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A field-theory formalism based on a free superspin field, which has an internal degree of infinite

spin, is developed using perturbation theory. Interaction Lagrangians are constructed and
ultraviolet-finite theories are obtained in four-dimensional spacetime. The finite property of the

graphs, unitarity of the S matrix, and microscopic causality are demonstrated for a g+ model for
the interaction Lagrangian. A definition of locality of the fields is given that extends the concept of
the local commutativity of strictly localizable fields and a formalism for massless superspin particles
is presented.

I. INTRODUCTION

The problem of finding a consistent quantum theory of
gravitation has been a long-standing problem. The at-
tempt to obtain a renormalizable theory of gravitation
based on supergravity failed, because the infinities in the
loop graphs in the third order of approximation did not
cancel. The supergravity formalism was based on point
particles and strictly localizable fields. ' There appears to
be no general gauge symmetry beyond that of supersym-
rnetry that can achieve a renormalizable theory of gravi-
tation based on point particles. There has been a recent
surge of interest in string theories and, since the strings
are extended objects that interact locally, there is good
reason to believe that they lead to a finite theory of gravi-
tation. However, the superstring theories are only well
defined in a ten-dimensional spacetime and it is necessary
to compactify the ten-dimensional theory to four dirnen-
sions. There seems at present to be no unique way to
achieve this and, indeed, it has been demonstrated that
the compactification of the heterotic string models to
four dimensions leads to a very large number of possible
string theories. Since string theory does not initially
take the form of a conventional field theory, attempts
have been made to construct a field theory of strings with
limited success. Such field theories are nonlocal and
they do not fit into the standard framework of axiomatic
field theory, based on point particles and strictly localiz-
able fields. " It is dificult to perform calculations in
these theories due to the complicated structure of the
string graphs.

It has recently been shown that the bosonic string
model has a divergent perturbation series and is not Borel
summable. ' There are strong indications that the same
holds true for the superstring model, although there is, as
yet, no rigorous proof that this is true. These infinities
correspond to perturbative instabilities of the flat-space
vacuum. Thus, string theory does not appear to possess a
perturbation-theory solution, putting it at present beyond
the reach of experimental verification. These problems
may well be caused by the fact that the basic mass scale is
the Planck mass —10' GeV.

Although it is not clear how serious these difhculties
are for the future of string theory, it does show that prob-
lems exist when specific assumptions are made about the
topological structure of the extended object that de-
scribes the basic building block of matter. Recent at-
tempts have been made to construct a theory using mem-
branes. ' Such theories suffer from the lack of a confor-
mal invariance that is possessed by string theories. The
basic equations of motion of the membranes are non-
linear and are difFicult to solve. There appears at present
to be no guiding principle that tells us which kind of ex-
tended object to use to describe nature.

The renormalization program has enjoyed success in
its application to gauge theories. Renorrnalizable gauge
theories form the basis of our present understanding of
strong, weak, and electromagnetic interactions. Compu-
tations in renormalizable field theories are normally ac-
companied by the presence of infinite quantities. The
coeScients of a power series in a small coupling constant
are typically infinite and are, therefore, meaningless. The
renormalization theory allows one to extract physically
correct results from these seemingly meaningless compu-
tations. The theory is regulated in some manner so that
when a regularization parameter approaches infinity, the
basic quantities in the theory diverge. These divergent
quantities are removed by absorbing them into the pa-
rameters that define the initial unquantized theory. The
renormalization program is only successful if a finite
number of parameters is needed to absorb the infinite
quantities to all orders in perturbation theory. Gravita-
tion cannot be renormalized in this program, because an
infinite number of parameters that cannot be determined
experimentally is needed to define the theory after quanti-
zation. The renormalization program would appear to be
only a makeshift method that will be replaced by a finite,
consistent field theory.

Two essential physical features of the string theories
are (l) particles are described as extended objects and not
as structureless points and (2) the string vibrations give
rise to infinite levels of masses for all spins. Es it possible
to construct a consistent quantum field theory based on
infinite-component (spin) fields that leads to a unitary S

39 3654



39 FINITE QUANTUM FIELD THEORY BASED ON SUPERSPIN FIELDS 3655

matrix and that describes a finite quantum theory of
gravity? Recently a program for constructing such a
theory has been published. ' In the following, we shall
give the detailed formalism for this theory in which field
theories of spins 0, 1, and 2 are constructed in four-
dimensional spacetime which are finite, unitary, and
satisfy a principle of microscopic causality. We shall in-
troduce the idea of the "superspin field, " which for spin-
0, -1, and -2 particles possesses an "internal" infinite-spin
degree of freedom. The particles are described by nonlo-
cal extended objects that we call "superspin" particles.

Krasnikov' has recently suggested using infinite-
component fields to remove the problem of ultraviolet
infinities in field theory, but he did not offer any physical
explanation for the underlying nature of the infinite-
component structure of the fields.

The new degree of freedom associated with the infinite
spin leads to propagators for the free fields that fall off
sufficiently rapidly with increasing momentum to guaran-
tee the ultraviolet finiteness of the perturbation theory to
all orders for a given Lagrangian. The superspin fields
are constructed to be free of ghost poles; they do not pos-
sess any "wrong" spin components. To overcome the
problem of unphysical Inodes occurring for interacting
spins-0, -1, and -2 superspin fields, we introduce the idea
of infinite-spin gauge invariance. The superspin field
propagators are described by entire functions of order

that do not possess any singularities in the finite
complex momentum plane and do not violate the unitari-
ty of the S matrix.

Since the superspin fields are associated with nonlocal
objects, we must implement some features of nonlocal
field theory. Consistent nonlocal extensions of the stan-
dard strictly local field-theory formalism have been
developed' ' that can lead to a generalized microscopic
causality for a suitable choice of the entire analytic func-
tions generated by the superspin fields. Although the
superspin fields are not strictly localizable, we can associ-
ate them with a definition of locality that leads to micro-
scopic causality.

It is important to recognize that the physical mecha-
nisrn that leads to a finite quantum field theory is the
internal degree of infinite spin associated with particles.
There is no need to implement supersymmetry as with
finite-spin point-particle theory, although the formalism
could be extended to include supersymmetry. We know
from experiment that the leading Regge-pole trajectories
appear to be linearly rising up to the highest detected
spins, which suggests that particles do form infinite-spin
towers. In the nonsymmetric gravitation theory (NGT),
the local gauge structure in the tangent bundle is
GL(4,R) (Ref. 23). The latter group and its double cover
only possess infinite-dimensional spinor representations.
Thus, NCx T departs radically from general relativity
(GR) in that fermions must have an infinite-spin degree of
freedom associated with them. In GR, the local gauge
group SO(3, 1) contains finite-component spinor represen-
tations of the homogeneous Lorentz group corresponding
to point particles, but this theory is unrenormalizable and
the perturbation theory diverges at every order.

One of the problems of string theories is their lack of

II. PARTICLE AND FIELD INTERPRETATION
FOR ARBITRARY SPIN

The physical states of particles are described by the
Wigner basis states ~p, m, jcr ) for a unitary irreducible
representation of the inhomogeneous Lorentz group
(Poincare group) with p =po —p =m . The spin j
corresponds to the eigenvalues J =j(j+1) and J3=o'
(o =j,j—1, . . . , —j). These states form the Hilbert
space of the theory and they can be obtained from the
rest states ~m, jo ) by a unitary transformation

~p, m, jo ) =[ m/co( )p]' U[L (p)]~m, jo.), (2.1)

where U[(p)] is a unitary operator associated with the
pure Lorentz "boost" that takes [O,m] into [p,p ] and is
given by

L,'(p) =5, +p, p, (coshO —1 ),
Lo(p) =L; (p) =p;sinhO,

(2.2a)

(2.2b)

physical predictions that can be used to test the theories.
This is, of course, in part due to the complexities associ-
ated with the required compactification of these theories
to four dimensions and the necessity to break supersym-
metry. Beyond the obvious aesthetic appeal of finite
theories, how can we be sure that our scheme yields a
physically superior theory when compared to the stan-
dard renormalization theory? There may, indeed, exist
several alternative ways to construct a finite theory of
gravity. How do we know that we have obtained the
"correct" quantum gravity theory? The construction of a
successful theory would necessarily have a serious
influence on the formulation of the field theories of the
other forces of nature. In the generalized electroweak
theory, finite electro weak interactions would predict
first-order perturbation theory results in agreement with
experiment given the known values 'of the Glashow-
Weinberg angle sin 0~ and the intermediate vector boson
8'and Z masses. The electroweak cutoff M is a physi-
cal parameter in the superspin field theory, since the
Feynman graph loop integrals damp off exponentially fast
above the value of M . The Higgs gauge hierarchy prob-
lem no longer exists and the Higgs sector becomes a non-
trivial theory, because there does not exist any Landau
singularity. Thus, the generalized electroweak theory be-
comes a fundamental field theory with a physical Higgs
particle. The Higgs radiative corrections obtained from
our finite superspin theory of electroweak interactions
differ from their counterparts in the standard Weinberg-
Salam-Glashow theory, and thus lead to different physi-
cal predictions that could be tested using high-energy ac-
celerators.

No attempt is made here to construct a unified field
theory including gravitation. The field theory is formu-
lated in four-dimensional spacetime. It could be general-
ized to higher dimensions, opening the door to a Kaluza-
Klein type of unification, but this would introduce an
unacceptable degree of arbitrariness into the scheme.
Some new guiding principle must be discovered to unify
the fields that does not bring with it the arbitrariness as-
sociated with Kaluza-Klein compactification schemes.
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Lo(p) =cosh8 . [a (p, J'o ), a*(p', j'ir')]+ =6 (p —p')5J~ 5 (2.&)

Here p is the unit vector p/~p~, sinh9=~p~/m, and
cosh8=co/m =(p +m )' /m. Our normalization con-
vention is

The field operators Pi (x) satisfy the correct statistics
and crossing symmetry. 26 We have

(p ~lp' ~'& =fi'(p —p'@.. (2.3)
[y,.(x),y,'.,(y)] =r".'.",' "' a, a„a„a(x—y),

An arbitrary Lorentz transformation A", performed
on these one-particle states, gives where 5 is the standard free-particle causal function

(2.9)

U ( A ) p, o &
= ( m /a~ )

' g U [L ( Ap ) ] ~

o'
&

X (~'l U[L (Ap)AL (p)]lo &

= [~(AP)/a~(p)]'~'

X g lAp, o'&2Y [L '(Ap)AL(p)],
o

(2.4)

3

g( )
' f P

(
—~p. (x —y) ip (x —y)

)
( 27K ) 2Ci7

p e'~' ~'sinpo(xo —yo)(2~)'

, fde e(po)5(p —m )e
(2m )

(2.10)

where the coefficients 2Y are

ZV. .(R)=(~'I U(R) I~ & . (2.5)

Here, R is the pure Wagner rotation L '(Ap)AL (p), so
that 2)~(R) is the familiar (2j+1)-dimensional unitary
matrix representation of the rotational group. We have
not assumed that there exists an explicit dependence of
the mass m on the spin j. However, an extension of the
formalism could be made to incorporate this feature of
the mass spectrum.

%'e write for free fields

where e(po) =8(po) —0( —po) =po/ po~. Moreover,
t '

~
" is a symmetric, traceless tensor.

The (2j+1)-component fields will have left-handed and
right-handed contributions with the helicity A, = —j and
+j corresponding to the representations (j,O) and (O,j),
respectively. The corresponding (2j+1)-component an-
nihilation fields are P' '(x) and p7t~ '(x) and

y~J.-'(x) =(2~)-'"f P„, y n...'..[L (p)]p

y,.(x)=yI.+'(x)+y,'.-'(x),

where

(2.6)
Xa (p, j'o. ')e

(2. 1 1)

y'+'(x)=(2~) f,q~ g 2&~ ) [L (p)]
d

X b*(p,j 'o')e'~

3
'(x) =(2m )

~ f, g 2) ' [L (p)]
(2 )

1 /2 J~

Xa (p, —j'o')e

(2.7a)

(2.7b)

[J„JI,]=i e,i„J„[J„Ki,) =i e,i„K, ,

[K„Ki,]= ie,i„K, . — (2.12)

The 2V(A) and XV(A) are the finite, nonunitary
(2j + 1 ) X ( 2j+ 1)-dimensional matrices corresponding to
A in the (j,O) and (O,j) representations, respectively.

In the standard way, we can construct finite-
dimensional fields transforming under the Lorentz group
as irreducible representations. The three rotation genera-
tors J and the three Lorentz-boost generators K satisfy
the usual commutation relations

and P' '(x) is the annihilation part for the particles.
The 2)[L (p)] is the representation matrix of SO(3, 1) [or
its double covering SL(2,C)] for a boost along p. The a*
and a are creation and annihilation operators operating
on the vacuum state ~0& with ~p, m, jo. & =a*(p jo )lO&.
Moreover, the antiparticle operator is defined by
b* = g ~ [(C~) '] b*(o'), where C is a (2j+1)X(2j
+1) matrix with C*C =( —

) ~ and C C= l. C is used to
define the ordinary complex conjugate of the finite
Lorentz representation: XV(R )*=C2)J(R)C '. The a' s
and b's satisfy the standard free-particle Bose-Fermi. com-
mutation (anticommutation) relations

%'e can decouple these commutation relations by defining
the two anti-Hermitian operators A= —,'(J+iK) and
B=—,'(J—i K) that satisfy the commutation relations

AX A=i A, BXB=iB, [A;,8, ]=0. (2.13)

Then, a finite nonunitary, irreducible representation (a, b)
is labeled by a and b defined by the eigenvalue equations
A =a(a+1) and B =b(b+1); a, b =0, —,', 1,—,', . . . . The
components of an irreducible tensor are given by a3 63 of
A3, 83 or by j and o..

A calculation of the covariant propagator gives
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D~', (x —y) = (0~ T[P (x)P .(y)] ~0)

=e(x —y)(oly. (x)y'. ,(y)~0&+( —1) 'O(y —x)&OI&j (y)Pj (x)IO&

(2.14)

where 6' is Feynman's propagator and we have neglected
contact terms. By performing a Fourier transformation
to momentum space, we gei

K*(p)=CK (p)C

where

(2.18)

(p)D~', (p)= f d x e 'P "D~' (x)= —.
l —p + pyg

(2.1S)

—JJ*=CJJC

(d) The K and K are further related by

K (p)K(p) =(p')"

(2.19)

(2.20)

2Y(A)K(p)2Y(A) =K (Ap),

2Y(A)K(p)2Y(A) =K(Ap) .

(2.168)

(2.16b)

(b) K and K are related by inversion

K( —p,p')=K(p) .

(c) The K and K are related by the transformation

(2.17)

The functions K and K have the following properties.
(a) They are scalars, since they satisfy

For p in the forward light cone,

K(p)=(p ) 'exp[ —28(p)p J'],
K (p) = (p ) jexp [26)(p )p J ],

(2.21a)

(2.21b)

lY [L (p)] =exp( —p JjO)

For integer j the result is, for arbitrary p,

(2.22)

with sinhg(p)=(~p~ /p )'
An explicit calculation has been given by %'einberg

for the functions K (p) using the fact that

j —1 2 j—1 —n

Kj(p)=(p ) + g (2p J)[(2p J) —(2p) ][(2p J) —(4p) ] [(2p J) —(2np) ][2p J—(2n+2)p ] .
(2n +2)!

(2.23)

For half-integer j, we have, for all p,
j—1/2

( 2)j —n —1/2
K'(p) =(p')' '/'(p —2p J)+ g [(2p J)' —p'][(2p J)' —(3p)'] '

(2n +1)!
X I(2p J) —[(2n —1)p] j[(2n +1)p —2p J] .

The fields P. (x) satisfy the Klein-Gordon equation

( +m )P, (x)=0 .

(2.24)

(2.25)

All the "wrong-spin" subsidiary conditions are automatically satisjted by the free fields p (x) for the (j,O) and (O,j) rep-
resentations. Thus, the free fields P (x) do not have any unphysical ghost states. If we take the limit m ~0 for the
massless particles, then this limit only exists for the helicity choice A=8 —A fo, r the (j,O) and (O,j) representations.
In the massless case, the fields satisfy

Pj (x)=0.
We shall also introduce the field Pj (x) given by

I /2

(2.26)

(x)=(2~) ' f d p E(p)
' .[L (p)]b (p, j'o')tu(p)e

J 0'

+(2)C ')j j',[L (p)]d*(p, j'o')u (p)e'~'], (2.27)

where tu and u are Dirac spinors. The free field ll (x) satisfies the Dirac equation

( 1y""rj„+m)@ (x)=0— (2.28)

and the b's and d's satisfy the standard commutation and anticommutation rules. A calculation of the covariant propa-
gator yields the result
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S".(x —y)=(olT[@,.(x)pit. (y)]lO) =(iyI'B +m)t ' ' "B„B . B„b,'(x —y) . (2.29)

Fourier transforming this result to momentum space gives

gjc (p) f d4x e Ip xgjc 1 IC~( )

i m —py —ie (2.30)

where we have used the notation p y =p "y .P'
It is often preferable to use tensor sui%x notation to do calculations with massless fields. For massless particles, the

helicity must satisfy B —A =+j. For the representations (O,j) and (j,O), the fields p (x) are written as

F+' ' ' ' (x)=iJf d p(2lpl) ' [p 'e+(p) —p 'e+.'(p)]

X X[p 'e+ (p) —p 'e+'(p)][a(p, +j)e 'i"+b*(p, + j)e'i' ] . (2.31)

The polarization tensors e satisfy

p„e ~ (p) =0, e+„(p)e~+ (p) =0,
e""p,e+„(p)=+ i I p "e+(p)—p e"+(p)]

(2.32a)

(2.32b)

F[vlPl ] ' '

+
[P 1 vl ] ' '

+

(2) F+(x) are symmetric under the interchange of any
two index pairs [Iu,,v„]~[@,v, ].

(3) F+(x) and F (x) are, respectively, self-dual or
anti-self-dual with respect to each index pair [p„v„]:

(2.33)

PVP I
V

I ~[PpVp] — . [PV][P/Vp]~ +[~ 1
+ 2~F+ (2.34)

(4) The F+ tensors are traceless. The complete con-
traction of any pair of suffixes [p„v„],[p,v, ] gives zero:

[V~Vll[P~ &-]

IP 1PP 9V
1 VP

Moreover, any single trace vanishes:

(2.35)

where e" ~" is the totally antisymmetric tensor with
e '—:1 and we have e+ =—0. The F tensors satisfy the
following conditions.

(1) F+(x) are antisymmetric under the interchanges

p, ~v„within any one index pair:

where the indices a and b run by unit steps from —3 to
+ 2 and —B to +B, respectively. When the particles
are their own antiparticles, we set the operators a equal
to b. The F+ transform according to some irreducible or
reducible representation of the homogeneous Lorentz
group SL(2,C) with dimensionality 2j+ 1. Of the irreduc-
ible representations ( A, B) that satisfy the massless condi-
tion B —3 =+j, the ones with the smallest dimensionali-
ty are the (2j+1)-dimensional representations (j,O) for
helicity —j, and (O,j) for helicity +j. Thus, F and F+
transform according to the (j,O) and (O,j) representations,
which are just the 2j+1 component fields obtained from
(2.38) by setting B=0 or A =0, respectively.

The F+ tensors are gauge-invariant quantities and they
correspond to the Maxwell field strengths for j=1 and
satisfy Maxwell's equations. In general, the F+ (x) satisfy
the field equations

F[PI 1]
Pl + (2.39)

The five independent components of the tensor F(g' ~ l

can be identified with the left- or right-handed parts of
the Riemann-Christoffel curvature tensor. The F+(x)
tensors can be written as curls of potentials A ~' '(x).
The latter satisfy the free-field equations

[9~ vl ][PgPP] ' '

+p)pp + =0. (2.36) (2.40)

Here g„ is the Minkowski-space metric g„=Diag(1,—1, —1, —1). Because of the four conditions listed
above, the F+ tensors each have at most 2j+ 1 indepen-
dent components.

The F+(x) are tensors under Lorentz transformations

U(A, a)F+' ' ' ' (x)U(A, a)

and

A~' '=0.
The 3+'s can be written as

A ~' '(x)=(2m)

(2.41)

A 'A„'F~' ' ' ' (Ax+a) .
j j

(2.37) X fd'p(2lpl) '"e+'(p) e+'(p)

X2), „[R(p)P)i e[R (p)]

X[a(p, +j)e
+b*(p, +j)e'i'"], (2.38)

The irreducible fields are determined uniquely by the rep-
resentation ( A, B) under which they transform

P,"~ (x)=(2~) '~' f d'p(2lpl )

X [a(p, +j)e

+( —)~b "(p, +j)e'~ ] . (2.42)

In contrast with the F+'s, the 3+'s are not Lorentz ten-
sors, since their timelike components vanish. The nonco-
variance of the A+'s manifests itself in the appearance of
gradient terms in the Lorentz transformation law of the
A+'s, which disappear when we take the curls to form
the F+ tensors. 26
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A crucial difference between the F+ tensors and the
3+ potentials is that the propagator calculated from the
I'+'s, which corresponds to the one obtained previously
from the P (x) fields, has a quite different behavior as a
function of the momentum p as p~ ~. Indeed, whereas
the propagator D~'(p), in Eq. (2.14), behaves like (p )J

as p ~ ~, the covariant part of the propagator obtained
from the potentials A+(x) will have a constant behavior
as p~ ~. For point particles, this difference is closely
related to the long-range behavior of electromagnetic and
gravitational forces and the existence of infrared diver-
gences in the limit p ~0. It will play an important role
in the development of the superspin field theory.

III. CONSTRUCTION OF THE SUPKRSPIN FIELDS

We shall construct fields depending on the spacetime
coordinates x as well as four complex variables z&, m&

and zz, m2 arranged into two two-component spinors
0, =(z, , ic, ) (i =1,2). The 9 will form our spin-coordinate
basis space that replaces the conventional tensor suftix
basis space. This kind of basis space was introduced by
Bargmann and used by Abarbanel and Rivers to an-
alyze Regge-pole scattering amplitudes. The superspin
field is given by

C&(0,x)= g c g u (0)P (O,x),
j=0

(3.1)

where P (O, x) contains a 0 spinor space dependence
through the creation and annihilation operators
a*(p,jcr, 0) and a (p,j cr, 0). Now the commutation rela-
tion for the creation and annihilation operators (2.8) con-
tains a 5(0—i1) on the right-hand side. The coefficients
c are growth dampeners and the u& (0) are orthonormal
spin basis functions for angular momentum l and projec-
tion m:

l+m I —m

ui (0)=
[(l +m)!(l —m)!]'~

(3.2)

(3.3)

where it is understood that pI b'(x) contains a 0& and 0&'3 3

dependence. We shall define a representation of the
Lorentz covering group SL(2,C) on the spinors u„(0&)

3

and ubb (02) and an operation Z„:
3

Z„u„(0,)u (b0b)=2u„( A '0, )ubb ( A '02)

= g u, (0,)u, (Oz)
I

a3b3

x2)', ,b!, [A( g)],
3 3' 3 3

We can also exhibit the superspin field in terms of the
diagonalized A3 and 83, rather than the j and o. eigen-
values:

oo +a +b
cab g uaa3(01) g bb3(02 }

ah=0 a = —a3 b = —b3

xy' "(x)
a3b3

where A( A ) is the Lorentz transformation corresponding
to A. The superspin field then has the Lorentz transfor-
mation law

U(A)4(0, , 02;x)U(A) '=N(AO„AO~;Ax) . (3.5)

We can project out the (a,O) component of the super-
spin field (3.3) by noting that uI (0) is orthonormal with
the measure

dp(0)=, exp( —IzI' —IwI') (3.6)

so that

c,P' '(x}=fdp(0)u„(0}&P(0, x).

We can now define the Lorentz-scalar superspin field by

4(x)= f dp(0)@(0,x), (3.8)

:-(O,il;x)= g g b u, (0)u (ilg', ~ „'~ '(x)
j=0 a3, b3

(3.9)

:-(x)=fdp(0)dp(g): (O, il;-x) . (3.10)

Let us now calculate the commutation relations for the
superspin field C&(x). We have

[e(x),a t(y)] = y p~(a)a(x —y),
o (2j)!

(3.11)

where P~(B) is the spin-projection operator. The T prod-
uct of two superspin fields leads to the following expres-
sion for the causal superspin propagator D,'.

D;(x —y) = (Ol T [@(x)+(y)] IO)

Ic, I'
PJ(B)b.'(x —y),, (2j)!

(3.12)

where we have neglected contact terms. In momentum
space, this becomes

D,'(p)= f d x e '~'D'(x)=—1 II( )

—p +pz —lE

where

(3.13)

11(p)= g Id I
K~(p)

j=0
(3.14)

and the constant j dependence has been put into a con-
stant denoted by d . The function K~(p) contains within
it an integration over the spin basis space spinors.

We shall also have need for a spin- —,
' superspin field

constructed from the g (x) in (2.27):

where dp(0)=(d z d i'/~)exp( —
—,'0.0). %'e must treat

4(x) as an operator, since the definition (3.8) is only
meaningful within a matrix element in which the measure
integration acts on a spin-space-dependent property of a
state vector

I
A ). We can also construct a superspin field

from the field operator g'J~ '~~ '(x) for the representations
with (a, b) =(j/2, j/2):
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4'(O, x)= g c, g u, (0)itj (x) .
j=0

(3.15)

qj(x)= f dp(0)%(O, x) . (3.16)

The SL(2,C)-invariant spin- —, superspin field is then given

by

shall take it as given that this somewhat weak condition
is satisfied.

Let us now construct massless spin-1 and spin-2
superspin fields. Since the photon and graviton are both
massless and neutral, we shall restrict ourselves to the
case of massless particles that are identical to their an-
tiparticles. It is convenient to define phases so that

The spinor sup erspin Geld propagator in momentum
space is b (P, A, ) =( —)Ja (P, A, ) . (3.18)

pc( )
—1 II(p)

l Pl P 'f lE'
(3.17)

We observe that (e~+ )*=e~+, so we have

Fl, , l I:, , l~ F[v, , ] - l), , l
+ (3.19)

where II(p) is defined by (3.14).
By using the explicit Weinberg formulas for KJ(p), in

Eqs. (2.23) and (2.24), we find that a sufficient condition
for II(p) given by (3.14) to be an entire function of p is
that, for large j, ~d,. ~

falls off as j ' ' with a) 0. We

Therefore, we can define fields H(x) as

H(x)=H+(x)+H (x) .

Let us begin by defining the field

(3.20)

' ' (x) =i&f d' p( 2~) ' 'g [p 'e+'(p) —p 'e+.'(p)]

X [p 'e+ (p) p'e—+'(p)][a„(p,+j)e '~'"+a~(p, +j)e'~'], (3.21)

where we shall only consider massless integer-spin parti-
cles. Then, the spin-1 superspin field is defined by

tegration

A„(x)=f dp(0)A„(O, x) . (3.23)

A„(O,x)= g c,
j=0

(0, o.„O)
i, k=1

The superspin field strength for the massless "photon"
field is

&(v, ~, ) (v, ~, )( (3.22) Vp~= 8+~ 8~p (3.24)

where o„,, =(i/2)(o o—o. . cr„). The Lorentz-
covariant spin-1 field is obtained by using the measure in-

Continuing this method of construction, consider now
the tensor

' ' ( )=xi' f d p(2') ' g [p 'e+(p) —p 'e+'(p)]X . X[p 'e+ (p) —p 'e+'(p)]

X[a„(p,+j )e '~'+a„*„(p,+j )e'~ "] . (3.25)

We now obtain the spin-2 superspin Geld

oo

s„(Ox)= g c g (Oo.„O) R„„' ' ' ' (x)
j =-0 i, k =].

(3.26)

the superspin spin-1 fields satisfy the commutation rela-
tions

[a„(p,J', 0),a „*(p', J', i) )] =5 (p —p')5(0 —9)5,,'9
(3.29)

and the Lorentz-covariant spin-2 field

s„(x)=f dp(0)s„„(O,x) .

The spin-2 field s„,(x) satisfies the wave equation

Cls~ (x)=0 .

(3.27)

(3.28)

while those for the superspin spin-2 fields obey

[ap, (p, J', 0),a i,e(p', J', v) )]
=5 (P P )5(0 'rt)5 J'(rj„i.'9 +'rj„'0 A1'9P). . .

(3.30)
The free fields A„(x) and s„„(x)contain no unphysical
ghost states. The creation and annihilation operators for The propagator for the superspin photon is given by
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D;„„(x—y) = (Ol T [A„(x)A (y)]lo)

=21„„+ld l f p K~(p)
j=0

X [8(x —y)e

+8(y —x)e'P'] . (3.31)

In momentum space, the propagator becomes

1 II(p)D;„(p)= ——.g„
l —p

For the superspin "graviton" the propagator is

(3.32}

—y)=(0 T[ .( ) (y)]lo)=(21,21 +21 z,—iI 2I, )

2 d pX g ld, l f IC,'(p)[8(x —y)e '" "+8(y —x)e'P "]
O

2' (3.33)

and in momentum space this becomes

1 11(p)
Dspvip(P) ~ ( Ip2. 9vp+ happ Ivies 9pv 4p}

l P lE'

(3.34)

IV. INTERACTION DENSITIES
AND PERTURBATION THEORY

We shall use perturbation theory and assume that the S
matrix can be calculated from Dyson's formula: '
S=, d xi . d x„T[XI(xi) &t(x„)],(

—&)"

nt oon=0

(4.1)

where in the interaction representation, the Lagrangian is
described by

and

L =No+/,

Xl(x) =exp(iXot)Xlexp( iRot) . — (4.3)

We shall construct X by using our superspin fields.
Let us consider first the massive superspin scalar field
phI(x) given by (3.1) and (3.8). Later, we shall use mass-
less superspin gauge fields to construct the interaction
Lagrangians. The free-field-Lagrangian is given by

rules and define a Wick normal ordering in terms of X
products. We can replace I( ) in (4.5) by the identity
times g, which we are free to do because any Lorentz-
invariant I( ) is acceptable. Then we only perform the 8
integrations in Wick contractions. The only modification
of perturbation theory is the two-point propagator.

Let us assume that the superspin field 4&(x) is given
b 16

@(x)=f dy 8(x —y)$(y)=8(B„)$(x), (4.6)

where 8 (8) is some operator that depends on 8, and P(x)
is the standard free field solution of the Klein-Gordon
equation

( +m )P(x)=0,
which is given by

(4.7)

lP X

[P(x),at ] =(2') (2')'/
1P 'X

[a,P(x)] =(2m )
(2~ }1/2

(4.9a)

(4.9b)

For the superspin Dirac field %(x), we assume that

'P(x)= f dy 8 (x y)1t(y)=8 (B„)—g(x), (4.10)

$(x)=(2n) (a e 'P'"+a*e'P'") . (4.8)p
(2 )1/2 P P

This solution obeys the commutation relations

Xo= —
—,':P(x) P(x):, (4.4)

where g(x ) is the free-particle solution of the Dirae equa-
tion

where P(x) is the point-particle free field. An invariant
coupling is

Xl(x) =g:&b(x)":

dP 01dP 02 . dP On

( —&'1 "a„+m)y(x) =O,

which is given by

P(x)=(2n)/ f d p.
&(p)

1/2

(4.11)

X:@(O„x)C&(82,x) 4(O„,x}:

XI(O, X82, 8, X83, . . . ), (4.5)

X [bpw (p)e 'P'+d*u (p)e'P'] .

(4.12)

where I is the coupling function of all (n/2) determinants
(81 X 82), (81 X 83), . . . . We can construct Feynman

We shall define the X products according to the Wick
theorem by using the "chronological" contraction:
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D;(x —y) =+'(x)4 (y) =8 (B, )B (B~)P'(x)P (y), (4.13)

or

D;(x y)—=B (B„)B(By )b, '(x —y)

1 J d p[B(p )] e'i'~'

(2~) i —p +m i—e
(4.14)

Similarly, for the superspin Dirac field %(x), we have the
chronological contraction

S;(x —y) =~I'(x)q'(y) =& (B, )& (B, )P (x)g (y), (4.15)

S;(x —y) =a (B, )a (B )S'(x —y)

1

y
d p[B(p )] e'"'"

(2~)4i m —p y ie— (4.16)

This is the form of our postulated "Wick T product" or
T* operation. In nonlocal field theory, the T* operation
cannot be defined in the same meaningful sense as is done
in strictly local field theories. But this does not prevent
us from postulating the rules (4.13) and (4.15) as a
method of constructing our perturbation theory. As we
shall see, by employing well-defined regularization tech-
niques, all the physical requirements of a consistent field
theory can be satisfied. We now use the usual methods of
quantum field theory, leading to the standard perturba-
tion series, except that our causal function will be of the
form (4.14) and (4.16), and the operator 8 (B) is such that
[B(p )] =H(p), where H(p) is given in Eq. (3.14).

Let us cite the Feynman rules for our superspin scalar
field C&(x) given by (3.1) and (3.8) and for a g:N(x): cou-
pling.

(a) For each vertex include a factor ( i ) times—

I(0, X6)2, 9, X 03, . . . ) . (4.17)

(b) For each internal line running from a vertex x to a
vertex y include a superspin propagator

d4p II( ) iP (x —y)

D,'(x —y) =
(277) i p +m IE'

(4.18)

j=0
(superspin particle created) .

(d) Integrate over all the measure integration variables
0„0z, . . . , and over all vertex positions x,y, etc.

These Feynman rules could easily be stated in momen-
tum space. We have assumed that the scalar superspin
particle N(x) is equal to its own antiparticle. If this is
not true, then the rules are readily extended to include

(c) For every external line corresponding to a superspin
particle, include a wave function

OO +j
g c g u, (6)P,' '(x)
j=0

(superspin particle destroyed),

(4.19)

the antiparticle field operator.
The infinite-spin degree of freedom in the function

H(p) will act as a regulator of the form factors in the per-
turbation series. As we shall show in the following sec-
tions, the integrals will be convergent and all the physical
conditions required for the S matrix will be satisfied.

The infinite towers of particles that make up the
superspin fields cannot be excited into observable particle
states in interactions. The superspin field is an infinite,
linear combination of spin-space scalars, so that super-
spin particles remain spin-space scalars in collision pro-
cesses. Therefore, in superspin field theory the interac-
tions do not produce unphysical ghost poles as in the
standard couplings of higher-spin fields. The superspin
field contains a confined, hidden degree of infinite spin
that defines a nonlocal field operator.

V. GENERALIZED FUNCTIONS AND CLASSES
GF ENTIRE FUNCTIONS

In the framework of axiomatic field theory, " the fol-
lowing basic requirements are made of relativistic field
theory: (a) a Hilbert space of states, (b) the fields are co-
variant under the Poincare group of transformations, (c)
the fields satisfy local commutativity, (d) positive energy,
and (e) particle interpretation.

A field y(x ) is an operator-valued generalized function,
averaged over a smooth test function f (x):

y(f)= Jdx y(x)f (x) . (&.I)

The standard physical requirements of relativistic field
theory are obtained if we choose tempered test functions.
The temperedness of functions reAects the symmetry be-
tween coordinate and momentum spaces. Moreover,
temperedness leads to the scattering amplitude being ana-
lytic in s (for fixed t (0) in a cut plane and it possesses a
polynomial behavior. These requirements comprise what
we understand to be a strictly local field theory.

We can use nontempered test functions that are still
consistent with the requirements (a)—(e). Such functions
have been studied by Jaffe. " Por these functions, the
off-mass-shell scattering amplitudes can be allowed to
grow, for large energies, faster than any polynomial. An
example of such fields is those controlled by entire func-
tions. The concept of a strictly localizable field is based
on the existence of enough test functions with compact
support in configuration space. The existence of test
functions with compact support in configuration space
requires test functions in momentum space, which de-
crease at infinity such as exp( —

~(p ~~') with a ( 1, where

))p ()
is the Euclidean norm.

In spite of the appeal of strictly localizable fields, the
choice of test functions cannot be dictated by physical ex-
periment. It is motivated by a consistent mathematical
framework that leads, in the simplest way, to the results
of local microscopic commutativity.

The idea of local commutativity can be widened to in-
clude values a ~ 1. It can be proved that the Wightman
functions can grow arbitrarily fast near the light cone,
even for fields that are not strictly localizable, and still
satisfy a condition of microcausality. ' ' The other
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1/2
Ic, l'

8(&)= g (2j)l
(5.2)

physical requirements imposed by conditions (a)—(e) can
still be satisfied for an extended definition of locality.

Let us study the properties of the operators 8 (B). Let
us represent the operators 8 (B) as infinite series in
powers of CI =8"8 (Ref. 16):P

8 (x y) =8—( „)5 (x —y), (5.8)

as
l tl ~~. They can lead to ultraviolet-finite field

theories. But the fields corresponding to these entire
functions do not necessarily possess any form of local
commutativity. The behavior of the field operator at the
point x=O is determined by the behavior of the field
operator over the whole of x space.

Efimov' has studied distributions of the type

The Fourier transform of this operator is
1/2

B(t)= g (2j)I
(5.3)

where the operator 8 ( ) has the integral representation

8(Cl)= f d p~(p )exp ipo- +p.
p (A.

' ax, ax

were t = —p . The first requirement of 8 (t) is that it is
an entire function of the complex variable t. An entire
function of t is such that no singularities of t occur in the
finite complex t plane. This avoids the possibility that
nonphysical singularities of 8 (t) will appear in physical
scattering amplitudes, thereby violating the unitarity of
the S matrix.

Given that 8 (t) is an entire function, we can distin-
guish three cases.

Case (I):

or

(/3
1/2

)
=(2~) f d/3/3 1~(/3 )

8( )=f d pv(p )exp po +ip
p (A. Bx Bx

, Ji(/3( —&)' ')
=(2~) j d/3/3 ii(/3 )»2

(5.9a)

(5.9b)

lim sup lc l' '=0 .
J~OO

Case (II):

lim sup lc l' i=const( oo .
J —+ OO

Case (III):

(5.4a)

(5.4b)

Here i~(p ) is an integrable function of the Euclidean
four-vector p with p =po+pi+p2+p3 and Ji(z) is a
Bessel function. The parameter X has the meaning of a
fundamental length. The operators B(CI) are of type A
or type B, depending upon whether they are of the form
(5.9a) or (5.9b), respectively. In the momentum represen-
tation,

lim sup lc. l'/i= ~ .
J~OO

(5.4c)

IB(t)l «xp(altl'), y &-,', (5.5)

where o. is a positive number. It can be proved that for
these functions there exist no directions in the complex t
plane along which they decrease. Thus, these functions
cannot lead to a finite perturbation theory. Moreover,
these functions can be shown to lead to a strictly local
field theory, emphasizing again that such a field theory
cannot form the basis of an ultraviolet finite perturbation
theory.

The functions 8(t) for case (II) are entire analytic
functions of order y =

—,
' for which

In case (I), the functions 8(t) are entire functions of
order y & —,'. This means that

, ~, [/3( —p')'"]
8( p)=(2v—r) f d/3/3 ~(/3 ) 2, /2

(type A), (5.10a)

J [/3(p2)1/2]
8( —p )=(2~) f d/3/3 ~(/3 )

(type 8) . (5.10b)

For operators 8 ( ) of type A, the functions 8 ( —p ) de-
crease as p —+ —oc and increase as p ~+ ~. For type-
8 operators, the functions 8 ( —p ) decrease as p ~+ &n

and increase as p ~—Oo.

The class of test functions is denoted by 2 and the dis-
tributions by 7*. The test functions f (x) are real and de-
crease at infinity. For the class of test functions, we have

(5.6) (8,f)= f dy 8(x y)f (y)=8(, )f—(x) . (5.11)

These functions can decrease ahong one divection in the
complex plane and can lead to a finite perturbation
theory.

In case (III), the functions B(t) are entire of order
y ) —,

' and satisfy

This can be expressed in the form

(B,f)=f,d p~(p )exp ipo +p f (x)
p (A,

' ax, ax

IB(t)l ~ exp[g ( ltl )], (5.7)
= f d p~(p )f (xo+ipo, x+p) (type A)

where g ( l tl ) is a positive function satisfying the condition
g(ltl ))altl' as ltl ~~ for any a) 0. These functions
can possess several directions along which they decrease and

(5.12a)
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(B,f)= f d pa(p )f(xo+po, x+ip) (type B) .
p (A,

(5.12b)

( G,f) = —i f d p e'I' f(p) f d~q 8"@(—q 2)

XB' ( —(p —q) ),
The class of test functions consists of entire analytic

functions f (z) which decrease along any direction in the
z plane outside the region ~Rez~ &r, where r is a given
number. We choose the test functions to be described by
a sequene f„(x,y) so that each f„(x,y) belongs to V and

where

8 ( —
q )=8( —

q )R (q ) .

(5.20)

(5.21)

f (x,y)= lirn f„(x,y) (5.13)

does not belong to V and vanishes at all points xWy.
Moreover, the sequence is normalized according to

fd'x f„(x,y)=1 . (5.14)

Efimov' has shown that there exist sequences f„(x—y)
which satisfy (5.13) such that under the action of the
operator 8 (CI) each sequence will transform into a new
sequence. The new sequence reduces to a function which
is zero outside a bounded region connected by a Lorentz
transformation with the original sequence. All the
bounded regions derived from the sequences f„(x—y) lie
inside a hyperboloid defined by

—
A, «(x —y) «A, (5.15)

A field C&(x) that appears and then disappears at a time

y0 at the spatial point y will only affect, through the ac-
tion of the distributions 8 (x —y), the regions with van-
ishing four-volume contained within the hyperboloid
(5.15). These bounded regions define the extended
superspin particles that could be strings, membranes or
some topologically complicated objects.

Distributions are constructed by using an improper
transition to the limit. Efirnov' introduces a regularizing
function R (t) and approximates the distributions by the
following regular functions:

VI. FINITE PERTURBATION SERIES
FOR THE SMATRIX

M(x„. . . , x„)=g D,'(x; —y ), (6.1)

where & and j are integers from 1 to n. The amplitude
M(x„. . . , x„) is a distribution that belongs to class V*

and is integrable in the class V of test functions. We can
write

D,'(x y) =D'(x y—)+N(x), — (6.2)

We shall follow the methods of Efirnov' to analyze the
properties of the S-matrix perturbation series, since the
superspin propagators have the same characteristics as
the propagators used by him. However, in our case, the
physical mechanism that regularizes the propagators is
the infinite spin d-egree of freedom carried by the super-
spin scalar fields 4(x). We shall establish the finiteness
of the perturbation series using the scalar polynomial in-
teraction Lagrangian (4.5), since the results obtained will

apply in a similar way to the more complicated Lagrang-
ians to be considered later.

The matrix element in x space of a process in the nth
approximation of perturbation theory can be written as a
sum of Feynrnan graphs:

Bs(x —y)= fd p e'l' 8( p)R (p ), —1

(2lr)
(5.16)

where D'(x —y) is the standard Feynman propagator for
free fields P(x), and

where

R (t) =exp[ 5(t +i—M )'~ + e ' ], (5.17)

where 0 & v (o (—,
' and M is a positive parameter. At

large t, the regularizing function behaves as

d4~ elp x
N(x) =

~ f, , [H(p') —1]
(2lr) i —p +m ie—

1
. fd pN( p) ''"e=N(Cl—, )5'(x) .

(2lr) i
(6.3)

~R (t)~-expI —5~t~' +'cos[vrrr —(v+ —,')argt]I . (5.18)

Thus, R is an analytic function that falls off faster than
the linear exponential in the upper-half plane of the com-
plex variable t. The integral (5.16) is convergent for 5)0
and defines a well-behaved function'8 (x —y). Products
of distributions

The operator N(Cl) belongs to the same class of entire
functions as 8 ( ) and II( ).

Consider now the regularized causal superspin propa-
gator

c d4 ip. (x —y)
RegD;(x —y) = f p 11(—p2)R s(p2) .(2') l p +m le

G'(x —y) = —lB""(x—y)8""(x —y) (5.19) (6.4)

can also be defined. In the limit 5~0, there exists a
function G such that the functional (G,f ) is well defined
for test functions f belonging to the class X The use of
regularizing functions R guarantees that we can perform
a rotation over q0 by an angle m/2 in the integral

Then, we have

lim f d x RegD;(x)f (x)= f d x D;(x)f (x), (6.5)
6~0

where f (x) belongs to X We write the Fourier trans-
form of the regularized amplitude Ms(x i, . . . , x„)as



39 FINITE QUANTUM FIELD THEORY BASED ON SUPERSPIN FIELDS

M (p&, . . . ,p„)=fdx, fd x„e

XM (x„.. . , x„) .

(6.6)

operators O, and 02, we assume that there exists a set of
amplitudes

~ n, k ), which is complete so that

&alO, O, IP &
= &alO, 10& &OIO, IP &

+ g f dk(alo, ln, k&(n, kIO, p& .
We obtain the convergent integral

M (p, , . . . ,p„)=(2ir) 5(p, + . +p„)T (p„. . . ,p„),
(7.2)

where

(6.7)
Let us write the S matrix in the form

S =1+iA, (7.3)

where we expand the amplitude A in a power series in
the coupling constant g:

XR (k„) . (6.8)
(7.4)

VII. UNITARITY OF THE SMATRIX

The unitarity of the S matrix is guaranteed if in each
order of perturbation theory on the mass she11 we have

&alss'Ip& = &alp&, (7.1)

The I; denote the four-momentum over which the in-
tegration is performed and the k, is the four-momentum
corresponding to a given line.

Since we have used the regularizing function 8, we
can rotate the integral over (I, )0 by an angle ir/2 for
type-A functions 8( —k ) and rotate the integral over
the space components (I, )&, (I, )z, (l;)3 by an angle —ir/2
for type-B functions. For type A, we have 8( —k )~0
as k —+ —oo, while for type B, we have 8( —k )—+0 as
k —++ ~. For the regularized amplitudes, the essential
singularity in the entire function in the two-point propa-
gator, which occurs in one direction at infinity, does not
cause problems for the Wick rotation analytic continua-
tion to the Euclidean momentum plane.

After going to the Euclidean momenta for type-A func-
tions and taking the limit 6~0, we obtain an integral
over the Euclidean four-momenta (I;). We retain the
Minkowski character of the external momenta. Since
II(- -k )=[8(—k )] =O(1/k ) as k —+ —oo, the in-
tegrals corresponding to any Feynman diagram will con-
verge. The same will hold true for type-B functions. The
amplitude T(p &, . . . , p„) depends only on convergent in-
tegrals in the limit 6~0 and on the scalar products of the
Minkowski external momenta pi, . . . ,p„. Since the am-
plitude T (p &, . . . ,p„) is an analytic function of the in-
variant variables, it can be considered as a function of the
n Euclidean momenta q„. . . , q„. Using the theorem of
the uniqueness of analytic continuation, we can obtain
the physical amplitude T(p„. . . ,p„) by analytic con-
tinuation over the whole region for both spacelike and
timelike four-momenta.

In the limit when 8( —p )-1, we retrieve standard
point-particle field theory and the perturbation series for
the S matrix will be ultraviolet divergent.

We have that

( l)&a~(A —W*)~p&=&a~AA "~p& (7.5)

In every order of the coupling constant

21m(a~ ~„~P)

g f d'k, f d'k~
m&+m2=n X

x(a~~. ~k, , . . . , k &

x(k„.. . , k l~.* Ip&,

(7.6)

where we have used (a~ 3„ /3) = (P~ A„~a ), which holds
for the single-component scalar superspin field.

The amplitude (a~ 3„ /3) is a sum of all possible Feyn-
man graphs in nth order of perturbation theory, in which

n& lines finish and n lines begin. Equation (7.6) is pre-
cisely the structure of the T product of the 5 matrix:

S = T exp —i fXl(x)d x (7.7)

The Cutkosky theorem guarantees this property of the
perturbation-theory amplitudes. Since the only di6'erence
between the standard local quantum field theory and the
superspin field formalism arises from the entire functions
Il(p ) in the superspin propagators, we know that the
amplitudes have the same singularities as in the standard
local field theory. If Cutkosky's theorem holds true, then
the S matrix will be unitary on the mass shell in every or-
der of perturbation theory. This result has been proved
by Efimov. '

Let us consider in more detail the structure of
Cutkosky's theorem for the amplitudes, which decrease
in the region of spacelike external momenta. We con-
struct in the four-dimensional Euclidean momentum
space the amplitude corresponding to some arbitrary
Feynman diagram with n external lines. We choose the n

external momenta q to be Euclidean, satisfying the con-
servation law

where ~a) and ~p) are arbitrary physical states. For two q + . . +q =0 (7.8)
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To every internal line is associated the superspin propa-
gator

c l2 11(l )

l +rn
(7.9)

where l is the Euclidean four-momentum for the internal
line. The function II(z) is an entire function in the com-
plex z plane and decreases rapidly with Rez —++ ~. The
given diagram is described by the integral

(7.10)

Q d "l, Q II„(k„)
E r

ga(k+m )
r

(7.11)

The k, is the Euclidean four-momentum corresponding
to a given line in the diagram, while I„is the mass of the
corresponding particle. The integration is performed
over the four-dimensional Euclidean momentum space.

The integral will be convergent, for the function
II„(k„)decreases rapidly for k„~~. The Euclidean am-

plitude M coincides with the real physical amplitude in
the Euclidean region of the spacelike external momenta
p„on which the physical amplitude depends. The transi-
tion to the physical region of the external momenta is
performed by analytically continuing the amplitude with
respect to the invariant momentum variables. All the
masses will have negative imaginary corrections I„*

=m„—iE. If II(k ) were simply polynomial in k, the
amplitude M would coincide with the Minkowski physi-
cal amplitude. The amplitude obtained by Landau is
such that the Euclidean and Minkowski expressions for
the amplitude are immediately equivalent.

After performing a Feynman parametrization, we have

N
M=(S —1)!f da( fda~5 1+ $ a,

where X is the number of internal lines. Following the
arguments of Landau and Efimov, ' we find that the
change of variables eliminates from the denominator all
the terms linear in l„, yielding

g a„(k„+m„)=W(a, q;, q„;m )+Q(a, l') . (7.12)

Here, 8' is the nonhomogeneous quadratic form of the
vectors q; that describes the free ends of the diagram, and

Q is a homogeneous quadratic form of the new variables
of integration l' with coeScients that depend only on the
parameters a„. The numerator dependence of the exter-
nal momenta cannot produce any new singularities in the
finite region of the invariant momentum variables, since
the numerator is an entire function of the scalar products
q, q„and the parameters u„.

For the sake of completeness, we shall state the Cut-
kosky rule for normal thresholds. Let the diagram cor-
responding to the amplitude M be separated into two ver-
tices M, and M» that are connected by r internal lines:

fd'k, . d'k, M, (q„,k, )

II„(k„)
X Q ",M„(q', k )

1
k„+I„"-

X5 (q —k, — —k, ), (7.13)

where q„(r = 1, . . . , n, ) and q„' (r = 1, . . . , nz) denote
the external mornenta corresponding to the vertices I
and II, respectively. Also, q =-q', + +q„' = —(q,
+ . +q„),where n =n, +n2 is the number of external

lines. The functions M, (q„k„) and M„(q„'k„), which de-

scribe the vertices I and II, depend on the scalar products
of the vectors q„q„', and k;.

The amplitude M, considered as a function of the com-
plex variable z = —q, has a branch cut beginning at the
point z =(m, + +m, ) and the discontinuity of the
function M along this branch cut is given by

5 S

AM(z)=i(2~)' g II (
—m ) f d k, f d k, Q 0(k„)5(m +k )6 (q —k, — —k, )M, (q„,k;)M„(q,', k, ) .

1 1

(7.14)

The k,- are the four-dimensional vectors with the corn-
ponents (k;, ik, o) with k; =k, —k, o, (k;q„)=k, q„+ik;oq„o,
and d"k;=dk, dk;0. Moreover, the vector q satisfies the
condition q =q —

qo = —z. The functions M&(q„k, ) and
M&&(q„'k, ) are the analytic continuations with respect to
the corresponding values of the scalar arguments
(q„k, ), (q„'k; ) of the initial functions M, (q„k, ) and
M„(q„'k;).

Equation (7.14) is a statement of the Cutkosky rule for
normal thresholds for an arbitrary Feynman diagram in
Euclidean momentum space, except that we have used

the superspin entire functions II(q). In fact, when we set
II(q)=1, the equation that results from (7.14) is just the
Cutkosky rule for the standard, local quantum field

theory in Euclidean momentum space, and the transition
to the physical region is implemented by an analytic con-
tinuation with respect to the invariant momentum vari-
ables. Anomalous singularities of the diagrams will arise
in the usual way when the analytic properties of the ver-
tices I and II are taken into account.

The appearance of the entire superspin functions
II(k ) will violate the immediate equivalence of the Eu-



39 FINITE QUANTUM FIELD THEORY BASED ON SUPERSPIN FIELDS 3667

clidean and Minkowski formulations of the theory, since
we cannot perform a rotation of the momentum variables
into the Minkowski space due to the occurrence of an
essential singularity at infinity. Efimov, however, has
proved that this does not change the analytic properties
of the theory in an arbitrary region of finite-momentum
variables. Because of the validity of the Cutkosky rule,
he was able to prove the unitarity of the S matrix by us-
ing the theorem of the uniqueness of analytic continua-
tion. Moreover, the regularization of the amplitudes pri-

I

or to the Wick rotation, guarantees that the rotation can
be performed at infinity for a suitable choice of regulari-
zation function R (p).

It is useful to illustrate how the transition to the Eu-
clidean momenta in the amplitudes of the physical pro-
cesses is performed, and how the unitarity condition for
arbitrary external momenta is satisfied. We do this by
studying the amplitude in the second order of perturba-
tion theory:

and

.
yd k

II( k)R—(k ) H( (k —p) )R —((k —p) )
—k +m ie — —(k —p) +m ie—

6~0 —m

= ill J'd'k j H( —k +k )R (k —k )H( —(k —p ) +(k —p)2)Rs((k —p )2 —(k —p)2)

'+ )(ko a- )[ko —b+(po)][ko —b-(po)]
(7.15a)

H( —k +k )R (k —k )II( —(k —p ) +(k —p) )R ((k —p )2 —(k —p)2)
A*(p )= lim ( i) —d k dko6~0 00 (ko —a+ )(ko —a* )[ko b+(p—o)][ko b* (p—o)]

(7.15b)

where a+ =+co& +ie, co&=(k +m )', b+(po)=po+co~ z+ie, and co~ z=[(p —k) +m ]' . The unitarity condition
dictates that

1/2

bA(p )=A(p )
—A*(p )=i(2~) [H( —m )] ~ p —4m

p
(7.16)

(7.17a)

and

M

(2[[(p—k) ] +M —( —k) ] )'

[[(p—k) ] +M ['/ —(p —k)
2

(7.17b)

The branch cuts of the functions R (k ) and

Consider now the singularities of the integrand of
A(p ) in the complex plane ko+ik4 In the deno. minator,
the singularities occur at the points a+ and b+(po). The
singularities in R (k ) and R ((k —p) ) are found from
the equations k = —iM and (k —p) = iM, whe—re M
is a parameter with the dimensions of mass and we
choose M ))m . The singularities occur at the points

M
v+ =+

(2[ [(k2)2+M4]1/2 k2] )1/2

1/2
[(k ) +M ]' —k+l

EA(p ) =0, (7.18)

a result that should hold for p (0.
By similar manipulations, we can calculate b, A(p ) for

p )0. The integrals around the poles b and b give
the results

R ((k —p) ) begin at the above-determined point's. The
singularities of the integrand of A(p ) occur at the points
a &, b+, v+, and w+ and at a+, b+, v+, and w+ in the in-
tegrand of A (p ). The initial contour of integration
runs along the real axis. Because the integrands in
(7.15a) and (7.15b) decrease for 5 )0 in the region
kok4) 0 for A(p ) and in the region kok4 (0 for A*(p ),
the contours of integration over k0 can be rotated by m/2
into k4 for A(p ) and by —m. /2 into k4 for A*(p ).

The sheets of the functions A(p ) and A*(p ) are
defined so that these functions are real for p (0. It is
now straightforward to show that for 5~0, the singulari-
ties associated with the functions R disappear and the
integral converges, since the functions H(k4+k ) de-
crease very rapidly as k4~+ ~. It then follows that

H( b+k )R (b —k—)H( —m )R (m )A= limi d k2ai
$~0 (b —a )(b —a+ )(b —b+ )

(7.19a)
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A*= lim (
—i)f d k( —2iri)

Q~O

II( b—* +k )R *(b* +k )II( —m )R *(m )

(b* —a* )(b* —a+ )(b* b—+ )
(7.19b)

A calculation gives the result

II( —(p, —co „) +k )II( —m )R ( )R ( )
b,A(p )= —2~ lim f d k

~p —k(po ~p —k+~k)(po ~p —k ~k+2i~)

II( —(po —
cop k) +k )II( —m )R (

. . )R (
. )

2~p —k(PO ~p —k+~k)(PO ~p —k ~k

II( —(po —co k) +k )II( —m )= —2~ dk
2~, -k(pO —~,-k+~k) +0 ~p —k ~k+ 2l 6 PO cop —k ~k 2l E

II( —(p„—o~p k) +k )Il( —m )
=(2ir) i d k 5(po —~o k

—oak)2~, -k(pO —~„-k—~k)

d k 5(po co k cl)k )=i (2~) [II( —m )] 2' k26) k

p' —4m' t'"
=i(2~)'[ll( —m')]'~ P, 9(p, )e(p' —4m') . (7.20)

This proves the unitarity condition in the second order
of perturbation theory. We see that the transition to the
limit 6—~0 can be performed for arbitrary values of the
Euclidean momentum variables. This result can be ex-
tended to any order in perturbation theory.

VIII. THE MICROCAUSALITY CONDITION

Let us consider the local commutation relation for the
superspin fields 4(x). We use the improper limit for the
regularized fields 4 (x), defined by the relation

4 (x)= f dy B (x —y)P(x), (8.1)

where B (x —y) is given by (5.16). The commutator be-
comes

[4(x),C&(y)] = hm f dy, f dy, B (x —y, )B (y —yz)

inn
llm n

ln(1/~a„~ )
(8.4)

A weak growth restriction for large j on the coefficients
~d~ ~

in Eq. (3.14), which guarantees the vanishing of the
commutator (8.2) of the superspin fields outside the light
cone, is given by

ln(1/~d,
~ ) &2j lnj . (8.5)

Thus, even though we have an infinite sum of fields and,
therefore, an infinite sum of derivatives of delta functions
in the commutator of the fields, we can still retain micro-
causality by imposing suitable conditions on the deriva-
tives.

The super spin formalism cannot incorporate the
Bogoliubov-Shirkov causality condition

x[P(y&) P(yz)]—
= lim [B(—m )R (m )] A(x .

—y)6~0

6 6S
54&(x) 54(y)

(8.6)

= [II( —m ') ]'b (x —y) . (8.2)

g (z) = g a„z"
n=0

to be an entire function of order y is

(8.3)

This is the standard local commutation relation for the
free-scalar fields P(x), which shows that the superspin
fields obey the condition of microcausality.

A necessary and sufhcient condition for a power series

which holds in strictly localizable field theories for x y.
The reason is that the superspin fields do not have com-
pact support in configuration space and, therefore, the
condition (8.6) cannot be stated in a meaningful way.
The same is, of course, true in string theory or in the non-
local field theory versions of string theory. However, the
microcausality condition (8.2) is the primary causality
property of the theory, since the S matrix is a quantity
derived from the basic fields C&(x) and the interaction La-
grangian.
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IX. EXAMPLE OF A SUPERSPIN THEORY

As an example of a specific superspin field theory, can-
sider the choice ~c.~=CJ, where C is a constant. This
corresponds to case (II) in (5.4b). Then, as follows from
(3.12), (3.14), and (8.4), the II(p ) are entire functions of
order y =

—,', and decrease rapidly in the Euclidean
momentum plane. Let us assume a model theory iri

which the infinite tower of particles that makes up the
representation from which we construct II(p ) consists of
integer-spin particles. Then, according to the results of
Weinberg in (2.23), apart from spin basis space factors,
the superspin propagator will have the large-p behavior

c 1 y (Cp) ~ 1

i . o (2j)! —p2
(9.1)

(9.2)

This large-momentum behavior for the propagator will
result in a finite perturbation theory and a unitary S ma-
trix in the way that has been demonstrated in the previ-
ous sections. A similar result is found for the fermion
propagator S,'(p) associated with the superspin 4(x)
field.

The form factor corresponding to the large-momentum
behavior of the superspin propagator (9.2) is consistent
with the form-factor behavior obtained by Wu and
Yang for extended particles, and by Martin, who used
complex-variable techniques to obtairi a bound on the de-
cay of the form factor F(t) that says that F(t) cannot de-
crease faster than

F(t)-exp( —a~!t~' ), (9.3)

as t ~—~. Martin proposed that interactions are
"minimal" in the sense that they correspond to the bound
(9.3), which is allowed by general physical principles.
This bound was also derived by Ja6e" using the principle
of locality in field theory. It is interesting to note that the
large-momentum behavior of the form factor in string
theory is determined by the string vertex function and is
not consistent with the bound (9.3) (Ref. 2). This is due
to the fact that an assumption of locality in field theory,
used by Martin and JafT'e, is relaxed in string theory.

Let us write the superspin causal propagator for the
scalar field in the Euclidean region of the momentum
space as

D'(k)= f d x e '""D'(x)

II(k ) 1
N( —k ), —

1+m 1+m (9.4)

By making a transition to the Euclidean momentum
space, we get the asymptotic behavior for the superspin
propagator

k2 1 ( —C~k~) J 1 1 exp( —C~k~)

(2j)! k' i k'

tor (9.4) can be represented as

D,'(x)=b, '(x)g(x ), (9.5)

«xp —,
' f fd'x~d'x2d'(x~)D;(x~ —x~)+«2)

(9.6)

where cF(x) is an external source of the field @(x), and
the point-particle Feynman propagator b, '(x) is given by

f d k exp[ik(x, —x2)]
b, '(x, —x2)=

(2m ) k +m

K&(m+(x, —xz))
(2~)' Q(x, —x, )

(9.7)

where K&(z) is the Hankel function of imaginary argu-
ment of order 1 and K, (z) = —(8/Bz)Ko(z) with
Ko=(m. /2)Ho '(iz). The exact Green's functions of nth
order are connected with the S matrix (9.6) through the
relation

G„(x„.. . , x„)=Z [8] (9.8)
6"Z [8]

The Fourier transforms of the Green's functions give rep-
reseritations of the functions in Euclidean momentum
space for spacelike external momenta. An analytic con-
tinuation in the invariant momentum variables to the
physical region is performed to obtain the physical
values of the Green's functions, using p = —k with

p =po —p . Now (9.4) becomes

D,'(p )= — N(p ) . —1

p +m lE'
(9.9)

The entire function N (p ) is expanded in terms of p ~:

00 a.
N(p')= m', o j! 4m'

(9.10)

where the coefFicients a are defined in terms of the c 's

by

(2j)!
(9.1 1)

We obtain from (9.4) the Fourier-transformed function
N( —k ):

J,(v+k ) mK, (mu)
N( —k )=f dv u [1—g(x )]

o i/k v

(9.12)

where g(x ) is a positive continuous function. In the Eu-
clidean formulation, the generating: functional of
g:&b(x)": theory can be written as

Z[cf]=exp —g f d x [5/58(x)]"

where k is the square of the Euclidean momentum four-
vector. In the Euclidean x space, the superspin propaga-

The coefFicients a are determined by the inversion formu-
la"



3670 J. W. MOFFAT 39

K, (u) . (9.13)

We must now restrict the form of the function g(x ) by
imposing the boundary conditions

g(x') ~ (x')~ (p~0),

g(x ) ~ 1.
oo

(9.14a)

(9.14b)

The convergence properties of the coefTicients c in
(5.4a) —(5.4c) further restrict the form of the function
g(x ) by requiring that as u —+ oo, we have

g(u )I &%exp[ b(u )—~], (9.15)

where E, b, and P are positive constants.
We must supply a scale of the dimensions of a length

I =1/M associated with the size of a particle. When
l ~0, we regain the standard ultraviolet-divergent per-
turbation theory. For llpl ((1, the calculations in the
superspin field theory will only be sensitive to the asymp-
totic values of the c coefficients for large values of j. We
get the asymptotic values

c& =(const)~/1 ((1—1/y)j) (j &) 1)

and if we require that

(9.16)

(9.17)

then an example of a suitable g(x ) function is

g(x )=1—exp[ —(x /I )~], (9.18)

where the constant y ) 1. Thus, by imposing the physical
boundary conditions (9.14a) and (9.14b), and convergence
conditions on the entire function X( —k ), we severely
restrict the possible values of the coefficients c . .

A superspin field-theory model will only contain one
new parameter I associated with the scale of the Lagrang-
ian density being considered. The scale I can be deter-
mined experimentally, when the signature of nonlocality
sets in at high energies for llpl =1. The low-energy pre-
dictions for 1 p l

&( 1 will be insensitive to the cJ
coefficients for nonasymptotic values of j and the value of
I. Finite mass and charge renormalizations will be car-
ried out at the lowest order of perturbation theory. Such
a program, in which definite predictions can be made for
cross sections, etc. , cannot be carried out in the standard
point-particle model of a nonrenormalizable theory such
as Einstein s gravitational theory, since the coefficients
associated with the counterterms that occur in each new
order of perturbation theory must be determined ahead
of time before meaningful calculations can be performed
in any given order. Clearly this is not possible and no
definite predictions can be made to any order in standard
nonrenormalizable gravitational theory.

In pure gravitational theory, it is natural to adopt
the Planck length as the fundamental length scale
lG=(A'G/c )' =1.2X10' GeV. Hopefully, in a future
unified field theory that includes gravitation, the length
scales associated with electroweak and @CD interactions
at energies well below the Planck mass wi11 be determined
in a fundamental way by the theory.

It should be stressed that standard regularization tech-
niques, such as Feynman cutoff procedures or the Pauli-
Villars regularization technique, all suffer from viola-
tions of unitarity and causality, except in the limit that
the cutoff parameters become infinite. Dimensional regu-
larization only works in a fictitious, fractional dimension-
al space. Thus, none of these techniques help to produce
meaningful perturbation-theory calculations in nonrenor-
malizable gravitation theory.

X. CONCLUSIONS

By assigning an internal degree of infinite spin to every
particle, we have succeeded in developing a field-theory
formalism that leads to a finite perturbation theory and a
unitary S matrix for the basic spin-0, spin-l, and spin-2
fields of nature. The causality properties of a strictly lo-
calizable field were extended so that a condition of micro-
causality for the fields was satisfied. The other require-
ments of axiomatic field theory, such as the existence of a
scattering theory, can also be included in the extended
nonlocal field theory.

With the failure of point-particle field theory to resolve
the infinities in standard quantum gravity, we seem to be
forced into a theoretica1 picture in which particles are ex-
tended objects and field theory is intrinsically slightly
nonlocal. The superspin field theory developed here is an
example of a self-consistent field theory, based on nonlo-
cal fields, that can remove the unsatisfactory features of
standard strictly local field theory. More work remains
to be done to investigate many of the fundamental
ramifications of such a theory and its implications for fu-

ture particle physics.
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