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As was shown for the first time by Fujikawa, the anomaly is fundamentally a variation of the
functional integral measure under transformation. Fujikawa's original prescription of 1979 for the
variation of the integral measure looks to be at first sight an artifact. In this paper we will show
that it is not and that it is fully equivalent to the authentic field-theoretical treatment for a two-

point function. To do this we first examine various ways of solving the factor A (x) in Fujikawa's
expression for the functional integral measure. We define the anomaly as A(x) —Af(x), where

Af(x) is the Fujikawa factor for the free field. We propose a regulator which leads to a finite result
for any anomaly. We show that A(x) can be defined in terms of the proper time through a splitting
procedure. The original Fujikawa prescription for A(x) is shown to be closely related to the
proper-time description of the anomaly, initiated by Schwinger. Its equivalence to the authentic
field-theoretical treatment is proven as a consequence of these investigations. The g-functional reg-
ularization for A (x) is also examined. We examine the way to deduce the anomaly from the
effective potential by adopting the P model as an example. Comparison of the path-integral
prescription with this procedure enables one to clarify the nature of divergence appearing in the
original Fujikawa form of A (x). The renormalization-group equation for the effective potential is
solved exactly to obtain the precise form of the P function in terms of which we reexpress the result
obtained earlier for A (x). Finally we discuss the physical significance of the renormalization-group
equation for the case of broken symmetry.

I. INTRODUCTION

As is well known, the phenomenon of the conservation
of certain currents, valid in classical mechanics but not
valid anymore in quantum mechanics, nowadays is called
an anomaly. The evidence for the chiral anomaly was
found for the first time by Fukuda and Miyamoto' in
1949, and soon after was confirmed by Steinberger. The
effective Lagrangian for the anomaly was constructed by
Schwinger already in 1951. However it was only since
Adler, Bell, and Jackiw's pioneering works" that the
anomaly became recognized as one of the fundamentally
important subjects in field theory. Since then, all sorts of
anomalies have been investigated in an immense riumber
of publications. Several ways of handling infinities asso-
ciated with the anomaly have been proposed, apart from
a simple subtraction method: namely, dimensional regu-
larization, g-functional regularization, Schwinger's
proper-time approach combined with certain regulariza-
tion procedures, etc. The chiral, and the energy-
momentum-tensor anomalies are most frequently adopted
as examples. In the present field-theoretical language,
the anomaly is presented as an anomalous form of the
generalized Ward-Takahashi identity. Then the anomaly
can most conveniently be dealt with by the path-integral
method.

In the path-integral form of quantum field theory, any
field transformation should be reduced to the change of
measure of functional integration. Recently, in 1979,
Fujikawa, noticing this fact, proposed a new and simple

method to handle the functional integral measure. This
method is particularly suited to the chiral anomaly.
When applied to other cases, this method gives rise to
other infinities in addition to the wanted anomalies. A
few procedures have been proposed to eliminate such
infinities. ' Fujikawa himself has adopted the
functional regularization for the case of the gravitational
anomaly. "

As Fujikawa's method has great practical advantage
due to its simplicity, it is worth investigating the nature
of these infinities and examining what sort of regulariza-
tion procedure has to be added further. Also we wish to
know whether or not his method is applicable to the case
of broken symmetry. In this paper we will analyze the
consequences of Fujikawa's treatment when applied to
the P theory. Before doing this, we first briefly review
Fujikawa's prescription' for the chiral anomaly and
present a few alternative ways of formulating the trans-
formation of the path-integral measure. By doing so, we
can clarify the physical meaning of Fujikawa's method.

Fujikawa's prescription is almost incredibly simple,
and yet totally successful. In due course of our investiga-
tion we will understand the reason for this. In general
when one calculates a physical observable, an arbitrary
measure such as a cutoff factor, arbitrary mass, etc., ap-
pears. For example, the effective potentia1 for P theory
contains an arbitrary mass measure. The anomaly is free
from such arbitrary measure. In fact, Fujikawa isolates
and picks only the physical quantity which is indepen-
dent of such an arbitrary measure. This is the reason
why his method works so well.
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II. CHIRAL ANOMALY

A. Fujikaw a prescription

The Lagrangian density

X =g(ig m—)P+ TrF F"1

2g2 P~

with

a' =g f d x y (x) e 'y„(x)a„

=Cm nan ~

(2 1) the measure ii„da„ transforms into

(2.8)

uodergoes an infinitesimal variation

6L = B„a—(x)f(x)y"y5$(x) —2mia(x)g(x)y, g(x) (2.2)

for an infinitesimal chiral transformation

g da' =(detC „) 'g da„. (2.9)

The factor (detC „) ' diverges as one can see from the
expression

g~e 'f(x) . (2.3)

From now on we use the Euclidean coordinates in this
subsection following Fujikawa. ' The gauge field part
of the functional integral measure is invariant, but the
particle part

(detC „) =det 5 „+if a(x)y (x) yqy„(x)dx

=exp i f—dx a(x) A(x)

where

A (x)=—g y„(x)ty,y„(x') .

(2.10)

(2.11)

(di ), = IIdb. II da-
n m

is not, where

g(x) =pa„y„(x)
with

By„(x)=i,„y„(x) .

For the chiral transformation expressed as

g(x)~g'(x) =e 'g(x)
—=g a„'y„(x)

(2.4)

(2.5)

(2.6)

(2.7)

The quantities such as g„y„(x) I . . . y„(x') are all
singular at x=x', where I„.. . is a product of the y„.
The way of handling such infinities has been under inves-
tigation for about 40 years already and various ideas have
been proposed. For the case of A (x) for the chiral
anomaly, Fujikawa has found a very simple method to
deal with the infinity. By correcting each contribution
from y„by a factor f(1,„/M ) satisfying

f(&)=f'(~)=f"(~)= . =0 and f(0)=1, (2.12)

one obtains a finite result for A (x) as follows:

A(x)= lim gy„(x) yg(A~/M2)y„(x)
n

= lim g y„(x) y5f(g /M )y„(x)
n

lim Tr „y5e '""f(g /M )e'k"d4k

(2~)"
4= lim Tr f y~f t[k„+D„(x)]i~+,'Iy„,y„IF"I—

(2m) M

d4k B 1 B2
lim Tr f y& f(k /M )+f'(k /M )

— + f"(k /M )—
(2~)' M 2-'M

2 1 1 d k= lim Try5({y",y IF ) —f f"(k /M )4M' 2i (2~)'

4
= lim =Tr(*F""F„)f 4

f"(k )
M~ oo (2~)'
—1 Tr*I'I',

16m
(2.13)
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where

& =[@„+D„(x)]+ ,' I y—„,y, IF" k—~ . (2.14)

There are several important choices for f(A„/M ).
(a) The form

—(A, /M)2f(A2 /M2) — n™ (2.15)

has been used extensively by Fujikawa in order to demon-
strate his method. This form has a very important rela-
tionship to Schwinger's proper-time approach, as will be
seen later.

Here the sign in front of (A„/M) has no importance.
(1,„/M }

One can as well adopt e " for f[(A.„/M) ] (see
Sec. VI A).

(b) (Ref. 13)

In Ref. 17, Dirac regarded a relativistic operator

P, =(y"p„m)— (2.20)

as the Hamiltonian which is the conjugate variable to the
proper time s, and introduced a covariant equation

(2.21)

In terms of y (x) defined in (2.6), g(x, s) is decomposed
as

mass measure can be interpreted as the inverse of the Eu-
clidean proper-time s, or equivalently as an arbitrary
measure p where ps=s and s is a dimensionless proper
time.

Proper-t mme spli tting method —linear expression

(A2/M') = 1

1+(A,„/M )
(2.16) P=g l(t„(x,s)=g e "a„y„(x), (2.22)

corresponds to the most common regularization'

1 1 1

g +m g +M (g +M )(I+@ /M )
(2.17)

f(A„/M )=
1 —(A,„/M )

(2.18)

which is a limiting case of the regulator given by Cole-
m»»d Jackiw' with C] = C2 2

and M
1 M2~~: namely,

satisfying only the condition I of Pauli and Villars. '

For the chiral anomaly, these two factors give rise to
the same finite result as seen in (2.13). This is not the
case for other anomalies. When f(A,„/M ) is expanded
around k /M, the first and second terms containing
f(k /M ) and f'(k /M ) remain infinite. There exists
however a particular form of f, which leads to a finite re-
sult for any anomaly, except for an infinite constant hav-
ing no physical significance (we will return to this in Sec.
IIB. It is

(c)
e "=g ( —As)"

remains when the trace is taken. Then in our A (x), the
integral

f d k f""{k)dk— (2.24)

and reduces to g(x) in {2.5) at s =0. In this subsection
we define the Fujikawa factor A (x ) as

A (x)= lim g g„{x,s)y~itt„(x, 0)
S -~0

n

=lim g qt(x)e " y,q„(x) . (2.23)
s~0

1l

In Euclidean proper time, this is just Fujikawa s A (x)
S —A.„/M2 2

corrected by e " instead of e " [see (2.15) of Ref.
12].

One can easily verify that the A (x) in (2.23) gives rise
to the correct value (2.13) for the anomaly. To see this
clearly, we first replace A,„by 1/Q, since only the
fourth-order term in the series

replaces the integral

f d k—f"(k )dk
(2.19)

1
C2 C2

1

p +p M&+p M2+p (p +p )(1 p /M )—
(2.25)

[for the notations, see (III.9) and (III.10) of Ref. 16].
With this f, the strong singularity, namely, the second

term in the fifth expression of A(x) in (2.13) [the term
proportional to f'(k /M )] vanishes already before the
trace is taken. This f satisfies Pauli and Villar's first con-
dition I, and further satisfies second condition I, at the
limit of infinite M.

We will discuss the correct usage of this regulator
(2.18) in Sec. VIA.

B. Proper-time description

in Fujikawa's A (x) in {2.15) of Ref. 12, both of which
have an identical value m /4.

2. Proper-time sp/i t ting method —bili near expression

There is another expression for P(x, s) which leads us
directly to Fujikawa's A (x) as a limit of vanishing s.
Adopting the second-order Hamiltonian &=@ —m,
Schwinger described the particle motion in terms of x„ in
the Heisenberg picture, as will be referred to in the fol-
lowing subsection. In a similar manner, we start from the
second-order wave equation

The proper-time approach of Schwinger is closely re-
lated to Fujikawa's method as will be seen in Sec. II C. In
fact, as will be seen shortly, the square M of Fujikawa's (g —m )g= .

jds
(2.26)
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and define A (x) as

A (x)= lim A (x,s)
s~O

= lim f(x, s)ys P(x, 0)
s~0 2m

= lim f(x)e ' 'ys P(x)g —m

s~O 2m

(2.27)

The difference between A(x) and G is principally y5.
Then A (x) can be represented in coordinate space as

A(x)= lim —i f ds Tr&x ~yz(g —m )e '@ + '~x'&
x ~x 0

= lim f ds e ™smTr&x ~e 'y5~x'&x~x 0

= »m f "ds me ™sTr&x(s) ~y5~x'(0) &x'~x 0
—i(g —m )s= lim g {p„'(x)e ' 'y, {p„(x)

s~O
n

= lim f ds me ™sTry5&x(s)~x'(0) & (2.32)

2= lim g y„'(x)e ' 'y, {p„(x)s~0
n

lA, s=lim g p„'(x)e "
y~{p (x),

S~O n

(2.28)

C. Proper-time integral form for the anomaly

which is exactly identical to Fujikawa's A (x) in (2.15) of
Ref. 12, if one replaces Euclidean time s by I/M . In
deriving (2.28), the double degeneracy. on A.„ for g(x) is
taken into account.

[note that the first part of Eq. (2.4) of Ref. 3 is valid not
only for the constant field F„=O but also for any F„.
Also the term proportional to D disappears in our case
when the trace is taken]. Now A(x) is reduced to the
transformation function &x(s) ~x'(0) & which is calculated
by Schwinger for the case of the constant field. The re-
sult for A(x) is still infinite. A finite result can be ob-
tained either by replacing e™sby a regular, or by taking
into account an ordinary renormalization procedure for
mass and charge, etc. Finally we obtain

Schioinger s form of coordinate representation
A(x)= E H,1

4m.
(2.33)

We mention that Schwinger s proper-time description
in the coordinate representation can be applied easily to
the Fujikawa factor A (x). For notation one should refer
to Ref. 3.

In the Fourier integral form of the Green's function

= —i ds —m e ' + ' 2.29
@ +m

the s is simply an arbitrary parameter in most cases. '

Schwinger considered it as the proper time and made full
use of the physical content of this expression. Then the
Green's functions as a matrix operator in the coordinate
space is

which is identical to Fujikawa's result.
Schwinger s proper-time description in this subsection

is in fact identical to the proper-time splitting method
given in Sec. II81 and consequently is equivalent to
Fujikawa s method mentioned in Sec. II A. To see this,
the coordinate representation (2.32) is not convenient, be-
cause the propagation of the particle during the interval
of time s is described in terms of the coordinate variable
x (s) in the Heisenberg representation, instead of g(x) it-
self. We will return to the momentum representation in
the next subsection.

2. Momentum-space description

&x ~G~x'& = i f "ds&x ~(B —m—)e '@ + '~x'&
0

i f "dse—' '&x~(e —m)e ' '~x'&
0

i f d—s e ™'&x(s)~(B—m)~ x&.
0

(2.30)
—iGs (x,x ') =g {p„(x')y 5y„(x), (2.34)

The following pseudo-two-point function, denoted as
iG~(x, x—'),

satisfies

(g —m)y~( i )G~(,x x)=— io (x —x') —.
d x =[ lg, x]

Lds
(2.31)

The G~(x, x') can be expressed as

Here x(s) is the coordinate variable in the Heisenberg
picture and obeys

(2.35)

G, (x,x') =y, g+m 4

m
—.(y' —m )s 4=i f dsy, (g+m)e "~ '&'(x —x')

—m s ikxd4k
—{k»' (g + )

—l{s{ —m )set »

(2m. )

'kx—im s —rk» s (@+m )e
(2vr )'

(2.36)
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The trace of 65 is

l
TrG5(x, x') = ds d k me' 'Tre '"'

y~e
'@ 'e'"".

(2~)

(2.37)
In the above we have followed the most commonly used
approach for the Green's function. ' For our purpose
one can adopt the linear expression

G~(x, x') =y~
1

g —m

=i f ds y e'@ '5 (x —x')

5 (x —x')

=i fds y, e' 'e'@'5 (x —x')

1
d 4k —ims —fkx' Ig's ikx

(2m. )
(2.38)

G5(x', x, s', s)=g (T)„(x',s')y~1t(x, s)
n

obeys

(2.39)

D —. y565(x', x,s', s)=5 (x —x')5(s —s')a
l S

(2.40)

and can be expressed as

G5(x', x,s', s )

a=i da y,exp i g — a 5 (x —x')5ls —s') .
i Bs

(2.41)

The Fujikawa factor 3 (x) is a kind of pseudo Green's
function in five-dimensional space of x and s at x =x'
and s =s'. The pseudo Green's function, denoted as
G5(x', x,s', s),

which is exactly identical to the proper-time splitting
prescription (2.23), and consequently is equivalent to
Fujikawa's (2.15) in Ref. 12.

As we have seen, Fujikawa's prescription is not simply
an artifact, but is a totally orthodox field-theorical treat-
ment, presented in a concise manner. Its identity with
Schwinger's proper-time approach suffices to understand
the nature of the divergences appearing in Fujikawa s re-
sult for anomalies other than chiral one.

The third line in the expression (2.43) for Gz(x', x,s', s)
is very similar to the third line of G&(x, x ) in (2.38). The
former can be obtairied from the latter by replacing s
by a, and then further replacing e ™a by

f dm e ' ' '+' '. This is because the set of P„(x,s) can
be thought of as the spectrum of the it~„(x) with continu-
ous mass from zero to infinity, since (Q —

A,„)$„=0.The
phase shift exp[i)~(s —s')j is due to a further relation
(8/i8, )p„=A,„it)„.

D. Generalized g-function approach

Since the g-functional regularization, invented by
Salam and Strathdee, ' was shown to be very useful for
the e6'ective Lagrangian by Hawking, ' it has been ap-
plied on various occasions to eliminate infinities. It has
been used also for chiral anomalies. Fujikawa himself
has adopted this approach of the gravitational anomaly. "
The way of applying this method is not unique. ' In this
subsection we choose the simplest procedure for achiev-
ing our purpose.

If one adopts the imaginary proper time ~=is, instead
of s, the function

F(x,x', r)=g 1()„(x,r)g„(x', 0)

Expressing 5(s —s') as =pe " y„(x)y„(x') (2.45)
I

5(s —s') = dKe
2 7T (x)

one can rewrite G&(x', x,s', s) as

(2.42) is called a heat function, which represents how a unit
quantity of heat, in our case a particle, initially placed at
the point x, diffuses with time r (Ref. 19). The function

G (x x s s) — f dada y ei(B—«)a54(x ~) i«( —s')
'7T

i«(a s+s')y eiBa54(X—
Xt I)l

27K

=i fda5(a —s+s')y, e'~ 54(x —x')

=iy, e'~' "54(x —x')

d 4k e
—ikx'e —iE(s —s') ikx1

(2'�)
(2.43)

g(x, s) = f dr r' )F(x,x', r)dr
I s 0

is called a generalized g function. It is a means of regu-
larizing the value of fF(x,x', ~) at x =x'. analogously,
we split the Fujikawa factor 9 (x) as g (x,x', r):

A (x,x', r) =g P(x, r)y, it)„(x',0)
n

=g e " g„(x)y~y(x')

=yq~g e " ()()„(x)y„(x')

Then the Fujikawa factor is

A (x)= lim TrG5(x, x', s, 0)
s~O

= lim f d k Tre '" e '@'e'"
~'-~ (2')
s~O

(2.44)

=y5)'8 (x,x', r) .

Then 8 (x,x ', r ) satisfies

P 8(x,x', r)+ —-8=0
'7

or equivalently

(2.46)

(2.47)
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(g&g + —,'o „g~')B(x,x', r)+ B(x,x', v )=0 (2.48)

B (x,x', r)= 1 (x —x') /4r
16m. r

satisfies the free equation

(2.49)

8""d„B (x,x', r)+ B (x,x', r)=0 .o (2.50)

Introducing a generalized pseudofunction, denoted as g~,

g~(x, x', s ) = d~r' 'A (x,x', r),I s o
(2.51)

we obtain A (x) as the regularized value of A(x, x', w) at
x =x': namely,

g, (x,x', s)= dry1 ~ i 1

I s o 16m

—~ g~"n
X y5e

For the external constant field F„, the solution of this
equation can be written as

cr„/—""r/2
B(x,x', r)=B (x,x', r)e

where

ing. It represents how the particle proceeds, or more pre-
cisely, how the particle phase develops within the interval6'= 1/M of the Euclidean proper time. Fujikawa's—

A, „/M
treatment of A (x) with this e " is equivalent to the
orthodox field-theoretical treatment for the two-point
function. Then we expect that the divergences in this
A(x) can be interpreted in terms of conventional renor-
malization theory. To demonstrate this, we adopt the P
theory as an example. In the first part of this section, we
will closely examine one by one the infinite terms appear-
ing in this A(x).

The anomaly for the conformal transformation has a
long history. Very often it has been dealt with in connec-
tion with the energy-momentum-tensor trace anomaly.
Recently Buchmiiller and Dragon have derived such
anomaly in the P theory from the efFective potential as
p(B/Bp) V,s, where p is an arbitrary mass measure which
always accompanies the dilation invariant theory. In the
latter part of this section, we will compare Fujikawa's
procedure with the erat'ective potential approach.

—(A. /M )2A. Path-integral measure with e

For the real field P with the Lagrangian

y ( 'rT g"—) ', (2.52)2 5 2 P r(s) X=—'8"QB P ——(t",4 (3.1)

the trace of which at s =0, is identical to Fujikawa s re-
sult (2.15) of Ref. 12.

The merit of this method lies in the fact that the result
is already finite before the trace is taken. However this
method is still an artifact.

3"8 +—P /=0 .P 2 c (3.2)

the quantum fiuctuation P=P —{P ) =P P, around —the
saddle point P, obeys

III. SCALING ANOMALY IN THE P MODEL

For the chiral transformation, the Fujikawa factor
A (x) is finite and gives rise to the anomaly alone, ir-

respective of the choice of f(A,„/M ). This is not the
case for the other anomalies. In this section we will ex-
amine the nature of the divergences appearing in A (x).

Among various choices for f (A, „/M ), Fujikawa's
—A.„/M

original choice e " has an important physical mean-

In terms of a complete set P„satisfying
I

a~a„+—y,' y„=~„y„,

the Fujikawa factor A (x) corrected by

/M
f(A,„/M )=e

is

(3.3)

-(A, /M)'~
A(x)=g P„(x)(1+x"B„)e " P„(x)

= lim f e ' "(1+x "B„)exp~-- (2m)'

$2+ p2
2

M
Ikxd 4k

expM-- (2~)'

2
C

M

—k
exp

M
~ lkx

= lim Jd k exp
(2~)~

A 2
C

M

—k 2

exp (3.4)
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in the Euclidean space-time. Unlike the case of the chiral anomaly, the above A(x) is not finite and includes two fur-
ther infinite terms originating from f and f, as will be seen below:

T 2 T

1 —k' —kA(z)= lim — Jexp d k+ — ' f exp d k+ —— '
J exp

(2~)4 M 2 M M2 M
2

= lim M + lim —M P, +1 4 . 1 A, 2 2 1 1

16m m ~ 16m 2 16m 2 2

d4k

(3.5)

8 1 A,

BM ' 32~2 2
(3.6)

which coincides with the third term in the above A (x).
To investigate the nature of the infinites in A (x), we

derive the anomaly from the bare efFective Lagrangian
yNR

eft'

The anomaly is independent of any arbitrary measure and
the third term must be the anomaly. To see this clearly,
we derive the anomaly from the effective potential (3.10)
of Coleman and steinberg. The result is

'2

A (x) —A~(x),

which finally is reduced to a pure anomaly
2

1 1 I, 4
f A (X ) Af (X) )renormalized 2 2 2 4c16~

(3.11)

(3.12)

'a"ya y —'m2y2——2 2 ~ 4 (3.13)

after the renormalization of the quandractic divergence
by the counterterm (3.9).

Such was the case for the massless theory. For the
massive P theory with

g2 4

41 64~2 256~2

Then we obtain

g2 4
a

128

2A
(3.7)

(3.8)

the anomaly is obtained as

[ A (x) —A&(x)]„„„„;„d
2

1 1 2 A, 2 1
m +—P, ——m

The second term is the anomaly. The first term is identi-
cal to the second term in A (x), if one replaces M in A (x)
by A. Now we have confirmed that Fujikawa's measure
M is in fact the cutofF factor A in conventional field
theory. (One should not confuse Fujikawa's M with
Coleman and Weinberg's M. )

This implies that the second infinite term in A (x)
would not have appeared if we had started from the re-
normalized Lagrangian. The original Lagrangian is con-
formal invariant. However, the counterterms ,'BP i—n—
(3.1) of Ref. 25, is not, and gives rise to an additional
variation

o( ,'BP )= B—P—— (3.9)

the vacuum value of which just cancels the second
infinity in A (x).

Coleman and Weinberg's renormalized Lagrangian has
one more counterterm. %'e wiH return to this in Sec.
VI B.

The rest of infinities A (x), namely, the first term in

(3.5), is equal to the Fujikawa factor for the free field p&,
denoted as A&(x),

AI(x)= lim PI „(x)(1+x5)e PI „(x)

1 k 2 2 1—m P, +—
2 2 2

2

(3.14)

B. Path-integral measure with the Pauli-Villar's regulator

With the use of the Pauli-Villar's regulator (2.18),
Fujikawa's procedure leads us immediately to the finite
result, namely, the anomaly:

A(x)= lim g P„(x)(1+x')f(A2/M2)P„(x)
n

= lim g $„(x)(1+x')f
c)"r) +—P,2

I
11m dk f +f'I-- (2~)4

2

which one may compare with Buchmuller and Dragon's
result for the complex field.

(3.10)1= lim M
~ 4m

What should be observed is the difference between A (x)
and Ag(x),

1 „k $2

(3.15)
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The second integral vanishes for our regulator and conse-
quently

2

A (x)—A (x)= lim Jd k f—"1 4 1 „k
(2m )4 2' M'

2

, 2
[f(k)lo"

2

this regulator, justifiable from its physical significance,
will be discussed in Sec. VI A.

C. Fujikawa factor for complex scalar Seld

To compare with Buchmuller and Dragon's result,
and also to illustrate once again the utility of the
f(A.„/M ) in (2.18), we rapidly demonstrate how to cal-
culate A (x) for the complex scalar field P with

1

32. (3.16) r)"Pt—B„P+m PtP+ (P P—)
2

With the use of
which is the anomaly. From a practical point of view,
our f(k„/M ) in (2.18) is the best. The correct use of f(A,„/M ) in (2. 18), (3.17)

A {x)—AJ (x)=g P„(x)(1+x')f(X„/M )P„(x)—gg„(x)(1+x')f(0)P„(x)

1 dqk 1 „k
(2m) 2' M

—m' —X&y'y&

M

2
2

m

M

, [2 '~&q'q&+(~&y'q&)'~,
32~2

(3.18)

which can be compared with the result

A( ) —A ( )= [ +2 k&Pt(()&+(&&&'y&)'],

(3.19)

leads to the p function

—+1 2A,
(2lng, —21nM ——")

4~

(4.3)

which Buchmuller and Dragon would have obtained if
they had adopted the U(l) model instead of the SU(2)
X U(1) model.

The term (1/32vr )m in (3.19) is related to the arbi-
trariness in the choice of zero-point energy.

IV. RENORMAI. IZATION-GROUP APPROACH

Among the numerous works on the anomalies by con-
ventional methods, some authors, Collins in particular,
have dealt with the trace anomaly by taking into account
the renormalization-group equation, based on the dimen-
sional regularization. Then the anomaly is expressed in
terms of the p function multiplied by p, . In this paper
we adopt Weinberg's approach for the renormalization
group and deduce the p function. Finally our anomaly
will also be expressed in terms of this P function.

With the Coleman-Weinberg potential

(4.1)

2A2

256m.

1 2A,—+ ( —2 lnaM )
4t 256~'

(4.4)

where a = e ' /p, . If one expresses lnaM as g( A, ) /g,
the p is further simp1ified as

2A, 2

256~
1 +

—4g(A)
4.

+
256.

(4.5)

Here g(A, ) means that g is a function of A, . Now the
derivative of lnaM leads to

In the above V,& there appear only two parameters A, and
M, and consequently A, and M are mutually functions of
each other. Then the p can be exactly solved as follows.

First, the P is rewritten as

L

the renormalization-group equation

M +P V tr =0,8
8
M

{4.2)

1 am
m aA,

1

A,
2

(4.6)

where g'=(0/BA, )g. Then Eq. (4.5) becomes a diff'erential
equation for q(A, ), which can be easily solved as
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rj(A, ) =—+ —", m
c

(4 7) Then we find that

where c is a constant. Finally InaM and p are obtained as Ym
3A2

16m
(4.18)

lnaM = +16m c
3A X2

' (4.8) One may also try for the result (3.19) for the complex
field as

3X2

—16m —6—C
(4.9) &( )=+y '&y y& —(-,')'3(y'y&'.

Then the y and P are

(4.19)

We are in the Hilbert space where ( P &
=P, and therefore

P, is kept constant. c is independent of A, but may de-
pend on P, . To see how c depends on P, we insert ex-
pression (4.8) into V,s. (4.1), and find

2y', c
V

256~
(4.10)

At the saddle point 8 V,s./BP, vanishes, and consequently

a 4P,c =0, (4.11)

which leads to

c= C

4
C

(4.12)

where c is a constant independent of P, . In terms of c,
the V,&is

2c

256m
(4.13)

—1 167) /3k

16~
exp

25
12

(4.14)

3A2

16~
(4.15)

which is simply another constant. Therefore the freedom
in the expression of p corresponds to an arbitrary choice
for the constant vacuum energy. In the following we nor-
malize V, tr to vanish at P, =0: namely, c =c =0. Corre-
spondingly,

=+
]6 2 32 2 (4.20)

which are the values Buchmuller and Dragon would have
obtained, if they had solved the U(1) model exactly.

V. DKFORMATION-
A NKW INVARIANCK IN CONDENSED SPACE

lnaM' =, +16m. c
A.

'2

With such A,
' and M.',

g~2 4 2

4~ ' 256~'
25
6

(5.1)

(5.2)

must be equal to V,s. (4.1). To confirm this most quickly,
one inserts (5.1) into (5.2) and finds the result (4.13),
which is independent of A,

' and M'. The transformation
from (A, ,M) to (A, ', M') can be presented as

As particle condenses, certain original symmetries are
no longer valid. Instead there appear new symmetries.
In analogy to the group-theoretical terminology, this
phenomenon is called the "deformation. " Our V,z has
also a new symmetry.

The value of the coupling parameter A, depends on
where the measurement is made. In our formalism, A, de-
pends on the mass scale M on which the measurement is
made. This is expressed explicitly in the P function (4.3),
the solution of which is the relations (4.8) and (4.9).

On another mass scale M', the coupling parameter A,
'

will satisfy

The anomaly, given in terms of P (Ref. 23) is M'
ln

c 16 16m

3 A
(5.3)

a~D =a~x e"=e~= py', ——1
p a p 4~ c (4.16)

For an infinitesimal transformation this reduces to

A(x)=+ —,'y m p, —
, pp, . —2 2 1 4 (4.17)

which is exactly identical to our results obtained previ-
ously. In the above D„and 0" are the dilatation current
and the energy-momentum tensor. '

Until now, we have dealt with the massless P theory.
In the case of the finite mass, we further have to intro-
duce a mass scaling parameter y . With two parame-
ters, one cannot easily solve the renormalization-group
equation exactly. Still it is instructive to express the re-
sult (3.14) in terms of y and P, as

Atc =0

—1 M'
ln

2c 16m 2

+
A3 312

(5.4)

(5.5)

The last result (5.5) differs from Coleman and Weinberg's
(Ref. 25) in sign. While their relation is considered to be
approximate, ours is exact. In fact the meaning of "ap-
proximate" is vague because of the presence of lnM in
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V ff The In' cannot be expanded in terms of A, . The
problem is of nonperturbative nature.

A similar situation occurs when one solves a renormal-
ization equation. If one expands the f3 function in terms
of A., hoping the M to be a series function of k, one gets
the wrong sign.

Throughout this paper the anomalous dimension for
the field is not considered, as the V,tr in (4.1) is of the or-
der of one loop. For the finite mass, we further have to
introduce the y function and the exact symmetry is
hard to find.

VI. DISCUSSIQN

A. Regularization of the Fujikawa factor

e / = I+(A, /M) +
1 —A, /M

(6.1)

A2/M2
As a matter of fact one can adopt e instead of

—
A, /MFujikawa's choice e . It is equivalent to a change

of sign of i in iD s in the proper-time description, having
no physical significance. Then the corresponding regula-
tor is 1/(1+k /M ) given in (2.16). Finally /I (x}
—Af (x}becomes finite.

For the P theory, Coleman-Weinger's regulator (2.18)
has to be applied as

As is shown in Sec. IIC2 Fujikawa's prescription
2 —

A, /MA (x) with f(k /M ) =e / is fully equivalent to the
orthodox field-theoretical treatment extended to (x„,s)
space. The infinity appearing in [/I (x)—/If(x)], is iden-
tical to the one in one-loop calculation, as the higher-
order loops do not concern the anomaly. We may just
discard this infinity, since it would not appear if we start
from the renormalization Lagrangian (see Sec. III A).
However, one can also regularize it.

As seen in the second line of (2.43), /I (x) appears as a
sum of contribution from a continuous mass spectrum.
The integration on the mass parameter K reminds us of
Pauli and Villar's regularization. However the insertion
of a factor p(K) or p(K ) does not help to eliminate the
infinity at all. It rather deteriorates the equivalence be-
tween the proper-time description and Fujikawa s
method. In fact, to apply a Pauli-Villars regulator is to
multiply a factor p(A, /M) or p(A, /M ), and not p(~) or
p(a. ). For example, if one inserts p(A, /M )
= 1/1 —A, /M, the A, /M term in /I (x) drops, since

well established in high-temperature physics. When the
Fujikawa factor is expanded in terms of 1/M, the resul-
tant infinite series is not assured to converge.

B. Renormalization group with cuto8' parameter

64 '
2S6m 2A

1

2
(6.4)

which is equal to V,s in (4.1). Here

3k XM 11
ln

32m 2A

and

A, A8
32

(6.5)

If one chooses a particular value for A such that C van-
ishes

Our renormalization equation (4.2) is based on the
symmetry of V,s for the transformation (5.3) of the pa-
rameters A, and M. In the early investigations on P
theory with (P) =0, the renormalization group is often
formulated by taking the cuto6'factor as a measure. For
this case the basic symmetry is the invariance for the
scaling x —+ax and /~a 'P. Such a transformation is
no longer possible because of the nonvanishing order pa-
rameter ( P) =P, . Nevertheless we can argue for the re-
normalization equation for A, as we will explain below.

The efFective potential (4.1) will be expressed in an in-
tegral form on the proper time s if we follow Schwinger's
treatment. This is also true in the g-function approach
where V,s=(d/ds)g(s)~, o. If one replaces s by s/p in
such a V,s, the result is a function of p, (see, for example,
Ramond, Ref. 22, p. 118). This p is just the arbitrary
measure I appearing in Coleman and Weinberg's V,ff in
(4.1). Then the transformation of (M, A, ) into (M', A, ') is
to transform (s, A, ) into (s', k'), namely, a scaling of the
proper time. As will be seen below, the transformation of
(A, A, ) into (A', A, ') is also a scaling of the proper time.

To derive the renormalization equation in terms of A
explicitly, we start from the Coleman-Weinberg form

[ ]
(

—i. /M + i, /M )]
1 —(A, /M )

One can find easily a factor

1
(

li. s+ lA. s)
2 7

(6 2)

(6.3)

3A, AM 11

32 2A

then M disappears superficially from V,ff as

Vs= —P, + ln
4) 256m 2A

(6.6)

(6.7)

if one splits A(x) in the proper-time axis in a suitable
manner. In fact however, 2 (x)—Af(x) corrected by the
factor (6.3), is already finite by itself, and the regulator
(2.18) becomes redundant.

A2/M2The use of such a factor e instead of or in addi-
—A, /Mtion to e, however, hinders the comparison of

Fujikawa's approach with the perturbation technique

3A,
'

A,
'M'

In
32m 2A'

1 =0,
2

(6.8)

The symmetry for this V,ff can be deduced with the help
of the relations (6.6) and (4.8). Namely, for another set of
A' and A,

' satisfying
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we obtain the symmetry relation

16m
exp 2

3

A,A'

A, 'A
(6.9)

This is an exact symmetry. One can deduce an
infinitesimal transformation A,

' —
A, from (6.10), but the re-

sult is not simple.
Corresponding to this symmetry, one can deduce a ll-

function A(M, /t)A), denoted as Il~, from

A -+P~ V,s[Eq. (6.7)]=0 .
aA

(6.10)

The result is

A,1—
256vr

(6.11)

] ] /3 2 2A —4A /A, P
e M = e (6.12)

and the symmetry of the Lagrangian is

16~
exp 2

A.A' A'
exp —4

A, 'A
(6.13)

It is probably worth making a further comment on this
scheme. The relation (6.12) gives rise to a relationship
between A and A, . For each chosen value of A, , A has a

which, for small A, , is approximately equal to P in (4.15)
(Ref. 28).

There is another important choice of A. If one chooses
A such that all counterterms disappear, the resultant V,&.

is simply a bare potential. In this case A is related to M
by

=0.

VII. CONCLUSION

It has been clarified that Fujikawa's prescription with
—(A, /M)

the factor e " is equivalent to the authentic field-
theoretical treatment, as it is equivalent to Schwinger s
proper-time treatment Sec. IIIB. Such equivalence has
been demonstrated explicitly by comparing Fujikawa's
procedure with the one-loop calculation for the case of P
theory Sec. III A.

The infinities appearing in Fujikawa's prescription can
be eliminated by multiplying or by choosing a specific
value for the measure M, instead of pushing it to infinity.

There is still one assumption left to justify this
Fujikawa s prescription. One has to split the two-point
function in terms of the proper time s. This is equivalent—(A, /M)
to inserting e " into the Fujikawa factor A(x).
This splitting process cannot be deduced as a natural
consequence from the present field theory of path-
integral form, even though it is a commonly used pro-
cedure.

corresponding fixed value by this relationship, and can-
not become arbitrarily large. In other words, instead of
introducing counterterms in the Lagrangian, we just take
a specific value of A, and we obtain a correct V,z.

Correspondingly, for the anomaly one should be able
to obtain the value (3.12) from A (x) in (3.5) and Af (x) in
(3.10) simply by choosing a suitable value for M (note
that Fujikawa's M is the A). The second term in A (x) in
(3.5) should be canceled by the higher-order terms.
Namely, M is a value such that

+— 0 ~ ~

4|

=exp (6.14)
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