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Quantum probability distributions in the early Universe.
IV. Stochastic dynamics in de Sitter space
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Using the Smoluchowski equation, we investigate the stochastic evolution of the horizon-
averaged or coarse-grained scalar field {inflaton) in a pure de Sitter background. We clarify the
e6'ect quantum fluctuations have on the classical dynamics of relaxation. We consider two types of
nonlinear potentials [V{/)= 2 yP + 4gg and V(P) = ——'AP + 4gg ] with inflaton probability dis-

tributions initially displaced from equilibrium. In the former case quantum fluctuations have only a
minor effect on the classical inflaton dynamics. In the latter case the situation is different. Quan-
tum fluctuations play a crucial part in the early-time behavior of the inflaton probability distribu-
tion. Using techniques borrowed from nonequilibrium statistical mechanics, we show how [for
Vlf)= ——'A, P +—'gP ] macroscopic {classical) order originates from stochastic (quantum) initial

conditions. We estimate the time scale at which this transition takes place. The work here extends
and validates the conclusion of Guth and Pi that the long-time behavior of f{P;t) can be described
by a classical probability distribution.

I. INTRODUCTION

At the present time, the inAationary scenario'
presents the most attractive solution to the standard col-
lection of cosmological problems (e.g., flatness and hor-
izon). Despite various criticisms, the central feature of
inAation, namely, that there is a period of exponential ex-
pansion associated with the early Universe, seems to
remain intact. In fact, surveying the history of the
inflationary scenario, one is immediately struck by the
growth and development of Guth's original proposal. '

For example, old inAation' became new inAation which
unfortunately was still plagued by density Auctuations
that were several orders of magnitude too large. Shortly
thereafter, Linde observed that once the Universe
emerged from the Planck era, the field responsible for
inflation [the so-called inflaton 4(x, t)] would exist as a
nonequilibrium distribution of values satisfying
V(4) &M~. Here V(@) is some potential for the field
and Mz the Planck mass. Provided N were sufficiently
large, inAation with sufFiciently small density Auctuations
could be realized with very natural V(C&) (e.g. , @ or @ ).
This version of inAation is known as chaotic inAation.

In a somewhat parallel development various research-
ers " began to study the validity of using classical or
semiclassical methods based on the effective potential for
determining the dynamics of the inflaton field 4(x, t).
What spurred these developments were the observa-
tions that the regulated quantum Auctuations associ-
ated with massless and massive free field theories in de
Sitter space were stochastic in nature. Inspired by these
results, Starobinsky' and Graziani and Olynyk' showed
that the quantum dynamics of the inAaton field, when
spatially averaged over a horizon, could be described by a
Langevin or generalized Fokker-Planck equation (also
known as a Wigner equation). The homogeneous (over a

horizon volume) coarse-grained scalar field we denote by
P(t) Its ev.olution is governed by the classical (drift)
force —V'(P) and diff'usive forces arising from the quan-
tum Auctuations. ' ' This latter force appears, to order
A, as a white-noise term in the homogeneous classical
equations of motion or as a diffusive term in the drift
equation. This approach we call stochastic inAation.
Whereas P(t) is homogeneous over a horizon, the sto-
chastic nature of its evolution equation leads to the fact
that globally (on scales greater than a horizon) the
Universe is inhomogeneous. The Universe is made up of
an ensemble of miniuniverses for which a P(t) is defined
in each. ' Since this initial proposal, considerable atten-
tion has been devoted to the various implications of the
stochastic approach to the dynamics of the coarse-
grained inAaton. ' '

In this paper we wish to investigate the stochastic evo-
lution of the inflaton (in a pure de Sitter environment)
when

—'o'+ —'o',
2 4

(la)

(lb)

We wish to see what effect the presence of quantum Auc-
tuations has on the classical dynamics of the coarse-
grained inAaton. In order to solve this problem we make
the assumption of slow rollover [i.e. , P «3HQ, overdots
refer to proper-time {as measured along the world line)
derivatives]. Nambu and Sasaki' have shown that this is
a good approximation provided (P ) & ( V(P) ) and
g(P ) «( V(P)) initially. Because of this approxima-
tion, the Fokker-Planck equation for the phase-space
probability distribution becomes (to order ih') a Smolu-
chowski equation. ' That is, if f (P;t)dP is the probabili-
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ty that a measurement of P will be in the range
(P, P+dP) at time t, then f (P;t) obeys

"df(P;t) 1 () [V(P)f(P )]+ fiD d f(P;t)
( )

tlt 3H ()P 9H2

D is the diffusion "constant" which we take to be arbi-
trary. We explicitly show fz so as to emphasize the quan-
tum origin of the diffusive term. In reality, D is deter-
mined by the microphysics' or equivalently, it is related
to the steady-state fluctuations through the stationary
distribution

( —3H ISED) V(P) (3)

For D =9H /8m, Eq. (2) becomes the Starobinsky equa-
tion. ' In this paper we assume that f (P;0) (i.e., the ini-
tial distribution) is Gaussian. This is only a simplifying
assumption. It is possible to extend the calculations
presented here to non-Gaussian initial distributions. In
order to investigate the coarse-grained inAaton dynamics
as described by Eq. (2), we borrow two techniques from
nonequilibrium statistical mechanics. One is the van
Kampen expansion. ' This is a perturbative technique
for small diffusion coefficients. It represents the stochas-
tic variation of P(t) as a small Gaussian fiuctuation about
a classical trajectory. As we shall see, this method tends
to break down if the distribution f (P;0) happens to be at
a point of instability [e.g. , Eq. (lb) with /=0]. In order
to handle this situation we use the scaling theory of tran-
sient phenomena developed by Suzuki. ' The purpose of
these methods is to help us clarify the roles quantum Auc-
tuations and classical behavior play in the stochastic evo-
lution of the coarse-grained inAaton.

Guth and Pi' have looked at the quantum behavior of
the slow-rollover phase transition. As they point out,
quantum effects are important because it is they that give
rise to energy-density fluctuations. In addition, they can
determine the duration of the inflationary era. Two ques-
tions they raise are central to this paper. First, what is
the correct order parameter for a system possessing
refiection symmetry? Second, if P is zero initially how
long does it hover about this position? Classically, of
course, this question is trivial; /=0 is a stationary state,
it stays there forever.

In this paper we will investigate the quantum relaxa-
tion process when the inAaton distribution is initially dis-
placed from equilibrium. We find that in potentials pos-
sessing no instability points [i.e., V(P)= —,'yP + —,'gP ]
and assuming f (P;0) is displaced far enough from its
equilibrium configuration, quantum effects have little
effect on the classical evolution of P(t). However, when

f (P;0) finds itself in an unstable configuration, such as a
Gaussian centered about P =0 in a potential
V((t ) = —,' A,P + ,'gP, then —quant—um ffeet cmsake a
difference. By using Suzuki s scaling theory, we estimate
the time at which P hovers around zero. In addition, we
find that this time determines the transition of f (P;t)
from quantum behavior to classical behavior. Finally, we
compute an order parameter that clearly exhibits the fol-
lowing transient properties of the above system. f (P;t)
begins as an assumed Gaussian with a width (P (0))
which is assumed order A in smallness. The Smolu-

chowski equation is initially dominated by the quantum
diffusive forces [i.e., the second term on the right-hand
side of Eq. (2)]. At a time given by

3H
3g [(P (0) ) +i)'tD/3A, H)

the Gaussian breaks down, forming double peaks. It is at
this time that Eq. (2) becomes dominated by classical
drift forces. This is the transition from quantum to clas-
sical behavior. The distribution f ((t; t) for t ))t becomes
essentially a classical probability distribution. This is an
extension of the results of Guth and Pi. ' They showed
that the quantum mechanics of an upside-down harmonic
oscillator could be described at late times by a classical
probability distribution. The classical order parameter
we define is zero for t (t (i.e., the quantum regime) and
then behaves for t ) t like a "classical" order parameter
(assuming the "classical" P were displaced from the
origin by an amount set by the quantum fiuctuations).
This order parameter rises to +3/A, /g as it should.

II. STOCHASTIC DYNAMICS NEAR EQUILIBRIUM

A. The eft'ective potential for coarse-grained
systems undergoing slow-rolling behavior

Given a normalized stationary Wigner distribution
[W(x,p)] for a dissipationless quantum-mechanical sys-
tem, we have shown' how to compute the effective po-
tential. Construction begins with the generating function

T(J)=fdx dp W(x, p)e "=e (4)

where x and p are the Weyl equivalent classical variables
corresponding to the canonical position and momentum,
respectively. The Legendre transform of W(J) with
respect to (x ) yields the effective potential U((x ) ). To
order fi, the solution to W(x,p) one uses in Eq. (4) is
given by

W( )
—a[P /2+ V(x)]

The parameter n is determined by the Wigner con-
straint' and a ' yields the leading contribution to the
ground-state energy.

For the slow-rolling coarse-grained inOaton in de Sitter
space [Eq. (2)] tlie stationary solution is given by

f (P. ~ ) e
—(3H /AD) V(P)

A natural question that arises is, what is the effective po-
tential for this situation? Again, we can define a generat-
ing function

K(J)= f dP f (P)e ~=e

for the moments and cumulants of P. The reduced distri-
bution f (P) is actually derived from a full Wigner distri-
bution W(P, S), that is

f(y)= fdS W(y, S),
where S is the velocity (i.e., S =P).

Substituting (8) into (7), we have
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It: (J)=fdpdS W($, S)e ~=e

However, from (8) we know

Pr(y S) —(3H/t(D)[S /2+ V(P(]

(9)

(10)

C. The van Kampen expansion

In 1961 van Kampen developed a systematic approxi-
mation method to solve the master equation. For our
purposes we take this equation to be

Noting that (10) is functionally identical to (5), the com-
putations of K (J) and F (J) are therefore identical in
form with previous constructions for a dissipationless
quantum-mechanical system. From paper I, we have, for
a classical potential —,'co x +—„'A,x,

U(&x &)= &x &'+ —&x &'+
'4 co cx

Here Y and o, ' are energies arid have dimensions of
(length) ' (or L '). For the inAaton, by comparing (10)
with (5), we see that by making the correspondences

t3f (P;t)
Bt

[Ci(P;t)f (P;t)]
a

+,[C (4"t)f (4't)l
ay'

(16)

where CI and C2 are given drift and diffusion coeScients,
respectively, and f (P;t) is the unknown probability dis-
tribution. In his paper, van Kampen showed how to
solve (16) asymptotically for small diffusion coefficients
via an expansion about the deterministic motion. If we
write C2(p;t)=iiiD2(p;t)/2, where D2(p;t) is a function
of order 1, then

x ~t)It, a ~3H IAD,

p ~S, A, —+g, ct)—+p

[(T—
& p(t) &]'

v'2Mcr( t) 2itict( t)
(17)

U(&P&)=~&/&'+ g &P&"+ g
2 4 yH

(12)

Here, U is an energy density (-I. ) and ct has dimen-
sionsofL .

The construction of U(&tI}&) is identical with the con-
struction of U(&x & ). We obtain the lowest order (in Ag)
effective potential for the coarse-grained inAaton

obeys (16) to order A'. If we take C, ( P; t )= —(1/3H) V'(p) = —(1/3H)(yp+gp ) [see Eq. (2)]
then & P(t) & and o (t) obey, to order A',

d&P(t)&
dt

(18a)

[y+3g &y(t) &']X(t)+

B. Equations of motion

From the Smoluchowski equation, we have

d&4(t)& = 1
& V(y( ))&

dt 3H
(13)

If V (tI}) is nonlinear, then an infinite hierarchy of cou-
pled moment equations is also generated. In addition
there exist two types of evolution equations for & P(t) &

that are sometimes stated in the inflation literature. One
is the classical equation of motion which we denote by
the subscript cl. It is given by

dP„(t)
dt

V'(P,((t)) . (14)

The second is based on a modification of (14) by replacing
V'(tIt, ((t)) by the effective potential U'( & P(t) & ). We
denote this equation of motion by the subscript e:

d &y(t) &,

dt
(15)

The problem we wish to address in this paper is to what
extent are Eqs. (13)—(15) similar'? To answer this ques-
tion we wi11 use two techniques borrowed from nonequili-
brium statistical mechanics. One is essentially an expan-
sion about the deterministic trajectory developed by van
Kampen. ' The other is a fairly new method used by
Suzuki' to look at the relaxation of stochastic systems
from unstable initial configurations.

[X(t)= & P'(t) &
—

& P(t) &'] . (18b)

The Auctuations are given by X(t) and the mean is given
by &P(t)&. In Eqs. (18a) and (18b), X(t) is identically
equal to Acr(t) In orde. r for the above equations to be
valid, the assumption is that the stochastic behavior of
P(t) is approximately deterministic with small Gaussian
Auctuations about the deterministic trajectory. This is
reAected in the fact that X(t)/P, ((t) must remain much
less than one for all time. Finally, note that as A goes to
zero X(t) goes to zero and &P(t) & goes to P„(t). We are
now in a position to discuss the solutions to the van
Kampen equations (18a) and (18b), the classical equation
(14), and the effective potential equation (15).

Setting X(t) equal to zero in (18a) and integrating, we
obtain

p 2/2'(t)=
(g2+f 2) 2yt/3H 82

$2e 2yt/3H if Q2 ((f2 (19)

X(t) X(())e 2yt/3H+ (1 e 2yt/3H)— (20)

Note that lim, „X(t)=fiD/3yH, the stationary value.
In order for the van Kampen expansion to be valid we

where 5 =P,((0) and f =y/g. Because X(t) is already
order A' in smallness, P,((t) is to be used in place of
&P(t) & in Eq. (18b). Again assuming that 5 ((f we
obtain
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must have X(t)/P, l(t) «1 or

X(0)«5 and «52 .
AD

3yH
(21)

such as the coarse-grained inflaton requires setting

d(P(t)),
y((((t) ),+g (y(t) ),'

That is, the initial displacement of the inflaton from zero
must be much greater than the scale set by the initial and
final quantum fluctuations. Because of this, the evolution
of (P(t) ) proceeds semiclassically. That is, quantum-
mechanical efFects, if initially perturbative, remain per-
turbative to the classical motion throughout the evolu-
tion of (P(t) ).

It should be emphasized that the analysis presented
here is very much dependent on the fact that V"(5) is
greater than zero. That is, there are no instability points
[V"(5) &0] in the potential. We will consider in the next
section situations in which the initial inflaton position is
unstable. For now we will confine our studies to relaxa-
tion in so-called normal situations [i.e., V"(5))0].

Knowing the approximate behavior of X(t) we can see
immediately how (P(t)) behaves. First, observe that if
X(0) & ( ) )A'D/3yH then X(t) increases (decreases)
monotonically from X(0) to AD/3yH. It is obvious from
(18a) that (P(t) ) obeys an equation similar to the classi-
cal equation satisfied by P„(t). The difference is while
((}„(t)decays from 5 to zero on a relaxation time scale of
3H/y, (P(t)) decays with a time-changing scale denoted
by

+ g (y(t)),
yH

(23)

III. RELAXATION NEAR THE INSTABILITY POINT

Notice that (23) is equivalent to (18a) if we set X(t) (in the
latter equation) equal to its stationary value of FiD/3yH.
It therefore seems that U((P(t)), ) governs the infiaton
dynamics only in the long-time limit. How bad an error
is made is a function of how far X(0) differs from X( ao ).
Again, the error cannot be too large because the quantum
fluctuations must always remain a perturbation to the
classical trajectory. We show schematically in Fig. 1 how
(P(t)), behaves as a function of time. Because r(~ ) is
the relevant time scale for ( P( t ) ), and v( oo ) & 3H /y,
( P(t) ), tends to approach equilibrium earlier than ((},1(t).

It should be stressed that the results of this section de-
pend on a Gaussian distribution of P values. In a statisti-
cal equilibrium state the distribution of P values takes on
a nearly Gaussian distribution about the most probable
value (P(t) ) (Ref. 20). Hence, by its very nature, the van
Kampen expansion tends to work only when f (P, t) is
near equilibrium.

r(t) = 3H
y+ 3g X(t)

(22) A. The van Kampen expansion

Because X(t) is always greater than zero, r(t) is less than
3H/y. Hence, (P(t)) approaches its equilibrium value
of zero earlier than does P,i(t). The effect is small be-
cause X(t) «5 «f . In Fig. 1 we show schematically
how (P(t) ) evolves and how this compares with P,l(t).
Note that (P(t) ) behaves in two distinct ways, depending
on which is larger, X(0) or X( Oo ).

The use of the efFective potential in determining the dy-
namics of relaxation of a quantum-mechanical system

As in the preceding section, we deal with the stochastic
dynamics of relaxation of the inflaton in the slow-rolling
approximation. Here, however, we consider what hap-
pens when the initial distribution of P values finds itself at
or near an instability point [i.e., V"(5)&0]. As a con-
crete example we use the bistable potential
V(P)= —

—,'A, P +—,'gP .
Because the stationary distribution of P values goes

like exp[ —V(P)], and hence is non-Gaussian, it is obvi-
ous that at some point the van Kampen expansion will
break down. This assumes, of course, that the initial dis-
tribution is Gaussian, an assumption we make in this pa-
per. This should not obscure the fact that the van Kam-
pen expansion is of some use, especially in the early
stages of the evolution of f (((};t). In addition, it helps us
to probe the transition from Gaussian to non-Gaussian
behavior.

To obtain the equations of motion for (p(t) ) and X(t)
all we have to do is use the analysis in Sec. II with the
proviso y —+ —

A, . We have

d( (t)) {[—&+3gX( )](t((( ))t+g(y( ))tI,3

dt 3H

(24a)

[ —
A, + 3g ((((t) ) ']X(t)+

dt 3H 9H
FIG. 1. The time evolution of (P(t) ) [as solved from the van

Kampen equations (18a) and (18b)] and its comparison with the
classical and effective potential predictions. The potential is
taken to be V(P) = —'yj5'+ —'gP .

dP„(t)
dt 3H " 3H

with the classical equation of motion

(25)



3634 F. R. GRAZIANI 39

P„=A, /g (26)

Before we investigate the impact of Eqs. (24a), (24b),
and (25) on the dynamics, let us look at the stationary
states. We have

van Kampen expansion to be valid we will determine in a
moment.

With the above observations in mind, we are now in a
position to discuss the solutions to (24a), (24b), and (25).
The classical evolution equation gives

for the classical system and, to order A,

(y) =A, /g RD—/2A, H,
X=A'D /6A, H

(27)

(28)

(30)
(g/ g2 1 )

—2ktl3H+ 1

Knowing P,~(t), we can discuss the solution to (24b) by
de6ning a time-dependent effective A.. That is

for the quantum system. There do exist symmetric (i,e.,
(P) =P,&=0) solutions to the stationary state. Classical-
ly, Pd equal to zero is a viable yet highly unstable solu-
tion. Quantum mechanically, however, P equal to zero is
unallowed since quantum fluctuations will always drive
the inAaton off of the instability point. This is suggestive
of the importance quantum effects (or any fiuctuations)
have near points of instability. This, of course, does not
mean that (P) cannot be zero. (P) equal to zero is a
perfectly valid stationary solution and it is consistent
with the stationary distribution

exp
3H A, 2 g 4

AD 2 4

If we try to locate this solution in the van Kampen ex-
pansion [Eqs. (24a) and (24b)] we immediately run into
problems. For example, we obtain

(29)

which is unphysical. The problem can immediately be
traced to the Gaussian form for f (P; t) used in the van
Kampen expansion [Eq. (17)]. Because the symmetric
stationary state is in reality non-Gaussian, the van Kam-
-pen expansion, by its very nature, precludes any accurate
description of such a configuration. What then is the
meaning of Eqs. (24a) and (24b)? This state corresponds
to a single Gaussian centered approximately about
(+)&A, /g with a width AD/6AH. We can interpret this
as a quasistationary state in the following sense. If the in-
itial Gaussian were far enough away from the instability
point and if the potential barrier separating the two vacu-
um states were wide enough, we would expect that the re-
laxation rate would be much larger than the tunneling
rate. What this means is that our initial Gaussian would
evolve intact as a Gaussian until it attained the stationary
values given by (27) and (28). However, the Gaussian
would not remain forever in this configuration. Ultimate-
ly, it would tunnel through the potential barrier until the
true stationary state were reached. If, however, the tun-
neling probability were small, the probability distribution
should remain in a Gaussian form with mean (P) and
dispersion X for a considerable amount of time. This is
why we refer to the state defined by (27) and (28) as
quasistationary. Hence, the van Kampen expansion is
only useful in describing the relaxation of a Gaussian dis-
tribution from a state which has slightly departed from
"equilibrium. " Equilibrium here refers, of course, to the
quasistationary state. How far the initial distribution
must be away from the instability point in order for the

A,,ff(t) =A, —3gg„(t) . (31)

ol

3H 1t, = ln— —1
2A, 2 g$

(32)

3Ht, = ln
2X 2g5

if 5 «k/g .

To estimate the magnitude of the fluctuation enhance-
ment, we can solve (24b) with (P(t) ) =P,&=0. This will
give us an upper bound on 2( t, ). We have

(33)

Assuming 5 «k/g, we have

X(t„)- X(0)+
3gH ~2

(34)

Equations (33) and (34) are explicit examples of the
anomalous fluctuation theorem due to Kubo, Matsuo,
and Kitahara. It states that when any nonlinear sto-
chastic system relaxes from the vicinity of an instability
point, there is a K /5 enhancement of the Auctuations at
a time of in(K/5) (K is some dimensionful constant). We
show a schematic representation of X(t) vs t in Fig. 2.

It should be pointed out that if A, /3g &5 &A, /g, then
A ff ( t ) remains negative for all time and X( t ) simply de-
cays with no enhancement of the fluctuations.

It is obvious that as 5 gets closer to zero (the instability
point), X(t„) can get arbitrarily large, thus invalidating
the spirit of the van Kampen expansion. To avoid this
problem let us look at (P (t) ) at t =t, :

Remember, X is only valid to order fi; that is why P,&(t) is
used in place of (p(t)) . For p,&(0)=5 (X/3g, A,,ff is
positive and X(t) initially grows like exp(2A. ,fft/3H). As
p,~(t) increases, A,,ff(t) decreases until at a time t„,

ff ( t ~ ) becomes zero. After t, , k, ff ( t ) becomes negative
until finally approaching a value of —2k. What this
means is that X(t) rises to a maximum value of X(t, )

after which X(t) falls off like exp( 4A, t/3H—) finally at-
taining its stationary value of AD/6A, H as t approaches
infinity. This rise in the Auctuations is called Auctuation
enhancement and is a consequence of the nonlinearity of
the system and the initial inAaton distribution being in
the vicinity of.the instability point (i.e., 5 (A, /3g).

It is easy to compute the time t, at which X(t) is max-
imized. Knowing that P,~(t„)=A,/3g, we obtain
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1(t )=A, —3gX(t )-A, I ——3 X(0}
2 $2

(39)

WD

6A, H

where 5 ))X (0).
To complete this section, we may ask the question,

how do P„(t), (P(t) ), and X(t) compare with the predic-
tions based on the effective potential approach? The
effective potential can be written'

I2'
3H 2'

3H where

+ —I+ g
&P&,

'
3H

1/2

(40)

+X (0)
3g 2g5

(35)

where X (0)=X(0)+irtD/3A, H.
Because we must have X(t, }« (P(t„)) in order for

the van Kampen expansion to work, 6 must obey

5'»XT(0) . (36)

In addition we will be primarily interested in distribu-
tions in the vicinity of the instability point. Therefore, 5
actually obeys

FIG. 2. The time evolution of X(t)=(P (t})—(P(t})' [as
solved from the van Kampen equations (24a) and (24b)]. The
1/5 rise in the Auctuations is an explicit example of Kubo's
anomalous Auctuation theorem. The potential is taken to be
v(y}= ,' xy'+ ,—'g—y'. —

d(p(t)),
dt

(4l)

B. Suzuki scaling theory

So far, we have discussed the effect quantum Auctua-
tions have on the evolution of the coarse-grained inAaton
field. We have found with certain restrictions [namely,

The first thing that comes to mind is that only for
(P(t) ), )1,/3g is U((P(t)), ) real. But it is precisely in
the neighborhood of A, /3g that t =t, and fiuctuation
enhancement occurs. Therefore, at the very least, Eq.
(40) is able to describe the dynamics of (P(t)), only if
t) t, or (P(t =0)),=5) A, /3g. Hence, Eq. (40) can
only describe the inAaton dynamics for slight departures
from equilibrium.

In Fig. 3 we show qualitatively how P,i(t) and (P(t) )
behave assuming initially that P,i(0)= ( P(0}) =5 & 1 /3g.

I,/g»5'»XT(0) . (37)

In conclusion, provided the initial Gaussian distribution
is far enough away from the instability point that its
width is much smaller than its mean position, the Auctua-
tions remain a perturbation to the classical motion. That
is, the evolution of the inAaton is primarily classical for
all time provided 5 ))X (0).

Knowing P„(t), X(t), and t„, we can now discuss the
evolution of (P(t)). Define a time-dependent A, and
denote it by I (t). That is

I (t)=A. —3gX(t) .

Because X(0) is order fi, I (t) initially is slightly less than
For t & t „, I ( t ) decreases until a minimum value for

I (t) is reached at t =t, . For t ) t, , I (t) increases and as
t approaches infinity, I (t) approaches A, AgD/3AH. —
The implication of all of this is that the characteristic
time 3HZ, associated with P,~(t) is always less than I (t)
and in fact at t = t, the difference between the two is at
its most extreme. Hence, to the approximation presented
here, it takes slightly longer for the quantum-mechanical
inAaton to reach the ground state than it takes the classi-
cal inflaton. The effect is small (as it must be) since

3g

Q2

2kt*
3H

2t
3H

FIG. 3. The time evolution of (P(t}) [as solved from the van
Kampen equations (24a) and (24b)] and its comparison with the
classical prediction. The potential is taken to be
v(y }= ,' xy'+ ,' gy'. ——-
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f (P;0) not be too near any instability point], that
quantum-mechanical effects remain perturbative to the
evolution of P,l(t). That is, the evolution of the inflaton
[as represented by (P(t) ) ] is primarily classical. We now
wish to investigate the case where 5 is no longer much
greater than X (0) but is, in fact, zero.

As previously discussed, for 5 &(X (0), the van Kam-
pen expansion breaks down. Fortunately, Suzuki' has
devoted considerable effort to the study of how nonlinear
stochastic systems evolve from unstable configurations.
The theory which attempts to deal with this problem is
known as the scaling theory of transient phenomena. It
is based on the following observations [assuming f (P;0)
is Gaussian]: initially, fluctuations are the important
feature since it is they that drive f (P;t) away from the in-
stability point. In this first phase f (P;t) remains nearly
Gaussian. Eventually, the Gaussian form for f (P;t)
breaks down and, as we explicitly demonstrate later, drift
forces become dominant during this second phase or so-
called intermediate time regime. Suzuki's theory is an
asymptotic evaluation technique that seeks to determine
f (P;t) during the intermediate phase. Finally, f (P;t)
settles to its stationary non-Ciaussian form. In terms of
the inflaton dynamics the above observations are impor-
tant. The initial regime is where the inAaton behaves
quantum mechanically. The intermediate regime is
where the inflaton (or rather, its distribution) behaves
classically. This is because (as we shall see) the Smolu-
chowski equation initia11y is dominated by the quantum-
mechanical diffusive forces. This phase gradually dies
out until the Smoluchowski equation is dominated by the
classical drift forces. The Suzuki theory determines the
transition between the two types of behavior.

In this section, by using a self-consistent Hartree-Fock
approach in the van Kampen expansion, we probe the
inflaton dynamics during the initial Gaussian (quantum)
phase. %'e then discuss and use the scaling theory of
Suzuki to probe the intermediate (classical) non-Gaussian
phase. The calculations in this section are based on the
work of Suzuki. Because his scaling theory is not well
known in the astrophysics and particle-physics communi-
ty, we show considerable detail. See Refs. 13 and 16 for
additional detail on Suzuki's theory.

l. Gaussian approach to sealing

As a simple introduction to the scaling ideas of Suzuki,
we perform a Hartree-Pock approximation' to the Smo-
luchowski equation for the coarse-grained inAaton. In
this approximation (which is Gaussian) we take
(P(t) ) =0. Therefore, the initial configuration for f (P; t)
assumes 5 equals zero. In this approximation, '

P'=3(P'(t) )P .

where I (t)= —
A, +3g(P (t))H„. Equation (43) is a non

linear differential equation for the fluctuations. Note the
difference between it and linear equation (24b) derived via
the van Kampen approach. If (P(t) ) were chosen to be
zero in (24b) we would have (P (t)) -exp(2kt/3H), a
completely erroneous result when one considers the fact
that (()) (t)) must ultimately attain a stationary value.
Solving (43) we obtain

'rH„(t)
( Q ( ) )

3 I + ( )
(44)

where

(t) g ( y2(0) ) + e2i.tl3H3 fzD
HF

3A,H
(45)

Equation (44) is an asymptotic solution in the sense that
the diffusive term is small [(A, /g) ))4A'D/gH] and
2k.t/3H is much greater than one. Our results deviate
slightly from Suzuki's. Our Hartree-Fock equivalent of

contains a factor of 3 which arises from the vanishing
of the third-order cumulant. Hence, for us

lim (p (t))HF=A, /3g,
f~oo

while for Suzuki

lim (p (t))H„=A, /g .t~ oo

Neglecting for the moment this discrepancy, it is impor-
tant to realize that although initially (P (0)) is assumed
to be order A, by the time rHF(t) becomes order 1 (P (t) )
also becomes order 1. That is, the Auctuations go from
being perturbative and quantum mechanical to being
classical on a time scale determined by where rHF(t) is or-
der 1. This is the transition from quantum to classical
behavior alluded to earlier. In addition, the asymptotic
solution can be written entirely as a function of a station-
ary value and Suzuki's scaling variable ~HF(t). rHF(t)
expresses a cooperative effect between nonlinearity (i.e.,
g), initial fluctuation [(P (0))], and diffusion (i.e., D).
These observations regarding r(t) and (P (t))HF are
common to all stochastic systems relaxing from instabili-
ty points and are not specific to the case studied here.

2. Stationary state jluctuation-s

Is there any significance to the value A, /3g for the sta-
tionary Auctuations? First, let us look at the stationary
distribution associated with substituting P =3(P (t))P
into exp[ —V(P)]. Via the Hartree-Fock approximation,
the stationary distribution f (P; ~ ) -exp[( 3H/—
iiiD)( —

—,'AP + —,'gP )] gets transformed to fHF(P; ~ )

-exp[( 3H /2')b, g ], w—here b. is defined by
Therefore, if V(P)= —

—,'AP + ~gP we have

V'(It))'
, „=[—A+3g($ (t))P] .

Substituting (42) into Eq. (2) we obtain

( t HF

(42)

b, = lim I (t) .

If we compute (P ( ~ )) from fH„(P; ~) we obtain the
quadratic equation

(46)
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or if (A, /g) »4fiD/gH we have

1+
3g $2~ (47)

A, /3g corresponds to the transition from the Gaussian to
the non-Gaussian regime. As we shall see, it corresponds
approximately to the time at which the Gaussian breaks
down and forms double peaks.

f (P; oo)=N exp —s
y2 1

4

u2 2 u4
(4&)

where s =3HZ, /2gA'D » l. It proves convenient if we
introduce a parameter e into f (P; ao ),

What value for ( P ( ~ ) ) do we obtain if we use the
correct non-Gaussian f(P; ~)'? Defining u =A, /g, the
stationary distribution becomes

3. Scaling approach to stochastic dynamics

We wish to generalize the results of Sec. I so as not to
rely on an assumed Gaussian form for f (P;t). To do
this, consider again the Smoluchowski equation for the
coarse-grained inflaton Geld:

Bf(P;t) 1 B [V,(~)f (~ )]+ AD B f (P, t)
Bt 3H By 9H2 B$2

f,(P; ~ ) =N exp —s
—e4'+ 1 0'

2 f
and define a moment integral by

(49)
(54)

where now V(P) is any function of P. Define the non-
linear change of variables

I,(s)=N f dPexp —s
~y2 1 y4

U2 2 4 (50) g=F (P) —exp I (55)

I,(s) =2
4Es 1/2/ 2 (51)

Realizing that

Evaluating (50) by standard saddle-point techniques, we
obtain

Then Eq. (54) can be transformed into

Bf(g;t) —
A, B

[~f(~ )]
Bt 3H Bg

+, G(g') [G(g)f(g;t)]9H' B

where

(56)

limI, (s)=1,
a~1

we obtain
1/2

G (g)
dg
dg V [F '(g)]

1/2

(57)

1 s
U 2' e

—s/2

Therefore,

(y'( ))=-
U 2K

or

1/2 2u' B &2e" "u
e

Be vms

(52)

and P=F '(g).
Here f(g;t)dg= f (P;t)dP so that 6 (g) represents the

Jacobian of the transformation. As Eq. (56) stands, it
represents a stochastic process with unstable linear drift
and complicated diffusion; unfortunately it is an equation
that is no more easier to solve than (2). Suzuki's idea is
that it is possible to extract an asymptotically correct
solution to (56) if G(g) is linearized. Take, for example,
our case of V(P) = ,'AP +—4'gP . —Th—erefore,

(P (~))=u 1 — =—1—1 k Wga
2s g 3g H

It is also possible to compute ( p4( oo ) ). From (50),

g=F(P)= ' 1/2 (58)

(&4(~))=u' 1+
4s

(53)

and

G'(g) =(g/&)(I+/')' . (59)

g2 g2 2D 2

(y4( )) A 1+ A g D

g 2 3/4H2

It is important to note that ( P )HF
=3 ( P )H„while

( P ( ~ ) ) = ( P ( ao ) ) . The former condition is satisfied
by Gaussian distributions. Therefore, it makes sense that
A, /g is the stationary fluctuation value for the non-
Gaussian distribution. A, /3g is the largest value (P (t))
can attain and still have the distribution identified with a
Gaussian. Therefore, the time at which (P (t)) equals

If we ignore order-g' contributions to G (g), Eq. (56) ends
up describing an unstable Ornstein-Uhlenbeck' process,
namely,

Bf„(g;t)
Bt [kf,.(k t)]

AgD B ~ (~ )
9A,H Bg

(60)

where we have denoted the solution to such an equation
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6(g)=3/g/A, (1+eg )
~2 . (61)

by the subscript sc for scaling. We will see in a moment
the significance of such a label, but first, what is the
meaning of dropping order-g terms and higher from
6 (g)?

Consider Eq. (56) with 6 (g) given by

constant, etc. , are now contained in a single function j (t).
It is the so-called Suzuki scaling variable of time. It plays
a role similar to rH„(t). The major difference, of course,
between j(t) and rHF(t) is that the former is associated
with a non-Gaussian distribution. f„(g; t) depends only
on j (t) and g. If we assume 2A, t ))3H then we obtain

The smallness parameter e is only an artifact used to keep
track of the expansion of 6 (g) about )=0. It will be set
equal to one at the end of all calculations. Rewriting (56)
with (61) to order e, we have

J( t)&( t) — ((tt(0))+23.t/3HAD

3A,H

= 3rHF(t) (66)

Bf(g;t) —
A, 8

[gf(g )]+ AgD t) f(g;t)
t3t 3H Bg 9$H2

02+ [ '0'f {4-t)]+&

Therefore, although technically not correct, the general
principles behind the Gaussian approach to scaling are
correct.

We are now in a position to show that if 2A, t is much
greater than 3H then f„(g;t) satisfies the drift equation
[i.e., Eq. (60) with D =0]. Consider the following:

(62)

Let us now compute the fiuctuations from both Eqs. (62)
and (60). We denote the latter by the subscript sc. We
obtain

aF(g;t)
t)t 3H Bg

If initially

(67)

d((2{t)) 2A, 2figD 2 + 2AgD
dt 3H $2H 9A,H

(63a)

2A, 2 2figD
dt 3H 9AH

'(t) „+ (63b)

where

g' l2j(t)
3/2m j(t)

(64)

(t) —g ( y2(0) ) + ~D e23 t/3H
3g~ 3g20

Notice that the nonlinearity, initial fluctuation, diffusion

Therefore, we see that (g (t) )„represents an asymptotic
solution in the same sense that (P (t) )HF [Eq. (44)]
represents an asymptotic solution of (43). Namely, if
AgD/A, H is much less than one then (g {t)) = (( (t) )„.
This example is by no means rigorous proof that f ( g; t) is
approximately equal to f„(g;t) under the same condi-
tions. However, it does illustrate the plausibility of such
an assignment. It turns out, under closer scrutiny, ' that
f„(g;t) is indeed the solution to (56) under the condition
that Aga/A, H is much less than one. We refer the reader
to the work of Suzuki' for details.

The observation that f„(g;t) is the approximate solu-
tion to (56) is a very useful one. The reason is, because
f„(gt) describes an Ornstein-Uhlenbeck process, its
solution is well known. ' To obtain the solution f„(ttt;t)
from f„(g;t) we merely use the inverse of the nonlinear
transformation (58) and the fact that f (P;t)
=(dg/dttt)f(g;t). It is also important to realize that
initially /=3/g/t(, t)tt. What this means is that if the tItt dis-
tribution is initially Gaussian, then the g distribution is
also approximately Gaussian. With this in mind, Eq. (60)
can be solved using the method of characteristics. ' We
obtain the normalized distribution (centered about /=0)

F(g;0)= 1 —g /26(0)
&2~x(0)

(68)

[where Q(0) is an arbitrary width parameter], then the
solution to (67) is

F(g;t)= 1 —
g /25(t)

3/2ith(t)
(69)

where

g( p )e 23 t /3H

By choosing h(0) =(g/t(, )[(P (0) ) +AD/3XH] it is seen
that F(g; t) =f„(g;t) if 2A, t »3H.

What does all this have to do with the distribution we
are actually interested in: f (ttt;t)? Although f„(g';t) de-
scribes an Ornstein-Uhlenbeck process, because of the re-
lationship between g and hatt, f„(P;t) describes a stochas-
tic process that is nonlinear and very different from
Ornstein-Uhlenbeck. In fact, using (58), we obtain

1fsc 3/2

2j(t)
(70)

In the lim. it that t approaches zero, this distribution is ap-
proximately Gaussian. Notice that if we set
D =9H /8' and (P (0))=0, then f„(ttt;t) is identical
to the distributions computed by Rey' and Sasaki, Nam-
bu, and Nakao. ' Equation (70) does not adequately de-
scribe the stationary state distribution f (P; at ) but it
does describe the initial Gaussian phase, the intermediate
time regime, and the transition between the two. For
2i,t /3H ))1, j (t) goes to ~(t) and (70) describes a drift-
dominated intermediate phase.
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To get an idea of the usefulness of (70) [or (64)] the mo-
ments of P can be computed. We obtain a simple exten-
sion of Suzuki's result

of the fluctuations and the transition from Gaussian to
non-Gaussian behavior.

The dimensionless time H t is easily calculated to be

where

(71) 3H
2A.

'"
3g (y'(0)&+

3A.H

(75)

'n

Z (j(t))= I der e ~ . (72)
i/2m. [1+j(t)a ]"

The first noticeable feature is that the moments are non-
Gaussian because (P "(t) & does not equal some function
of (P (t) &" (as determined by the vanishing of all cumu-
lants greater than second order). The second is that j(t)
equal to —,

' yields (P (t) & = —,'(A. /g), that is, the fluctua-
tions have reached 33% of their non-Gaussian stationary
value but have reached their final Gaussian value. What
this means is that at a time t where j(t ) is of order 1, one
determines the transition from Gaussian to non-Gaussian
behavior. In other words, it describes the inAatons' tran-
sition from quantum behavior to classical behavior. We
will make this statement more quantitative in a moment.
Last, Eq. (70) expresses the central feature of Suzuki's
theory. In the intermediate time regime where the distri-
bution is dominated by classical drift forces, the moments
can be written as a function of a stationary value and a
universal function Z(j(t)). The universal function itself
depends only on the scaling variable j(t). All nonlineari-
ties, initial Auctuations, time, etc. , are scaled into a single
variable ~(t). These features of (P "(t) & are general and
do not depend on the specific form of V(P) (Ref. 19).
The only thing that changes is the universal function
Z(j(t)) and j(t) itself. Note that the Hartree-Pock cal-
culation clearly exhibits the traits mentioned above. The
universal function for the Auctuations is in this case
Z(rii„(t))=rii„(t)/[1+rii„(t)] and the scaling variable
rii„(t) is given by (45).

The transition from Gaussian to non-Gaussian behav-
ior can be analyzed by looking at the extrema of
in[i/2m j(t)f„(p;t)]. Denoting such a quantity by p,„(t),
we obtain

2
3i.
g gj(t)

—3P,'„(t) =0, (73)

which has solutions

P,'„(t)=0
or

P,„(t)=—1—2 A 1

g 3j(t)

(74a)

(74b)

In other words, initially there exists a single maxima at
p,„(t)=0 up until a time determined by where j(t)=—,'.
We denote this time by t. For t) t, the distribution
forms double peaks [given by (74b)] and hence is no
longer Gaussian. It is important to note that the transi-
tion takes place for j (t)= —,

' or etiuiualently, rid„(t)=l.
Therefore, although the Gaussian approach to scaling
does not give quite the correct value for the moments, it
does yield correct qualitative information on the nature

if Aga/A, 'H «1.
Is there a significance to t other than its role as

differentiating the initial and intermediate time regimes?
Essentially, j(t) [or riiF(t)] signal the onset of macro-
scopic order. ' This macroscopic order originates from
the quantum fluctuations [(P (0) & and AD/3iLH]. Imag-
ine a particular value of the coarse-grained inAaton field
P(t) associated with a particular shade of grey. We
will call P equal to zero grey, P equal to —v'A, /g black,
and P equal to i/A, /g white. The calculations presented
here apply to a situation in which the Universe (on scales
greater than a horizon) finds itself in a nonequilibrium
single phase state with all Auctuations quantum mechani-
cal in origin. Therefore, initially the Universe (on scales
greater than the horizon) looks like a vast sea of grey
with some regimes lighter than others. This rejects the
fact than quantum mechanics dictates that there be an in-
itial distribution of P values denoted by ( P (0) &. Relaxa-
tion then proceeds from this symmetrical quantum
configuration to a stationary state consisting of two coex-
isting phases (/ =+i/A. /g, white and black, respectively). .

The pattern formation that arises is essentially a phase
separation process ' whose dynamics are governed by a
Wiener (quantum) process for early times (t « t) and
eventually by a classical drift equation for t &)t. Once
the separate phases start appearing, that time is called
the onset of macroscopic order. ' Such a time is provid-
ed by scaling theory and is approximately the time at
which f (P;t) exhibits twin peaks, that is, H t [Eq. (75)].
H t differentiates the quantum behavior of the inAaton
from its classical behavior. Hence, t gives quantitative
information on the nonlinear (non-Gaussian) nonequili-
brium process by which classical order arises out of
essentially stochastic (quantum) initial conditions.

Is it possible to define an order parameter for the above
system even though (,P(t) & equals zero? A similar prob-
lem has arisen before in the inAationary context. For ex-
ample, if 5 ))X (0) there exists a nonzero (P(t)&,
which deviates perturbatively from P„(t), which evolves
from 6 to k/g. Here Auctuations play a secondary role.
(P(t) & gives information on the transition from the semi-
disordered state [i.e., X (0)«5 «A, /g] to the ordered
state. For 5=0, where the system admits a P —+ —P sym-
metry, the even moments of the coarse-grained inAaton
field seem to offer the only candidates for an order pa-
rameter. However, the extrema [P,„(t)]of f„(P;t) otfers
another possibility. &P,„(t) remains zero during the initial
Gaussian (quantum) phase and then at t increases mona-
tonically to A, /g. P,„(t) is useful because it clearly exhib-
its the three stages of evolution of f (P; t). In addition, it
plays a role analogous to (P(t) & for systems where 5%0.
Using (30) for 5 «A, /g but nonzero, we make a plot of
P,i(t) and P,„(t)vs Ht in Fig. 4. It clearly demonstrates a
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tI)„(t). If this time translation is small then there is essen-
tially no difference [as far as P,„(t) and P,i(t) are con-
cerned] between the relaxations of the quantum-
mechanical and classical descriptions of the inAaton dy-
namics. Hence, long-time behavior of P,„(t) is indistin-
guishable from a classical order parameter.

IV. CONCLUSION

(quantum regime) I

2kt
3H

rift dominated (classical regime)

2'
3H

time lag (H t) between the relaxation of the stochastic
and classical inAaton fields. It is interesting to note that
the classical description provides a lower bound for the
relaxation time. This is in agreement with Evans and
McCarthy.

Is it possible to make 0 t small enough so that there is
no appreciable difference between P,i(t) and P,„(t)? First,
ifH t «1 or

(g/g)QT(0) )) t e 2A. /3H (76)

then the time lag is negligible. Next, we realize that if
A, t /3H )) I then

y2 (r) 1 e
—2iUI3H

g 3gX(0)
(77a)

and

FIG. 4. The time evolution of the position of the maxima

[P,„(tl] of the infiaton probability distribution. The potential is
given by Vlf)= —2t(,P + —'gP . For comparison we show the

classical behavior of P (t), assuming P (0) is slightly displaced
from zero.

By using the van Kampen expansion and the Suzuki
scaling theory of transient phenomena we have investi-
gated how quantum Auctuations modify the classical dy-
namics of relaxation of the coarse-grained inAaton. We
have shown that provided the initial inQaton distribu-
tions' displacement were much greater than the scale set
by the initial and Anal quantum Auctuations, the evolu-
tion of the inAaton is primarily classical. However, if the
inflaton distribution f (P;t) evolves from an unstable
configuration, then quantum fluctuations play an impor-
tant role in the early-time evolution of f (P;t). In fact,
for t &(t the fiuctuations off (P;t) are quantum mechani-

. cal. At a time t = t, the evolution off (P; t) goes from be-
ing dominated by quantum diffusive forces to classical
drift forces. Around this time, moments of P go from be-
ing quantum mechanical to classical. It is at this point
that the initial Gaussian distribution [with initial width
(tI)2(0))] breaks down and forms double peaks [with
(P (t) ) now classical with a value of A, /3g]. Even
though (P(t) ) is zero we show it is possible to define an
"order parameter" for the early Universe. P,„(t) is the
position of the peak of the inAaton distribution. It is zero
for t & t, where quantum effects dominate. At the point
that classical drift forces dominate, P,„(t) rises monatoni-
cally, behaving like a classical order parameter. The evo-
lution of f (p;t) for r ))t is dominated by classical drift
forces and supports Guth and Pi' that f (P;t) can be de-
scribed by a classical probability distribution.

y2 ( r ) 1
~

e 2At!3H— .

g g$2
(77b)

Therefore, if 5 -3X(0) the large Ht behavior of P,„(t) is
indistinguishable from a classical order parameter. The
only difference is that P,„(t) is a time translated version of
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