative with
respect to the parameter a and setting a =0.

Again, we treat a as an integer and read oft' the Feyn-

FIG. 2. The Feynman graphs in coordinate space that con-
tribute to G2(o., ~) to order 5.

man rules for S[))()]. The free propagator is e ' " /g
in coordinate space and 2(p +g )

' in momentum
space. There are two vertices, a (4a+2)-point vertex,
whose amplitude is —(4a+2)!5g /4, and a 2a-point ver-
tex, whose amplitude is (2a)!5g/2. These rules are illus-
trated in Fig. l.

The three graphs contributing to G2(o, r) to order 5
are shown in Fig. 2. To order 5 we have e s' '/g,
which agrees with the first term in (3.2). To order 5'
there are two terms corresponding to two graphs shown
in Fig. 2:

2'
(4a+ 2)!$g 2

g

1 5g, 1

2 (2a)! 2 g

l oo

2 '(a —1)!
J

g
—glo —~l g

—glf —~l

(3.8)

In (3.8) we have included the symmetry numbers shown
in Fig. 2 for each graph. We have also included the am-
plitude for the loops; each loop has the value 1/g.
Evaluating the integral in (3.8), taking the derivative with
respect to a, and setting +=0, we obtain

()())o
+( —a'+m'+g)y, =q,

87
(4.2a)

As before, we expand in powers of 6 and assume the form
(2.9). Thus, in place of the system (2.10) we have

gT
5L(1+gT), z+( —() +m +g)()))) = ggclngo, — (4.2b)

which agrees exactly with the order 5 contribution in
(3.2). We have thus verified that the 5-expansion tech-
niques when applied to the purely classical Langevin
equation give, simply and directly, the correct field-
theoretic Green's functions.

+( —r) +m +g)Pz= —2gg) gg)lngo—
——P()(in/() ) (4.2c)

IV. THE LANGEVIN EQUATION
IN d-DIMENSIONAL FIELD THEORY

and so on. To solve the first of these equations, (4.2a), we
Fourier transform in all variables except in the artificial
time variable w. The solution of the transformed equation
1s

az' +( —(3 +m )P+g({)'+
O'7

(4.1)

In higher dimensions we must include the
d Alembertian in the Langevin equation (1.7). Again, we
utilize the 5 expansion by replacing (1.7b) by

y (k )
—(k +m +g)rf d (k +m +g)s-(k )

7O

From (1.8) the transformed sources satisfy

(q(k, a)t){p,r)) =2(2~)'5(k+&)5(a —r) .

(4.3)

(4 4)
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The zeroth-order two-point function is then obtained as where, for example, the regulator R may be taken to be
J

lim (Po(k, o. )$0(p, r)) = (2~) 5(p+k) .
k +rn +g R= 1—

A
(4.7)

(4.5)

Again, we note a shift, to zeroth order in 6, of the square
of the bare mass by g.

To proceed further we use the Langevin Green's func-
tion

D(k 7 $)=e ~" + +& ( ~ g(7- —s)

used in (4.3) to solve (4.2b) for P, in terms of $0. As usual
we introduce a parameter a and use the identity (2.18) in
order to replace the logarithm in that equation by a
power of $0. This allows us to compute the average over
the noise using (1.10). We are left with integrals over the
Langevin Green's function D. These integ rais will
diverge unless we introduce a regularization scheme.
Thus, following Ref. 5, we modify the Langevin equation
(1.7a) to read

where j is chosen large enough to make all integrals that
occur finite. Introducing such a regulator modifies the
zeroth-order two-point function (4.5):

(0) R (k )
G~ '(k,p)= (2~) 5(p+k) .k+m +g

(4.8)
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Bp 5S(x,r)+ (x,r)= d y R, (8 )rj(y, r),
B1

(4.6)
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