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Statistics from dynamics in curved spacetime
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Department of Physics, Uniuersity of Wisconsin Mi—lwaukee, Milwaukee, Wisconsin 53201

(Received 7 February 1989)

We consider quantum fields of spin 0, ~, 1, 2, and 2 with a nonzero mass in curved spacetime.
We show that the dynamical Bogolubov transformations associated with gravitationally induced
particle creation imply the connection between spin and statistics: By embedding two fiat regions in
a curved spacetime, we find that only when one imposes Bose-Einstein statistics for an integer-spin
field and Fermi-Dirac statistics for a half-integer-spin field in the first Oat region is the same type of
statistics propagated from the first to the second flat region. This derivation of the Hat-spacetime
spin-statistics theorem makes use of curved-spacetime dynamics and does not reduce to any proof
given in Hat spacetime. We also show in the same manner that parastatistics, up to the fourth order,
are consistent with the dynamical evolution of curved spacetime.

I. INTRODUCTION

The proof of the spin-statistics theorem was first given
by Pauli in 1940 for free fields with arbitrary spin by ar-
guments based on positivity of energy and microcausali-
ty. ' This proof was generalized to the axiomatic quan-
tum field formalism by Luders and Zumino, and Bur-
goyne. All these proofs are based on the kinematics of
quantum fields. A review of the spin-statistics theorem
was given by Streater and Wightman, A proof based on
the dynamics of quantum fields in curved spa'cetirne was
given by Parker" for spin-0 and spin- —,

' fields. Here we
generalize that method of proof to massive fields of
higher spin. The connection between spin and statistics
and the inner product in curved spacetime has been noted
by Wald. Sorkin has suggested that a spin-statistics
correlation will exist whenever the underlying theory in-
corporates the possibility of pair creation. In our deriva-
tion below, the Bogolubov transformation that is respon-
sible for determining the statistics is also the source of
pair creation.

In a curved spacetime corresponding to a gravitational
field, dynamical evolution is associated with a Bogolubov
transformation of creation and annihilation operators of
the quantum field. As a consequence of this fact, one is
able to infer the connection between spin and statistics in
a novel way. If Fermi-Dirac statistics is imposed on a
field of integer spin at a given time, then at a later time
the field will no longer obey the same statistics. By con-
trast, Bose-Einstein statistics is consistent with the
dynamical evolution of a field of integer spin. Similarly,
Fermi-Dirac, but not Bose-Einstein statistics, is con-
sistent with the dynamical evolution of a field of half-
integer spin.

The essential elements of our derivation of statistics
from dynamics are the existence of a conserved scalar
product and of a nontrivial Bogolubov transformation re-
sulting from the dynamical evolution of the system. We
give the conserved scalar product in an arbitrary curved
spacetime, but discuss the Bogolubov transformations in

the context of an arbitrary spatially Aat Robertson-
Walker universe for simplicity.

The detailed derivation is given here for massive fields
with spin values (0,—,', 1,—'„2). In principle, the spin-
statistics theorem can be proved for any spin value with
the method described in this paper. Problems which
occur for higher-spin fields do not a6'ect the particular as-
pects required in our derivation. The Lagrangian ap-
proach to quantum fields in Rat spacetime is reviewed in
Sec. II, Sec. III describes the vierbein formalism and the
quantum theory for these fields in curved spacetime. In
Sec. IV we study the temporal evolution of these fields in
a model spacetime and prove the connection between
spin and statistics. Finally, parastatistics is discussed in
Sec. V and the results are summarized in Sec. VI.

II. FREE FIELDS ON MINKOWSKI SPACETIME

The physically relevant fields belong to finite-
dimensional representations of the Lorentz group, with
tensors corresponding to the single-valued representa-
tions and spinors to double-valued representations. In
general, fields may carry both tensor and spinor indices.
A complex field with a unique spin s has only 2(2s+1) in-
dependent solutions of a given momentum, so constraints
must be imposed to obtain the correct number of in-
dependent solutions. (In counting solutions, note that for
half-integer spin the complex conjugate of a solution is
not another solution. ) Lagrangians can be constructed
which imply equations of motion with the appropriate
constraints.

Listed in Table I are the Lagrangians, field equations,
and plane-wave mode solutions for fields with physically
interesting spins of (0,1,2,—,',—,') (Ref. 7). In the table
8 =g" B„c) with g"'=diag( —1,1,1,1), V is a cubical
volume with periodic boundary conditions and quantities
denoted by g and y carry a suppressed spinor index as
well as explicit tensor indices. For tensor fields the con-
served scalar product is
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(P, P)=i f d x (b*r), Q .

Here P denotes a scalar or a general tensor with indices
suppressed. For spinor fields, correspondingly there is

where g=P y, and g can be a Dirac spinor or a tensor-
Dirac spinor which bears spacetime coordinate indices as
well as spinor indices. The tensors Ek and spinors y& ap-
pearing in Table I are defined in Appendix A.

It follows from the relations of Appendix A that

(p'd(k, t)e'" ",p' "(k', t)e'" '")= —a 5„5dd 5kk,

(gad(k t)eik x q da'(k~ t)eik x) —'5
For a given momentum, these mode functions with
a =+1 and d = —s, —s + 1, . . . , s, form a complete set
of 2(2s + 1) independent solutions.

In a suitably chosen curved spacetime, the field modes
will undergo a dynamically induced Bogolubov transfor-
mation which mixes positive- and negative-frequency
parts. The conserved scalar product then imposes a type
of symmetry on the Bogolubov transformation, which in
turn selects the proper commutation relation that is pro-
pagated consistently by the field equation.

A point of interest in Table I is that in the Lagrangians
for spin 2 and spin —,

' there appears a factor b which may
be chosen to be 1 or —,'. For either choice, one obtains the
same equation of motion and constraints. In the litera-
ture, both values of b for spin —', have been used, ' but
conventionally b is chosen as 1, instead of —,', for spin 2.

III. GENERALIZATION TO CURVED SPACETIME

The vierbein (or tetrad) formalism (see, for example,
Ref. 9) is conveniently used to introduce the effects of
gravitation on a physical system, once we know its
Minkowski-space Lagrangian Xo(u, Bu). The vierbein
V„"(x) is defined by

V"„(x)V (x)rlAB =g„,(x) .

In this section we use A, B,C, D, . . . as Lorentz indices
and p, v, ~, A, , . . . as spacetime coordinate indices. In-
dices A, B, . . . are lowered by g„~, and p, v, . . . by g„.
The covariant derivative Dz is given by

D„=VA "(8„+—,'o VB VC .„)—= VA "(8„+r„),
where the constant matrices o. generate the ma-
trix D(A) representing the Lorentz transformation
acting on a spin s field u. Thus if x ~x'= Ax and u ~u'
=D (A)u with A "B=5"B+co "B, then D (A) =1
+ —,'cu" o. zz, and the matrices o zz satisfy

I ~ AB acD ) AD1Bc BD 9Ac+~Bc 3 AD ~ Ac /BD

Then the Lagrangian X in curved spacetime which re-
placesÃo(u, Bu) is

The Lorentz tensors or tensor spinors appearing in X can
be conveniently replaced by the corresponding world ten-
sors or tensor spinors by using the relations (with V' iI)

and V„P denoting the usual spacetime covariant deriva-
tives)

yA VA yp D yB V pVB V yv yAB VA VB yyv D ABC VpVB VC —V yves.

DA4= VA "(~„+F'„'")4 f', '"=—
—,'I.)'" )"lVA VBg;„O'= V',0' l'"= V "i,r"

DAg = VA "V,d„l(~, where d„g'=V„p'+I"„' g, V„g'=d„g +I '
&hatt~ .

Here I ' is a matrix operating on spinors and I „& is
the ChristofFel symbol. These relations are derived in
Appendix B.

It should be noticed that additional terms which de-
scribe possible local couplings between the field and grav-
ity can be added to the above Lagrangian X. Since only
the conserved scalar product is important to our discus-
sion, and it is not affected by these additions to X, we will
ignore them here.

Once the Lagrangian is known for a specific field u, the
conserved current j and conserved scalar product are
given by the expressions

arj = l 0 Q

(u, u)= fd x j

where j satisfies 0&j =0.
Table II gives in a general curved spacetime the La-

grangians, field equations, and scalar products for spins
up to 2. Notice from the table that, for pure tensors, if P
is a solution to the field equation so is its complex conju-
gate P", and that (P', P*)= (P, P). —

IV. SOLUTION IN A MODEL UNIVERSE:
STATISTICS DERIVED I ROM DYNAMICS

In order to show the connection between statistics and
dynamical evolution, consider fields in a spatially Oat
Robertson-Walker universe. The metric g„and vierbein
V „for this model spacetime are

g„=diag( —l, a (t),a (t), a (t)),
V"„=diag( l, a (t),a (t),a (t)) .
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It is clear from the previous section that solutions to
tensor field equations appear in complex-conjugate pairs.
The number of these pairs is equal to 2s+1, where s is
the spin of the field. Hence, we can write the mode solu-
tions

(x t)=[Va (t)] ' ei"'xya"(k, t (3.1)

We consider a statistically bounded situation in a period
of time [T, , T2], which is divided into three intervals
[T, , t, ], [t„t2], and [t2, T2]. The scale factor a(t) is a
constant a, in the first interval [Ti, t, ], another constant
a2 in the last interval [t2, T2], and changes in an arbi-
trary manner in the middle interval [t„t2]. As the
Universe starts expandirig or contracting, field quanta are
excited out of the original vacuum in [T„t,]. If we com-
pare the fields at the beginning and the end, we find that
the fields undergo a Bogolubov transformation which is
described by the D matrix (defined below). Because there
is mixing between positive- and negative-frequency
modes, the D matrix is nondiagonal. This nondiagonality
of the D matrix determines that only one of the two phys-
ically observed statistics is valid for a field with a specific
spin.

A. Case I. Bose-Einstein statistics
for integer spin fields

where a =+1 and d = —s, —s + 1, . . . , s, and P is a sca-
lar for spin 0, a vector for spin 1, and a tensor for spin 2.
Now P' (k, t) satisfies a second-order ordinary differential
equation obtained from the field equation. From Sec. III,
if P(x, t) is a solution, so is iI)*(x,t); hence if (t+' (k, t) is a
solution to the ordinary second-order differential equa-
tion having positive-frequency asymptotic behavior, then
its complex conjugate with inverse momentum
P+ '"( —k, t }* is a solution with negative-frequency
asymptotic behavior. Therefore, we can choose P+'"(k, t)
and (t '"(k, t)=P+' ( —k, t)* as the complete set of in-
dependent solutions to the second-order differential equa-
tion which determines the mode solutions with a given
momentum. To normalize the mode solution in (3.1), we
can choose the normalization constraint to be indepen-
dent of d and k:

—
( [ Va 3(t)]—1/2eik xpad(k t)

[ Va 3( t) ] 1/2eik'
yxd(ak t) )

but X, necessarily depends on a, as can be seen from

(P"(x, t},P*(x,t))= —(P(x, t), P(x, t)) .

We can choose X, = —a, which implies that

( [ Va 3(t)]—1/2eik xitiad(k t) [ Va 3( t)]—1/2eik xya'd''(ki

The definition of the scalar product for each spin is given in Table II.
Let I = 1,2 and define itpt"(k, t) in the following way:

iaaf& t

pt"(k, t)=(2cuk )
' e ' for spin s =0,

(3.2)

Ea cok

[(tit"(k, t)]„=git1„'(2'& )
'/ e ' Ek for spin s =1

la ct)p

[itit"(k, t)]„=g(t)„~g(t1 (2~k )
' e ' Ek pa

f'or spin s =2,
with kI =k/at, pit1„'= diag(l, aI, at, at ) and the tensors E defined in Table I. In this way, the functions
( Vat )

' e'"'"Pt (k, t) have the normalization of Eq. (3.2) with t in the intervals [tI, Tt] and a(t)=at.
We take P'"(x, t) to have the following form in the initial interval:

p'd(x, t)=(Va31) '/ e'" "p; (k, t) when t is in [T, , t, ] .

Then the solution P'"(x, t) having the above specified form in the initial interval, must be a linear combination of Pz" of
the following form in the final interval:

p'"(x, t)= g D, d,d( Va2) ' e'"'"pz "(k,t} when t is in [t2, T2] .
a d

The constant D matrix introduced here depends on k, but does not mix different k values because of the spatial homo-
geneity. In general D, d. ,d will not reduce to 6„5dd because of mixing positive- and negative-frequency solutions.
Conservation of the scalar product (3.2) implies that

3
)
—1/2 ik xya'd'(k t) y D ( V 3

)
—1/2 ik' xyb'e'(k

b' e'

X 'd', dDb' ', b ( a + 'b'kaid' 'fikk' fi bfid flak k'
a'd' b' e'



39 STATISTICS FROM DYNAMICS IN CURVED SPACETIME 3601

'd', b
a d

(3.3)

where the last line is the scalar product between
[ V&3(t)]

—1/2eik xpad(lt t) and [V&3(r)]
—1/2eik' xet.gabe(lti t)

Therefore,

Our fields are complex, so that Ak
'" is the creation

operator for an antiparticle in mode P,+' (k, t)e'"'" and
A k

'" is the annihilation operator for a particle in mode

P, ' (k, t)e'"" .The commutation relations can be writ-
ten in a compact form.

Bose-Einstein:
Through a little bit of algebra, one can show from (3.3)
that

g ( —a')D, d, ,d,Db*, , d. = a5,—b5d, .
a d

(3 4)

Furthermore, if D,d, d does not commute with the ma-
trix ( —a)5„,5dd, which is the case when D,d, .d. is not di-
agonal in aa ' due to mixing between positive- and
negative-frequency solutions, one has

X Dad, a 'd'Dbe, a 'd' +5ab 5de
a'd'

(3.5)

The field operator P can be expressed in terms of
creation and annihilation operators of particles in the
modes specified earlier:

Idl[Ak, Ak" t]=—a5„.5d„5„„,
[~ " ~,'d']=0.

Fermi-Dirac:

I ~ k ~ ~ k' } 5aa'5dd'5kk'

IA'" A' }=0.
Using (3.4), (3.5), and (3.9),

[&k' &k"']=5kk X ( b».d,
—
b.D.*d,b.

be

[&ad &a', d'] 0

(3.10)

(3.11)

Va3(t)] 1/2eik xyad(k, r)pad
adk

(3.6)
Iak, ak } =5kk g D,d, b D, „„,ad a'd''t

be

I I

a k" = g D,d, ,d, /I k
"

a d
(3.9)

In the early and late universe the field can be written as

p= g ( VQ 3
)
—1/ e'k xpad(it t) g ad

adk

when t is in [Ti, t, ], (3.7)

g ( V&3 )
—1/2eik xyad(lt r)a. ad

adk

when t is in [t2, T2], (3.8)

where the ak" annihilate particles at late times. Equation
(3.6) reduces to Eq. (3.7) when t is in [Ti, t, ], but after
the system evolves, so that t is in [t2, T2], Eq. (3.6) as-
sumes the form

3
)
—1/2eik xD isa'd'(k t) g ad

adk a'd'

when t is in [t2, T2] .

This must be the same as (3.8), so

+5aa '5dd'5kk'

if there is mixing between negative and positive modes.
Therefore we claim that the Bose-Einstein commuta-

tion relation is the invariant relation that should be im-
posed to quantize the field. By invariant we mean the
commutation relation is carried along with the physical
system's evolution without changing form.

This argument applies to neutral fields as well, where
A +k and 3 k

'" are the creation and annihilation opera-
tor for particle in mode e'"'"P '"(k, t).

B. Case II. Fermi-Dirac statistics
for half-integer-spin fields

Because the coefficients of the spinor field equations are
complex matrix functions, it is no longer true that solu-
tions exist as complex-conjugate pairs. The spinor equa-
tion is of first order. It is known from the theory of first-
order diff'erential equation system that the eigenvectors
[ Va (t)] ' e'"'"1(t' (k, t), called mode functions here,
can be normalized such that

([V& (t)]
—1/2eik xyad(k &) [ V&3(&)]

—1/2eik' xq d'a(I

Similar to case I, let I = 1,2, define ital (k, t) as

iaaf& t

gl"(k, t)=e 'yk" for spin s =
—,
'

(3.12)

[gl"(k, t)]„=(111„e ' gk" for spins s =—,',
where y are defined in Table I. Then functions ( Vaj) '/ e' "gl (k, t) have the normalization of Eq. (3.12) where t is in
intervals [tI, TI ].

We take the mode functions to have initial form

iti'"(x, t)=-(Vaj) '/ e' "g;"(k,t) when t is in [T, , t, ] .
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Then

g'd(x, t)= g (Va23) '/ e'k'"fz (k, t)D, .d. ,d when t is in [t2, T2] .
a d

From (3.12) one has

g D, d. ,d(Va2) ' e'"*itiz (k, t), QDb, b, (Va2) ' e'" "gz'(k', t) =5kk5, b5d, .
a d b' e'

Therefore,

X a'd', ad a'd', be 5ab5de
a d

or

[ak, [al, a ]+ ]=25kla

[a„,[a, , am ]+ ]=0,
akal Io & =~5kl 10 &

(4.1)

(4.2)

and

g D d, 'd'Db, 'd' 5 b5d
a d

y ( a')D,„,d D—b", , d X a5,b5—d, ,
a'd'

(3.13)

(3.14)

Here l0) is defined by ak l0) =0 for all field modes k;
[A,B]+=AB+BA, with upper sign referring to para-
Fermi statistics and the lower sign referring to the para-
Bose statistics; and p is a positive integer. For p =0,1,2
(4.1) together with (4.2) are equivalent to the following
self-contained sets of commutation relations:"

if D,d, .d. does not commute with —a5„5dd .
Like tensor field operators, the spinor field operators

are also undergoing Bogolubov transformations:

g [ Va 3
( t )]

—1 /2e i k x itia d( k t ) A ad

adk

y ( V 3
)
—1/2 ik xyad(I t) A ad

adk

p=0
p=1

p =2:

ai —ak —0,
[ak al ]+ 5kl' [ak ai ]+=o

(ak, al, a )+=25kla 251 ak,

(ak, al, a )+=251 ak,

(ak, al, a )+=0,

(4.3)

(4.4)

when t is in [T, , t, ],
(3.15)

g ( Va 3
)

1/2e1k. xyad(k t)a ad

adk

when t is in [t2, T2],

ak =QDd, dAkQd- a'd'

a d

One now finds by using (3.13)—(3.15), that of the two
quantization schemes (3.10) and (3.11), only the Fermi-
Dirac quantization is invariant under transformation in-
duced by the field's temporal development:

e I

k k' I 5kk' g d, b D 'd', b
be

~aa'~dd'~kk' &

{a',a'"tj =0,
I I

k k' ] 5kk' X ( b) ad, be d be'',
be

a 5aa'5dd'5kk'

because of induced mixing between negative and positive
modes.

V. THE POSSIBILITY OF PARASTATISTICS

A more general method of quantization called para-
quantization has been studied in the literature. ' The
basic commutation relation for paraquantization of a
given order p are

[ak", {ak"',ak-" I]=2(—a)5..5dd'5kk'ak-'

[a ad
{a a'd, a a "d"

I ]
—0

a k
' lo & =5..5dd'5kk'l0 &

(4.5)

(4.6)

When (4.5) is subjected to (3.4), a Bogolubov transforma-
tion of Bose type, its form does not change; but it does
change when subjected to (3.13), a Bogolubov transfor-
mation of Fermi type. At the same time, (4.6) is invari-
ant. Consider the scalar field. The Bogolubov transfor-
mation is ak=ak Ak+pkA „with i~2k l

—0k I

= I and
the late-time vacuum is

f3~k~ )"k"l~ ~kk& .
k nk=o

From A k A k l0) = l0) it is easy to see that aka„ l0) = l0).
The above method cannot be easily generalized to

prove the dynamical invariance of the commutation rela-
tion of an arbitrary order p. It is obvious that (4.1) is in-
variant, but invariance of (4.2) cannot be straightforward-
ly justified due to the fact that, to our knowledge, the ma-
trix elements of the creation and annihilation operators

where ( A, B,C)+= ABC+CBA.
In the last section, we have seen that the ordinary com-

mutation relations, which correspond to p = 1, are
dynamically invariant. Indeed, one can also see this by
examining (4.1) and (4.2) if they are dynamically invariant
when p =1. For example, consider the Bose case. In the
notation of the previous section, Eqs. (4.1) and (4.2) with

p = 1 take the form:
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for p ) 1 have not been calculated.
However, we can verify that the self-contained sets of

commutation relations of order p =2 are dynamically in-
variant. That can be seen by writing (4.4) in the notation
of Sec. IV. Then one has
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a'd' adt a "d" ~ a+k' ak k" /+ (~kk'~ '~dd'+k"

Q d+~kk"~ "~dd" k'

( + k' a k a k" ~ — 2( a )(~kk'5 '~dd'~ k"

Q'6'
~kk" ~ "~dd" k'

APPENDIX A

We define the tensors Ek and spinors gk appearing in
Table I in the following. Ek„ for spin-1 field:

Eok = ( Ikl /m, k'k/mlk
I ),

E„'=(0—, +2 '/ (e„,+ie„)),
le„, l2= Iek2I'= l, ekl ek2 ekl k ek2 k

( ad a'd' a "d"f lk Qd
k k' k" / — 2( + )5k k"~ '"~d'd"~ k'

(aad aa d &'a 'd
)""0 Ek„Ek.n" —4d

k "E"„=0.kp

E*"=(—l) Ekp kp

The above sets of relations are invariant when subjected
to the Bogolubov transformation corresponding to the
appropriate spin fields as can be found by using para-
Bose commutation relations for integer spin fields and
para-Fermi commutation relations for half-integer spin
fields.

The self-contained sets of commutation relations of or-
der @=3,4 have also been checked to be invariant. See
Appendix C.

Ek„ for spin-2 field:

E+2 E+1E+1
kpv kp kv

Ek„,=6 ' (E„+„'Ek„'+Ek),'Eq~'+2Ek„Ek~) )

E41 Ed +pp +VV —
Q

k "E" =0 gP E" =0
kpv kpv

yk" for spin- —,
' field:

VI. SUMMARY AND DISCUSSION

In conclusion, we have shown that the symmetries and
nondiagonality of the dynamically induced Bogolubov
transformation determine the statistics for a field propa-
gating in a curved spacetime with two embedded flat re-
gions. Various commutation relations were considered in
the flat regions, and the spin-statistics theorem in flat-
spacetime was inferred by showing that only when the
appropriate commutation relations were imposed were
they consistent with the dynamics. One can also infer the
flat spin-statistics theorem from physical continuity by
taking the limit in which the deviation from flat space-
time becomes arbitrarily small, and requiring that the
dynamically consistent commutation relation does not
discontinuously change in the limit of flat spacetime. We
note, however, that the demonstration in this paper is
nonperturbative. Our proof makes essential use of
curved spacetime dynamics- because in flat spacetime the
Bogolubov transformation reduces to the identity. The
quantum fields we consider are interacting with a gravita-
tional field of arbitrary strength, but are free in other
respects.

Finally, we note that the commutation or anticommu-
tation relations of the creation and annihilation operator
are equivalent to the corresponding commutation or an-
ticommutation relations of the fields and their conjugate
moments.

In this paper we have considered massive fields with
spin value up to 2. Our method of proof should work for
a field of any spin if its Lagrangian is known.

gad— d=o'k
m —a coI,

9k

1

k, +ik2
sgn(d)lkl+k3

APPENDIX B

In this appendix we derive the covariant derivative re-
lations used in the vierbein formalism. For a Lorentz
vector P", D„(t) = V„"(a„+r„"))',y',

(f ()))B 1( (1) )B VDgVE
p C 2 ~DF. C

(~DE ) C ~D )EC ~E /DC ~[D 9E]C
(1) B B B B

(i ()))B pc 1 VD VEg 2$ B pc
p C 2 g;p [D E]C

= v' v ~. y'= —v'. y~c;p gp

Note that the a, d in the denominator above have the
same value as the a, d in the superscript on yk"..

gfadga 6

yk"„ for spin- —,
' field:

,a+3/2 E+l,a+1/2
&kp kp &k

a+1/2 3
—1/2(21/2EO, a+1/2+E+1+a+. 1/2)

+kp kp& k kp +k

fad a '1' pv
+kp +kv I ~aa'~dd' &

y"y'" =0 k "y'"=0
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+ f (11)B yC —g ( VB yv) VB

= VB.(y" „+r",„y~) .
Then

D yB —V pVB p yv

For a Lorentz tensor ()5 ", one has D A p= V„"V V „V„P ', which can be obtained similarly by
noting that

(+ AB) EF (+AB ) E5 F+5 E(+AB ) F
(2) CD (1) C D C (1) D

For a Dirac spinor,

(~'AB") t3= .'—([—XA XB]) P

with IyA, yBI = —2qAB. For a spinor-tensor g, we
have

(~(3121)aD —(~(1/2))a rD +5a (
(11 )Dowe pF o~a p F p oar F

where a,P are the spinor indices. Then the relations list-
ed in Sec. II follow.

APPENDIX C

To show the higher-order paracommutation relations
invariant under a Bogolubov transformation induced by
the field's time evolution, we introduce the following no-
tations:

ak =(ak, at, )

with ak the annihilation operator and ak the creation
operator:

0 if a- =a/„a-=a/,
0 if ak =a/„a/=a/

1

ta;, a2, . . . , a ]+=n — sgn~ ~ ) m'1 m'2
a &a& -.a&,

~vs„

with S, the permutation group, and 1 referring to para-
Fermi case and sgn(m ) referring to para-Bose case.

Reca11ing (3.13) and (3.3), one has

a'd'
b' e'

~a'b'~d'e'~k. k'Dbe b' e'a
v

~ab ~de ~k k'

Here upper 1 refers to para-Fermi case and lower —a
refers to para-Bose case. The above

—a ~ab ~de ~k.k'

is just the 5' —'(k, l ). Therefore 5' (k, l ) is invariant un-
der Bogolubov transformation. Using the analogy with
Lorentz invariance, the Bogolubov invariance of the fol-
lowing self-contained commutation relations follow:"

if ak =ak a/ a/

+6k/ if a- =akm)a-=a/,

with the upper sign for para-Fermi case and the lower
sign for para-Bose case:

p =0: a-=0,
A A

p =1: [ak, at]+=5' —'(k, l ),
p =2: [ak, at, a ]+=4[5' '(k, l )a +5'—'(I, m )a&+—5( —'(m, k)at],

p =3: [ak, a;,a, a„]+=10[5' +—'(k, l )[a,a„]++5'—'(k, m )[a„,at]++5' —'(k, n )[at, a ]+

+5' '(I, m )[—ak, a„]++5'+—'(I, R')[a, ak ]++5' '(m, & )[a—z, at ]+ I

—18[5'—'(k, l )5'*'(m, R')+5' '(k, m )5' —'(R', I—)+5' —'(k, n )5(—'(l, m )],

p =4: [a&,at, a,a„,a&]+=20I5'+-'(k, l)[a,a„,a&]++5' +—'(k, m )[a,at, a&]+

+5' —'(k, R')[at, a, a~]++5' —'(k, r )[a„,a, at]+
+5' —'(l, m )[a„-,a„,a~]++5' —'(l, n )[a~,a, a„-]+

+5' '(l, r )[ak,a, a„]—++5'+'(m, R')[ak, at, a~]+

+5' '(m, r)[a—„,at, ak]++5' '(R, r)[az, a—t, a ']+I
—128[5'—'(k, I )5' —'(m, & )a +5' —'(k, I )5' —(r, m )a +5' '(k, I )5' '(n, r )a- —

+5' —'(k, m )5' -'(R, l )a~+5' —'(k, m )5' —'(l, r )a„+5'+—'(k, m )5' —'(r, n )a-,

+5' —'{k,n )5' —'(l, m )a +5' —'(k, n )5' —'(r, l)a +5'+—'(k, n )5' —'(m, r)a-

+5' —'(k, r)5' —'(m, l )a„+5'+—'(k, r)6' +—'(I, n )a +5' —'(k, r )5' —'(n, m )a-

+5' —"'(l, m )5' '(R, r )ak+5—'"—'(l', n )5' '(r, m )a&+5(—'(—l, r )5' —'(m, n )a&] .
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