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Zero-frequency modes for massless scalar and vector fields are considered. Although these modes
lack a particle interpretation, they may nonetheless be quantized. It is shown how the quantum
field theory of such massless fields contains an arbitrary parameter which determines the energy as-
sociated with the zero mode. We then show how this parameter may be related to initial conditions
in a model theory with a time-dependent mass which vanishes in the future. The energy carried by
the zero mode is determined by the original particle content of the quantum state and the details of
how the mass varies in time. These considerations are applied to scalar and vector fields in Oat

spacetime with periodic boundary conditions and in Robertson-Walker universes. The connection
between scalar zero modes and global symmetry breaking is discussed, especially the conditions un-

der which broken-symmetry states decay in time due to zero-mode effects.

I. INTRODUCTION

A*B —AB*=—.
V

(2)

If we wish to quantize the massless scalar field on this
space, we must include the zero mode in order to have a
complete set of c-number solutions of the wave equation.
This may be done by writing the field operator as

q +pt +4~ tt~= g (a) fi, +akfi*, »
iso

where q and p are operators and P& is the expansion of
the field operator in terms of nonzero-momentum modes,
f&=e'"" "/&2Vco. The equal-time commutation re-
lation for P and its conjugate momentum, ir =P, is
[tti(x, t), vr(y, t)]=i5(x y); it will be sa—tisfied if q and p
satisfy the commutation relation

lq plj=t . (4)

It is well known that massless wave equations may
have solutions which are independent of the spatial coor-
dinates. These are the zero-frequency modes, or zero
modes. Here we are concerned with bosonic zero modes,
as opposed to fermionic zero modes. Bosonic zero modes
and their quantization have been discussed, for example,
by Fulling, ' DeWitt, and by Kuchar. A simple example
of such a mode occurs for the massless scalar field in Aat
spacetime, P=t) c)"/=0, which has a solution which
grows linearly in time:

fo= At+B,
where A and B are constants. In the context of quantum
field theory, such modes are usually excluded on the
grounds that they are not normalizable. If, however, the
space has a finite volume, this objection no longer applies.
Consider a Hat spacetime with torus topology
S' XS' XS' and spatial volume V. Now the mode of Eq.
(1) will have unit Klein-Gordon norm if

This follows from the completeness relation for plane
waves on a torus:

V5(x —y)=1+ g e'"'"
k&0

The zero mode does not have a particle interpretation
in the sense that other modes do; it is not meaningful to
talk about there being a certain number of zero-frequency
particles in a given quantum state. Nonetheless, the zero
mode does have physical effects and carries nonzero ener-
gy. Classically, the energy density of the zero mode of
Eq. (1) is U=P /2=~A~ /2. In the quantized theory,
the expectation value of the energy density in an arbi-
trary quantum state contains a term (p ) /2 due to the
zero mode. In a theory in which the mass is identically
zero for all time, this energy is arbitrary; there is an un-
determined parameter in the theory introduced by the
zero mode. At the classical level, this arbitrariness arises
because the constant A is undetermined. At the quantum
level, it arises because of freedom to choose the quantum
state even after the particle content of all modes other
than zero modes has been specified. This freedom causes
(p )/2 to be undetermined. Most discussions of the
Casimir energy for massless fields in compact spaces of
which we are aware ignore this contribution to the total
energy.

II. ZERO MODES AND INITIAL CONDITIONS

A. Scalar modes in Hat space

In this paper we wish to show how this ambiguity is re-
lated to initial conditions in a theory where the mass is a
function of time. We consider a scalar field with a time-
dependent mass which was nonzero in the past and
asymptotically vanishes in the future. This type of time
dependence is very natural in a cosmological context: in-
teractions can generate an effective mass at high tempera-
tures which disappears when the Universe cools. Let us
first consider a scalar field in a fiat spacetime (but with

39 3642 1989 The American Physical Society



39 BOSONIC ZERO-FREQUENCY MODES AND INITIAL CONDITIONS 3643

torus topology and volume V) which satisfies the wave
equation

OP+m (t)/=0,

where m (t)~mo as t ~—Oo and m (t)~0 as t ~+ 00.
To proceed further we need to assume an explicit form
for m (t), which we take to be

m (t) =
—,'mo[1 —tanh(pt)],

where mo and p are constants.
The solutions of the wave equation with this form for

m (t) may be given in terms of hypergeometric functions.
These solutions were discussed by Bernard and Duncan"
and by Birrell and Davies in the context of particle
creation in an expanding universe. A solution of Eq. (6)
which depends upon time only is

1fo=
Q2 Vmo

ImOP I Pt —In[2 COSh(Pt) ] I /2 o ~mo
e F 1 — — 1—

2p 2p

'mo 1+tanh(pt)

p 2

where F is a Gaussian hypergeometric function. The
asymptotic forms offo are given by

p =&V( Aoao+ Aoao) (15)

1 /@20 tfo- t~ —oo

Q2 Vmo

an. d

q =v'V(Boao+Boao) . (16)

and

fo —Aot+Bo~ t~+~ .

Here

(10)

and

le o
2pI 1—

1 Pdo=
V 2Vmo imoI' 1— I

2p

imo

moBo=
2p 2p

lmo

2p
(12)

0'=aofo+aofo +4 . (13)

Again P~ is the expansion of P in terms of nonzero
momentum modes, and ao and a o~ are operators satisfying

[ao,ao]=1, [ao,4'x]=0, [ao,g~]=0 .

In the past, ao and ao are annihilation and creation
operators, respectively, for particles in the zero-
momentum mode. In the future, they may be related to
the operators p and q which appear in Eq. (3) by

where p(x) denotes 1 '(x)/I (x). We have chosen the
solution which is a positive-frequency exponential in the
past. It naturally goes over into a linearly growing func-
tion in the future.

Because the space has a finite spatial volume V, this
solution has a finite Klein-Gordon norm, which has been
normalized to unity. In the past, this is the mode func-
tion for a massive particle in a state of zero spatial
momentum. In this region, there is a well-defined parti-
cle interpretation for this mode. However, in the future
this is not the case. We may write the quantized field
operator i)) as

(P) -(zAo+z" Ao )t, t ~ Oo . (17)

The coefficient of the linearly growing term is not an arbi-
trary constant, as it was when we considered the strictly
massless theory. It is now determined by the parameters
of quantum state (e.g., z) and those related to the past
history (e.g. , mo and p). Other observables which are
infiuenced by the zero mode include the energy density;
in our example of a coherent state for the zero mode, it is

U=&r )= ,'(zA, +z'A,')'. -
Note that here we are giving only the energy density of
the zero mode. In addition, there is always the usual
Casimir energy density in a compact space and any ener-
gy from the excitation of nonzero-momentum modes.

The commutation relations for p and q, Eq. (4), are
satisfied because the constants Ao and Bo satisfy Eq. (2)
with A =Ao and B =Bo. Of course Eqs. (15) and (16)
hold at all times because the operators in them are time
independent; but at late times, P has the form of Eq. (3).

We are now in a position to interpret the zero-
frequency mode in terms of the initial conditions: the
quantum state of the system at early times and the form
of m (t). At early times, this quantum state may be inter-
preted in terms of its particle content, as all modes have a
particle interpretation. If we use the Heisenberg picture,
the state does not change in time. At late times, the
zero-momentum mode has become a zero-frequency
mode and we can no longer meaningfully assign a particle
number to it. However, we can calculate expectation
values of observable quantities in this quantum state and
identify the contribution of the zero-frequency mode.
For example, suppose that the state is a coherent state of
zero-momentum particles and that no other modes are
excited. Then the state is ~z ), where ao ~z ) =z~z ), and z
is some complex number. The expectation value of the
field operator ( P ) =zfo+z*fo has the asymptotic form
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Imp
p &)mp+2 Vmo

(19)

and

p

1/2
lp —imop 'jn2e, p«mp .

mV
(20)

The parameter p in Eq. (7) is the inverse time scale
over which the mass goes to zero. From Eq. (11) we can
obtain the limiting forms for Ap:

Thus fo grows in time only if the expansion rate is not
too great: o'. & —,'. As in the case of flat spacetime, this
mode is normalizable only if the spatial sections have
finite volume. In the case of a closed (k =+ 1) universe,
this arises naturally. In the open or flat universes, this is
the case only if we put a torus topology on the space. We
are always free to consider spaces with a metric of the
Robertson-Walker form, but with periodic identifications
imposed upon it. In either case, the condition that fo
have unit norm becomes

These limits correspond to the transition time being very
short or very long, respectively, compared to the Comp-
ton time, rnp . As we might expect, a longer transition
time (smaller p) leads to a slower growth rate for the zero
mode.

The time dependence of the mass also influences the
modes with nonzero momentum. Particles are created
into these modes in numbers determined by the initial
particle number and the rate at which the mass changes.
This is very similar to the particle creation by expansion
of the Universe discussed in Refs. 4 and 5.

Although the zero mode does not have a particle inter-
pretation, there is a relationship between the energy car-
ried by the zero mode at late times and the energy that
was present as particles at early times. In the limit of
rapid change in the mass, p »mp, the energy density in
the zero mode at late times is approximately
U=moIzI /V. Recall that IzI is the mean number of
particles present in the zero-momentum mode when the
field is massive. We can interpret the energy density of
the zero mode at late times as typically being of the same
order as the rest mass energy density that was present be-
fore the mass goes to zero. This correspondence is not
exact and depends upon the phase of the complex number
z. In the limit of slow transition, p&&rnp, the energy
density is approximately U=pIzI /V. This corresponds
to an energy of p for each of the preexisting particles.

C i C2 Cic2 (24)

$2

2

Ic I'

2a (t)
(25)

C. Global-symmetry breaking

We now wish to examine the relationship of zero
modes to the breaking of global symmetries. In spaces
where the zero mode for the massless scalar field is grow-
ing in time, the broken-symmetry configuration is unsta-
ble and decays in time. This phenomenon was discussed
in a difFerent context by Ford and Vilenkin. Global-
symmetry breaking arises when a scalar field acquires a
nonzero vacuum expectation value. We restrict our at-
tention to the case of U(1)-symmetry breaking, where this
expectation value is spatially homogeneous. The complex
scalar field 4 may be represented as

Here, V is the coordinate volume of the compact spatial
section. In the absence of any knowledge of the initial
conditions, the coe%cient c& is not uniquely determined.
However, it can be calculated in models where the
effective mass of the field was nonzero in the past. Final-
ly, let us note that the energy density of the zero mode
scales as a

B. Scalar zero modes in expanding universes

We now wish to turn to the question of zero modes in
an expanding universe. Consider again a massless scalar
field in a Robertson-Walker universe, for which the
metric may be written as

ds2=dt a(t) +r—(d8 +sin 8dy )
1 —kr

(21)

where k =0, +1,—1, which denote the flat, closed, and
open cases, respectively. The generally covariant Klein-
Gordon equation for the massless scalar field in these
metrics, UP =V„V"$=0, has a spatially homogeneous
solution of the form

where o. is a constant and P is the Goldstone field. If 4&

and P are quantized fields, then the vacuum expectation
value of 4 is

( q) ) ~e —(P ) /(2o ) (27)

In Ref. 6, symmetry breaking in two-dimensional flat
spacetime and four-dimensional de Sitter spacetime were
discussed. In both of these cases, (P ) is necessarily a
growing function of time. This means that (N) must
decay in time. The same conclusion applies to spaces
with growing scalar zero modes because (P ) must grow
as f0. For example, in a Robertson-Walker universe with
a power-law scale factor, a (t) cc t, with a (—,', the expec-
tation value of N must decay as

f,=c, fa-'dt+c, , ( )
—t2(1 —3a)

(28)

fo=Ct' +D . (23)

where c& and c2 are constants. If, for example, the scale
factor is of a power-law form, a (t) cc t, then this mode is
of the form

where c is a constant that depends upon the rate of
growth of the zero mode and hence upon the initial con-
ditions on the theory. From Eq. (22) we can see that it is

possible for a zero mode which initially does not grow to
begin growth at a later time. This will happen if the ex-
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pansion rate of the universe decelerates from faster than
to slower than t' . Thus we would have a situation
where the spontaneously broken-symmetry state is stable
in the rapidly expanding universe, but decays in the slow-
ly expanding universe.

(E)= —e( )(zf()+z*f() )- —e(.)(zAo+z*AD ),
t~ oo (34)

only mode excited is F~.~, and it is in a coherent state,
~z ), then the expectation value of the electric field is

III. VECTOR ZERO MODES

Scalars are not the only boson field which may have
zero modes in compact spaces. Other bosonic fields, such
as vectors, may also have such solutions. Let us consid-
er a massless vector field A„ in Aat spacetime. If the
Lorentz gauge condition, B„A"=0, is imposed, then the
wave equation is

Here e~ -~ is the polarization vector of mode j, and A o is
given in Eq. (11).

We can also have zero modes for the electromagnetic
field in an expanding universe if it is spatially Aat but has
torus topology. The field equations are conformally in-
variant, so the solutions (for the covariant vector, A „)in
a k =0 Robertson-Walker metric are just the Aat-space
solutions. Thus the zero modes are of the form

A"=0 . (29)
F~()) =e ())( A i)+B) (35)

In rectangular coordinates, the vector and scalar wave
operators are identical in Aat space. Thus, there are three
linearly growing vector modes of the form

F"(,) =e "( )( At +B), (30)

where A and B are constants and the e~ &" are three(g)
linearly independent unit vectors labeled by j =1, 2, and
3. The gauge condition requires that these vectors have
no time components, so we may take them to be the basis
vectors in rectangular coordinates. Note that these zero
modes break Lorentz invariance. This is no cause for
concern because the modes are only normalizable in a
space with torus topology; such a space does not have
Lorentz invariance. We obtain the correct normalization
for our modes if they have unit Klein-Gordon norm, so
A 'B —AB'=i /V

As in the scalar case, we may relate the rate of growth
of the zero modes to initial conditions. If A" satisfies the
equation

V„V~A.+Z ~.A„=O, (36)

where the gauge condition V"A„=O has been imposed,
and R is the Ricci tensor. First consider an Einstein
universe, the static closed universe, of unit radius. A
zero mode must be a spatially homogeneous solution; this
homogeneity may be expressed as the conditions

Here g is the conformal time defined by dg=a 'dt. The
gauge conditions V"F„~ ~=0 and F@ ~=0 have been im-
posed. The equation for a field with a time-dependent
mass, Eq. (31), is not conformally invariant, so the deter-
mination of the constants A and B in terms of initial con-
ditions does depend in a nontrivial way on the scale fac-
tor a (t).

In a closed Robertson-Walker universe, the situation is
quite different. Here there are no growing zero modes for
the electromagnetic field. The wave equation in a curved
spacetime is

CIA "+m (t)A"=0, (31)
V A =V' gA =V' A =0 . (37)

where m (t) is as given, for example, by Eq. (7), then the
modes which become zero modes in the future are

Here the metric is given by Eq. (21) with k = 1 and a =1.
The wave equation with these conditions becomes

FP =elf, (32)
A, =0 and A;+2A; =0, (38)

A"= A)v" +g [a F"( )+at(F"( ))'] .
J

(33)

Here A&" is the contribution to the field operator from
modes other than zero modes, and a and a are the an-
nihilation and creation operators for the zero modes. At
late times, when fo is a linear function of time, these
modes do not have a particle interpretation. Nonethe-
less, we may calculate expectation values to which these
modes contribute. For example, there is an electric field
and energy density associated with the zero modes. If the

Here fo is the function given in Eq. (8). Of course, the
time-dependent mass term breaks gauge invariance, but
we can think of it as a simplified model for interactions
which alter the propagation characteristics of the zero-
momentum modes. The expansion for the quantized field
operator may be expressed as

where the overdots denote differentiation with respect to
t. The solution for A, is a linear function of time; howev-
er, this is a pure gauge mode. The solutions for the spa-
tial components, A;, are oscillatory in time. Thus, there
are no nonoscillatory zero modes for a massless vector
field in an Einstein universe. If we replace t by g in the
solutions of Eq. (38) that have only spatial components,
then we obtain solutions for A „ in an arbitrary expand-
ing universe. These are also oscillatory modes. The situ-
ation here is similar to that for a massive field in Aat
spacetime. Indeed, the Ricci tensor term in the wave
equation behaves as an effective mass term.

ACKNOWLEDGMENTS

We would like to thank Bruce Allen and Alex Vi1enkin
for helpful discussions. This work was supported in part
by NSF Grant No. PHY-8506593.



3646 L. H. FORD AND CHANDRA PATHINAYAKE 39

S. A. Fulling, Ph. D. thesis, Princeton University, 1972, Chap.
VIII.

~B. S. DeWitt, in Relativity Groups and Topology II, proceedings
of the Les Houches Summer School, Les Houches, France,
1983, edited by R. Stora and B. S. DeWitt (Les Houches Sum-
mer School Proceedings, Vol. 40) (North-Holland, Amster-
darn, 1984), p. 512; see also pp. 653 and 672.

3K. Kuchar, Phys. Rev. D 39, 1579 (1989).
4C. Bernard and A. Duncan, Ann. Phys. (N.Y.) 107, 201 (1977).
5N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved

Spacetime {Cambridge University Press, Cambridge, England,
1982), Sec. 3.4.

L. H. Ford and A. Vilenkin, Phys. Rev. D 33, 2833 (1986).
In de Sitter space, (P ) grows linearly in time if P is a massless,

minimally coupled scalar field [A. Vilenkin and L. H. Ford,

phys. Rev. D 26, 1231 (1982)]. There are also zero modes for
this field in de Sitter space [B.Allen and A. Follacci, ibid 3.5,
3771 (1987)]; however, the relationship between these zero
modes and the linear growth is less straightforward than in

the example considered in this paper. In de Sitter space, the
zero modes approach a constant at late times. Thus, the
linear growth may be regarded as the cumulative eAect of
many modes near zero frequency, the number of which in-

creases linearly in time.
For the linearized gravitational field, the zero modes are con-

nected to the phenomenon of linearization instability. This
has been discussed, for example, by D. R. Brill and S. Deser,
Commun. Math. Phys. 32, 291 (1973), and by V. Moncrief,
Phys. Rev. D 18, 291 (1978).


