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Magnetic field induced by vacuum polarization in de Sitter spacetime
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We derive the effective Lagrangian of a magnetic field in the context of a massless scalar QED
coupled to gravity in de Sitter spacetime. It is found that the magnetic field is produced at the be-

ginning of the infiation in a minimally coupled scalar QED, and that the intensity B is proportional

to eH (H is the Hubble constant). When H = 10"GeV, B—1.3 X 10 G.

I. INTRODUCTION

There is now considerable interest in magnetic fields in
the early Universe. At present, magnetic fields exist
everywhere in our Universe. Many spiral galaxies have
magnetic fields with a typical strength of -3X10 G
(Ref. 1) and it is estimated that the present intergalactic
magnetic fields have an intensity ~ 10 G (Refs. 2 and
3). Many astrophysicists have investigated the origin of
these cosmic magnetic fields. These fields are believed
to be formed as follows. A seed magnetic field, of which
some production mechanisms have been proposed, is gen-
erated in a radiation-dominated universe. The generated
magnetic field is relatively small, in the range
10 ' —10 ' G. By the dynamo mechanism this field is
amplified to the value of the present magnetic field. But
it seems that no satisfactory explanation about the origin
of the magnetic field has yet been given.

Recently Turner and Widrow proposed that the
primeval magnetic field with sufficient strength can be
produced in the inflationary universe model. Their pro-
-posal is that the magnetic field is excited by quantum
Auctuations and the magnetic field Aux is enhanced dur-

ing inAation. They have shown that it leads to astrophys-
ically significant results, though it is model dependent.
Furthermore, it implies that the inflationary universe
model, which has solved some important cosmological
problems, ' ' is also valid for solving the problem about
the origin of cosmic magnetic fields. Therefore, their
proposal is attractive. However, they did not sufficiently
explain the creation of a magnetic field in inflation.
Based on the analogy of a scalar field in de Sitter space-
time, they asserted that de Sitter-produced quantum Auc-

tuations excite the primeval magnetic field with the fol-

lowing energy density pz.

pa 2=(H/mp, )
ptotal

II. EFFECTIVE LAGRANGIAN

In this section we are going to construct an effective
Lagrangian of the magnetic field in de Sitter spacetime.
Here we consider massless scalar QED coupled to gravi-
ty. However, it is noted that a magnetic field generally
affects the structure of spacetime. Therefore, we assume
that the magnetic energy (B /2) is sufficiently small com-
pared to the vacuum energy (-H m p, ), which leads to
inflation of the Universe. The spacetime is then approxi-
mately described by de Sitter spacetime whose line ele-
ment is given by

ds =dt e'(dx +dy +—dz ) . (2.1)

derive and investigate the effective Lagrangian of mag-
netic fields induced by vacuum polarization of particle-
antiparticle pairs in the context of a massless scalar QED
coupled to gravity in de Sitter spacetime. We will show
that the strong magnetic fields are produced by quantum
fluctuation in a de Sitter vacuum.

The outline of this paper is as follows. In Sec. II we
construct the effective Lagrangian of a magnetic field de-
rived by quantum QED in de Sitter spacetime. In Sec.
III we calculate and investigate the effective Lagrangian
in two cases: (1) g= —,

' (gravitational conformal coupling)

and (2) g =0 (gravitational minimal coupling). It is

shown that the magnetic field can substantially not be
produced at g= —,', and that, on the other hand, at /=0
the strong magnetic field can be produced at the begin-

ning of inflation, if the Hubble constant H has a large
enough value. When H=10' GeV, B=1.3X10 G.
This produced magnetic field is proportional to eH (e is

the electromagnetic coupling) and the ratio pti/p, „„,
coincides with one assumed by Turner and Widrow, up to
e . Finally we summarize the work in Sec. IV.

Note that throughout this paper we use units in which
A=~=c = 1, except for the estimation of the intensity of
the produced magnetic field in Sec. III.

where p„„&, 0, and mp& are the total energy density of
the Universe, Hubble constant, and Planck mass, respec-
tively. This was only an assumption and not an investi-
gated result.

The purpose of this paper is to calculate the magnitude
of the primeval magnetic field which was assumed, for ex-
ample, in the work of Turner and Widrow, We will

In conformal coordinates

ds =a (ri)(dpi dx dy dz ),— — —

where

a(ri) = (Hri)—
(2.2)

(2.3)
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with

g= f a 'dr= —H 'e

The scalar curvature is a constant:

(2.4)

/=0, A„= ,'F—„x

where only F,2 and Fz, are nonvanishing:

F21 = F12 f const

(2.13)

(2.14)

R =12H

The model is defined by the Lagrangian density

L =LG+L),
where

LG= ——'F F

L, =D„P*D "it) gR P*—P,
with a 0;auge-covariant derivative

(2.5)

(2.6)

(2.7)

(2.8)

On the other hand, the relation between the electromag-
netic field-strength tensor and the electric and magnetic
field in de Sitter spacetime is given by

0 E E E,
—E 0 —8, 8X z yF„=a 0 —8 (2.15)—E 8y z

—E —8 8 0z y X

So the solution in Eq. (2.13) implies that the strength of
the magnetic field is

D„=V„+I'eA„, (2.9) &(g)=f/a(g)' . (2.16)

and g is a coupling constant of the scalar field to the
gravitational background. The equations of motion are

V'"F„,=iea

/*sing

2e a P—*PA (2.10)

(D"D„+gR )$=0 . (2.11)

For fixing a gauge freedom of A „, we choose the
Coulomb gauge:

We derive the effective Lagrangian due to quantum
fiuctuation P around the classical background given by
Eq. (2.13). At first let us construct the effective Lagrang-
ian in the functional-integral approach. The effective La-
grangian is defined by

exp i f d4x& gL,~—

V'A; =0, AG=0 . (2.12)
= f [dP][de)'jexp i f d x&—g (Lo+L, )

For simplicity, we discuss the production of a homogene-
ous magnetic field. Furthermore, we assume that the
magnetic field is along the z axis and the Aux is conserved
in de Sitter spacetime. So from Eqs. (2.10)—(2.12), we
choose a classical solution

Thus the effective Lagrangian becomes

L (r( A p ) =L () +LI

where

(2.17)

(2.18)

LI= i( —g) '~—x ln
( —g)' '(D„D"+JR )( —g )

(2.19)

Using the identity Substituting Eq. (2.13) into Eqs. (2.18) and (2.21), we ob-
tain

tr[ln(ab
—

)) tr f (eis(b+iE) eis(a+is))
0 S

(2.20)

Lo= —2B

L, = —1( —g)-'"f "' "'(xle-""lx),
0 S

(2.23)

(2.24)

we rewrite LI as where the integral in Eq. (2.24) is taken along the straight
line from the origin to ~e", and

&( g)
—1/2 f ( (x leis( H+ '

l

)—
0 S

Q=q" (P„+ed„)(P,+eA, ) —(g—
—,')Ra (g) (2.25)

—(x le"' g' ' +"llx ) ),

(2.21)

where

(2.22)H = —( —g )
~ (D"D„+JR )( —g )

with ri""=diag(1, —1, —1, —1). Here, as the second
term in Eq. (2.21) is a magnetic-independent term, we
drop it. Because we dropped the second term, we have
divergences in the above effective Lagrangian. But the
divergences are independent of the magnetic field and are
subtracted later. So we regularize and calculate the
effective Lagrangian by the point-splitting method, i.e.,
(x le

" lx )~ (x le " lx'). According to Ref. 14, the
element (xle " lx') can be calculated. LI is given by
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4 i 5/2—ei(v+) /2)m/2 UH ( )9) )

327T'"

X f "'
ds s '"H'"

0 2$

Xexp [9) +9)' —(z —z')2]
4s

x' —+x, y' —+y,

dss '"X. —
0 s

where x'"=(9)',x', y', x') and x"=(9),x,y, z ) are the argu-
ments of the eff'ective Lagrangian in Eq. (2.33). In this
coincidence, x =x ' and y =y', LI takes a simpler form:

5/2
4 CLI= —H

2&

sin(/co/s)
(2.26)

C(1 —X)/sXe 1

sinh(s /2)
(3.1)

where

v —
(

9 12') 1/2 (2.27)

(2.28)

Here we assume that X is a positive value so that the
point x '" approaches in a spacelike manner another point
x" in the (9),z ) plane. In the above integration we use the
relation

and

X
U=exp —ie dx. A

X
(2.29) +&( ""

2sinh(s) s „, q2+i12~2

Then we rewrite LI as

(3.2)

s( ~co(s+ 7I /2) g21

sin(~co~s)

L =L'"+L' 'I I I
(2.30)

where

(3.3)

with

5 =/co/[(x —x') +(y —y') ]/4 . (2.31)

5/2

L "'=—2H
C

2m f -d„-7/2
0 s

e C(1—X)/s

H(2) ( g) — e rr(1+ )i/2v~ (g)
2

(2.32)

we finally obtain

Note that we take the limit x'~x after the integration of
Eq. (2.26). Here we rotate the contour to the imaginary
axis, and make the replacement s —+( I/2~co~ )e' s. Thus
using the relation between the Hankel function H' ' and
the modified Bessel function K,

and

L' '= —4H C
2'

' 5/2

g ( —1)"
n=1

Xf dss
0

1

s+4n n

(3.4)

L,~=L0+L~,
where

5/2

LI = —UH
C

2K

C(1 —2) /sXe 1

sinh( s /2 )

f ds s '"rC-
s

(2.33)

XK
s

(3.5)

In the following discussion we calculate the effective
Lagrangian in two typical cases: (1) g= —,

' (gravitational
conformal coupling) and (2) /=0 (gravitational minimal
coupling).

A. g'= —'

with

&=[—(9)—9)') +(z —z') ]/22)9)',

C=lef ling'.
(2.34)

This case corresponds to the condition v= —,'. First we
calculate Ll") in Eq. (3.4). In Appendix A we calculate it
for an arbitrary value of v. Substituting v= —,

' into the
formula in Appendix A, we obtain

III. PRODUCTION OF MAGNETIC FIELD
4

L H
4m X

(3.6)

In Sec. II we constructed the integral form of the
effective Lagrangian. We shall now calculate the effective
Lagrangian and investigate if a magnetic field is produced
by the quantum effect. Before integrating LI, we rewrite
LI in order to be able to integrate it easily. First we re-
quire that the x component and y component of two
points x'" and x" coincide:

E (u)=
2u

e Q (3.7)

Substituting the above equation into Eq. (3.5), we get

Next we calculate LI '. For v= —,', the modified Bessel
function becomes

' 1/2
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C2H4-
L (2) y ( 1)n J d

ii —xu

2~2 p 4~ 2~2~ 2+ C2

Lz ' is calculated in Appendix B. The result is

(3.&)

(3.10)

lnX+y+ln(C/ri )+ g'(2) +0(&),C2II4 6

96~

(3.9)

where y is Euler's constant. From Eqs. (3.3), (3.6), and
(3.9), the effective Lagrangian is given by

4
L = ——8 H

e6' I 4

C2H4 6
z 1nX+y+ln(C/n)+ g'(2) +O(X) .

96m. 7T'

forming the limit (x' —+x ), we obtain the final result for

e 28 2

L,ff= ,'8———[ln(e 8 /I~' )+aj,
192m

(3.14)

where we have dropped the subscript R in 8 and e for
simplicity.

Now we are going to discuss the production of the
magnetic field. Here we investigate if the effective poten-
tial of B has a minimum away from the point 8 =0. It is
noted that if the energy minimum emerges in the state
8%0, the value of 8 is the intensity of the magnetic field
produced in the vacuum state. Then we look for an
effective potential of B. As 8 =fe ', our effective La-
grangian L,& is time dependent. In general, we may not
treat —L,ff- as the efFective potential. However, 8 varies
slowly at t =0, i.e., at the beginning of the inAation and
then we can treat —L,~ as the effective potential of 8 as
in a static case. So the effective potential at t =0 is given
by

It is noted that the parameter C can be expressed in terms
of the magnetic field e2 e282

V,g= —'8 + -8 ln +a
192m2 x4

(3.15)

C = ~eB ~/H +O(X) . (3.1 1)

Being a 8-independent term, the X term can be
dropped in the efFective Lagrangian.

Next we renormalize the effective Lagrangian accord-
ing to Ref. 14. Here we rewrite the effective Lagrangian
in terms of o. by the relation

48~ a 18 = exp
2 2

(3.16)

This effective potential shows an existence of the
minimum at BWO. The minimum is given by

1/2 1
(2cr )'~ =—arccos(1 —X),

H
(3.12) In Gauss units,

where the square of the geodesic distance between the
points x and x ' is denoted by 2'. From Eqs.
(3.10)—(3.12), we get

1 2

1 + ln(era ) 8
2 48 2

K 12& CX8 =Ac exp — Pic
e2 2

1
]0 2237~2 G

2

(3.17)

J

28 2

[ln(e 8 /i~")+a]+O(X),
192m

(3.13)

where the redundant parameter ~ is introduced to adjust
the dimensionality of the theory, and

a=2y+ g'(2) —21n(n. ) .
3

In our model the physical parameter is only the Hubble
constant H. So we can assume that a.=O(H).

The logarithmically divergent factor of the first term in
Eq. (3.13) can be absorbed by a change of scale of 8 and a
charge renormalization according to

r

2

B~ = 1+ ln(ol~ ) 8
48~

This case corresponds to v= —,'. Using the formula in
Appendix A, LI' in Eq. (3.4) is given by

L (1) H 1 1+—
4~' X' (3.18)

Next we calculate LI '. In this case, the modified Bessel
function becomes

As the factor 10 is too small to be physically accept-
able, the above value 8 may be taken to be zero in a phys-
ical sense.

Thus we see that at g= —,
' (the gravitational conformal

coupling), the magnetic field cannot be produced due tc
vacuum polarization at early time of the inflationary
universe, t =0.

2

e~ = 1+ in(o'i~ )
48m

e
Ic (u)= 2'

1/2
1

e " 1+—
0

(3.19)

where Bz and e& represent a renormalized magnetic field
and a renormalized charge, respectively. Thus, after per- Substituting the above equation into Eq. (3.S), we get
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CHL(2) y ( 1)n d
+ —Xu

2 0 4 2 2g2+C2

CH
( 1)n d

—Xu

2772 0 4n2 2g2+C2

(3.20)

scribed in the Introduction, up to e .
By the way, it is known that in the inflationary

universe model the Hubble constant H has the following
constraint:

(3.28)

The first term in Eq. (3.20) is the same one as in the /= —,
'

case and the second term can be easily calculated. Thus
we obtain

C H
LI '= — 1n(X)+y+in(C/m )+ g'(2)

96m 7T2

where the Planck mass Mp~ =1.22 X 10 GeV.
When we choose typical values H = 10' and 10' GeV

we can estimate the values of the produced magnetic
field, respectively:

B=1.3X10 G (for H=10' GeV=SX10 cm ')

CH+ ln2+O(X) .
8~2

(3.21)
and

(3.29)

From Eqs. (3.3), (3.18), and (3.21), the efFective Lagrang-
ian is given by

L = ——'B — +-H 1 1
eff' 2 4

C2H4 6in(X)+y+in(C/m. )+ 2
g'(2)

96m 7T'

4
+ in2+O(X) .

8m.
(3.22)

After the renormalization, we obtain

eB
1

eB + +Hln2[eB
192%2 K2 8~2

Leff= —2&'—

(3.23)

Hence, the effective potential at t =0 is given by

e 2g 2

192m

e 8
K

1 2~
8m

(3.24)

Here we note that the linear term of 8 appears in V,&-.

Owing to the linear term, the magnetic field which gives
the energy minimum has a strong intensity. As
e /192m. « 1, we approximately obtain the minimum

eH8 = ln2
Svr'

and in Gauss units

(3.2S)

eH8= ln2 .2' (3.26)

Pl p)P total

where p&=, 2B and we use natural units. This ratio
coincides with Turner and Widrow s assumption, de-

Therefore, the magnetic field can be produced in propor-
tion to eH at t =0. The ratio of the free energy density

p~ in the produced magnetic field to the total energy p„„&
in the inflationary universe is

2 2
Pa e

(1 2)q H
48m

B= 1 3X10 G (for H=10' GeV=SX10 cm ') .

(3.30)

We see that the strong magnetic field can be produced at
t=0, if the Hubble constant has a large enough value.
Here we point out that our produced magnetic field
B=(eH'/8m. )In2 is not inconsistent with our assump-
tion —,'8 &&H mp~ in Sec. II. Since —,'8 /H =e /
128m. «1 and from Eq. (3.28) mp~/H ) 10, our as-
sumption is satisfied.

Thus we see that the strong magnetic field is generated
at the beginning of the inflation in a massless and
minimally coupled scalar field and its ratio p~ /pt
cides with one assumed by Turner and Widrow up to e .

IV. SUMMARY

We have calculated an effective Lagrangian of a mag-
netic field B in the context of a massless scalar QED cou-
pled to gravity in a de Sitter spacetime, and have investi-
gated the production of a magnetic field due to quantum
effect in two cases: (1) g= —,

' (gravitational conformal cou-
pling), (2) /=0 (gravitational minimal coupling). This
effective Lagrangian leads to the effective potential of a
magnetic field at the beginning of infiation (t =0). It is
shown that the effective potential has a minimum away
from the point 8 =0 in both cases. Though the
minimum at g= —,

' is nearly zero, the minimum at /=0 is

very large, 8=1.3X10 G, when the Hubble constant
H = 10' GeV. Thus we have seen that the magnetic field
is produced due to vacuum-polarization effects in a mass-
less and minimally coupled scalar field at the beginning of
the de Sitter phase, and that the magnitude is proportion-
al to eH and the ratio p~/p„„& coincides with one as-
sumed by Turner and Widrow up to e .

We have determined the initial magnitude of the mag-
netic field during the de Sitter phase. In this paper we do
not discuss the magnetic field after production. But our
result will be used to determine the power spectrum at
the present time in a realistic model of inflation.

APPENDIX A

We calculated LI" in Eq. (3.4) for ~v~
&

—,'. First we
evaluate the integral
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1(v)—I d& &
—7/2~ e C11—X)/sC

0 S
L

(Al)
APPENDIX B

In this appendix we calculate LI' ' in Eq. (3.8):
Using the formulas

1/2 I"(p+ v) I (p —v)
v 2 a 2

1 (P/2) (1/41

H CL(21 y ( 1 )nI
n=1

where

(81)

~ p —@+I/2( )

we obtain

I(v) C
—5/2

2

I ( —', +v)I (-', —v)

2X

p/2
1 a+1 1 —aP", (a) = —v, v, l, l —p;I(1—

1u, ) a —1
' ' ' '

2

(A2)

1 ooI„= dU e
4~n o U +1

1/2

(
—1)[cos(a„)ci(a„)1 7T

4~2II 2
L

(83)

I„= Q
e

—Xu

o 4' 2~2/ 2+ C2

First let us calculate the integral I„. We alter the vari-
ables, u =2n 7ru /C, and obtain

XF(—,
' —v, v+ —' 1 3 1 ——'X) (A3) +sin(a„)si(a„)], (84)

The hypergeometric function can be expanded in terms of
X.

where si(x) is sine integral and ci(x) cosine integral, and
a„=CX/2n 7r. By virtue of the expansions

F( —,
' —v, v+ —,', 1,3; 1 —

—,
' X )

2
I ( —,

' —v)I"( —,'+v)
2

X 1 —( —' —v)—+(——v)( ——v)2 &
1 2

4 2 4 4 4

and

co
( 1)n 2n

ci(x) =y+ln(x)+ g 2n(2n )!

( 1)nx2n+1

2 „0(2n +1)(2n +1)!

(85)

X [ko —ln(X/2)] +O(X3),

ko= —', —2y —g( —,'—v) —g( —', +v) .

(A4)

we get

I„=— [ln(X)+in(C/27r)+ y —ln(n )]+O(X) .
1

4m n

(86)

Thus we obtain
The summation in Eq. (81) can be carried out using the

equalities

I(v) C
—5/2

2
1 2 1

(
I v )

2X

+—'( —' —v)( —' —v)4 4 4

X [ko —ln(X/2)] +O(X),
and

g (
—1)"

g 2

7T2

12

(87)

so that I.I" is given by

4
L( 1) H 1 2 1—

( —' —v) +—'( —' —v)( —' —v)I 4 2 y2 4 2y 4 4 4

X [ko —ln(X/2)]

+O(X) .

(A5)

00 2

( —1)" = ln(2)+ —,'g'(2),
~2

and we obtain

C H 6Lz'2'= — ln(X)+!n(C/7r)+y+ g'(2)
96~ ~2

+O(X) . (BS)
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