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The evolution of perturbations in a Friedmann universe is investigated by using a new method.
In a first step fluctuations of the density, the pressure, and the four-velocity are removed by per-
forming a gauge transformation. Subsequently the problem can be solved and that solution is finally

transformed into some important gauges. With the help of this method the evolutions of all possible
perturbations are classified; this leads to a physical interpretation of the obtained solutions. The
complete solution of the density Auctuation in the de Donder gauge is given here for the first time;
the result obtained by Rose, Rahmstorf, and Dehnen is not valid in the case of a really perturbed
universe.

I. INTRODUCTION

The investigation of gravitational instability of pertur-
bations in a homogeneous isotropic expanding universe is
usually performed by employing linearized field equa-
tions; i.e., the relative smallness of the perturbations in
pressure, density, and velocity as well as a coordinate sys-
tern with a metric near the Robertson-Walker metric is
presumed. We also proceed in such a manner: we are in-
terested only in the beginning of the development of a
small perturbation. One has to bear in mind that an in-
stability analysis in such a way is not justified if effects of
higher order, becoming more and more important when
the perturbation grows, reverse this tendency.

Perturbation quantities are constructed by subtracting
from the full quantity at a space-time point x in the per-
turbed universe the background quantity at the corre-
sponding space-time point x in the fictitious Friedmann
universe. The choice of such a correspondence defines a
gauge. We define other gauges by performing
infinitesimal transformations of the coordinates of the
perturbed space-time, keeping the background coordi-
nates fixed. By means of a so-called gauge condition —a
condition concerning some of the perturbation
quantities —we select a definite set of coordinate systems.
Unfortunately, the perturbation quantities are gauge
dependent; therefore, only some gauges yield a relative
density fluctuation suitable as an indicator for stability of
that perturbation.

In the literature one finds some gauges which were pro-
posed in this context; Refs. 1 —3 contain a selection of
those. The results are systems of coupled differential
equations for the perturbation quantities which are,
mostly, soluble only in special cases. Another treatment
in order to avoid the choice of a gauge condition was per-
formed by Bardeen. Out of metric and matter perturba-
tions he constructed gauge-invariant variables satisfying
relatively simple equations which he could solve explicit-
ly. However, these combinations are not interesting al-
though, as Bardeen has emphasized, they have in conse-
quence of their gauge invariance an inherent meaning.
The limitation of the original quantities, especially of the

relative density perturbation, in an admissible coordinate
system is a criterion for stability; the limitation of the
combination does not exclude a correlated increase of the
original quantities.

In this paper we present a new method for studying the
time development of perturbations. We choose a gauge
in such a manner that all fiuctuations of matter (i.e., per-
turbations in density, pressure, and velocity) vanish and
only pure metric fiuctuations remain. In that system (we
call it in the following always the "pure-metric-
fiuctuation system") the problem simplifies so dramatical-
ly that we succeed in decoupling the system of differential
equations describing the evolution of the perturbation
and, for an equation of state which is simple enough, also
in solving it. After that we transform this solution into a
desired gauge.

The density contrast modes which arise thereby permit
a physical interpretation, because their origin is made
transparent. We will see that there are modes whose
coefficients are connected directly with the "history of
the universe" in question. The coefficients of other
modes, on the contrary, can be chosen arbitrarily without
changing that history. Those modes reflect merely the
remaining freedom in the choice of the coordinate system
within the imposed gauge.

The notation "history of the universe" is understood
here as a class, consisting of all sets of perturbation quan-
tities (as functions of space-time) which can be identified
by means of infinitesimal coordinate transformations.
Thus all sets belonging to one class describe the same per-
turbated universe relative to different coordinate systems.
It is a result of our transformation method that we can
enumerate without ambiguity all possible histories of the
universe (i.e., all classes specified above) by means of two
parameters.

It is a second purpose of this paper to supply density
contrasts in some gauges. In part these results may be
found already in the literature: in the case of the de
Donder gauge, which has been proposed recently by
Rose, Rahmstorf, and Dehnen as "best adjusted to the
physical problem under investigation" the solution is
given for the first time. We will see that their solution is
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not the general one; they have merely treated the
academic case of an unperturbed Friedmann universe in
displaced coordinates.

The plan of this paper is as follows. In Sec. II we study
the infiuence of infinitesimal coordinate transformations
upon the perturbation quantities, Secs. III and IV present
the mathematical framework of our transformation
method, Sec. V deals with the classification of all possible
histories of the Universe demonstrated by using a simple
equation of state and Sec. VI presents density contrast
modes for other equations of state in various gauges.
Some conclusions complete this paper.

Rotation. We use the same notation as that in the
book of Weinberg. Instead of BfIBt we write f and h,
means Bh/Bx'. Finally q in exp(iqx) is di6'erent from
zero unless otherwise indicated.

'U'"(x )='U"(x ) —i "(x ) . (2.7)

Finally, the perturbation metric defined by

h„(x ) =g„(x ) —g„(x ), (2.8)

where g„(x ) is the Robertson-Walker metric (2.1),
transforms as

h„', (x )=h„(x )+e„(x ).,+e,(x ).„. (2.9)

III. TRANSFORMATION INTO THE
"PURE-METRIC-FLUCTUATION SYSTEM"

Note that the formulas (2.4), (2.5), (2.7), and (2.9) are val-
id only in the first order.

II. INFINITESIMAL COORDINATE
TRANSFORM ATIONS

For, simplicity we restrict ourselves to a Friedmann
universe with vanishing spatial curvature as background.
We choose the coordinates in the background such that
we get for the metric

We consider a perturbation which has two-dimensional
symmetry planes; i.e., in suitable coordinates all pertur-
bation quantities shall depend only on x ( =x ') and t
( =x ), but not on y ( =x ) or z ( =x ). Beyond that we
demand that ' U and ' U both vanish in order to exclude
rotational perturbations which would disturb the symme-
try.

This symmetry allows the introduction of coordinates
such that the metric adopts the form

goo= 1 gJ=R (t)5J (2.1)
dr = g,b(x, t)d—x'dx f(x, t)(dy +—dz ), (3.1)

(all other components vanish). R (t ) is the scale factor of
the Universe and the index 0 refers to the background.

Now we study the inhuence of the infinitesimal coordi-
nate transformation

where

a, b=0 or 1 . (3.2)

x'~=x"—E"(x ) (2.2)
Note that g, b and f depend on x and t only.

Comparison with the metric (2.1) shows

upon the perturbation quantities. This changes the
correspondence between points in the background and
points in the physical space-time. The properties of that
transformation are well known and easily derived. For
the fiuctuation of the energy density p (that is, the coordi-
nate scalar T" U„U, where T" is the energy-
momentum tensor of the perfect Quid and U" is the four-
velocity) defined by

pi(x )=p(x ) —po(x ), (2.3)

p', (x )=p, (x )+po(x )e'(x ) . (2.4)

Analogously, we get for the fluctuation of the pressure p
the transformation formula

p', (x )=p, (x )+Po(x )e'(x ) . (2.5)

Similarly, the Auctuation of the four-velocity defined by

' U "(x '"
) —= U"( x ) U"(x ")— (2.6)

where U" is the background four-velocity ( —1,0,0,0),
transforms as

where p(x") is the energy density at the space-time point
x in the perturbed universe and po is the energy density
at the space-time point x in a fictitious Friedmann
universe (the background), we obtain the transformation
law

goo(x t ) = 1 +igloo(x r )

goi(x r)=hio(x r)

g»(x, t)=R'(t)+h»(x, t),
gp2(xyt ) g33(xy& )=R (t )+h22(x&t )

(3.3a)

(3.3b)

(3.3c)

(3.3d)

The thereby defined h „(x,t) (all other components van-
ish) should be small compared with the corresponding
background quantities.

We use the field equations for the perturbation quanti-
ties in first order in the form

66" = —8~G6T" (3.4)

2R .
2 2R

&
2»

2 R 0

= —8vrG(pi+pohoo) (3 5)

where 6" is the Einstein tensor and T" is the energy-
momentum tensor for a perfect Auid. We choose that
form in order to obtain difFerential equations containing
only first time derivatives (the Op constraints). They will
help us later to solve the problem. From (3.4) we obtain
after a simple and straightforward, but rather lengthy
calculation the following equations.

00 component:
'2

R R—6 — h ——h
R R
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01 component:
2

R 1 R hoo 1
3 —h', ——

R ' R R'
h 2,2

R

= —8m.G [poh o+ (po+ po)' U'] (3.6)

not the fluctuation of the pressure p1 also vanishes in that
coordinate system. With the help of (2.4) and (2.5) one
can very easily show that the following criterion holds: p1
and p1 can be transformed away simultaneously if and
only if

11 component:
2

2R R
R R

h + h +—h +h

= —8~Gp, . (3.7)

22 component = 33 component:
2

2R RR+ R
h + 3Rh1+3 Rh2+Rh +2R ' R 00 2

1 00, 11

2 2R

2h 211

2R
3R h,

0, 1 0, 1

= —8~6', ~ (3.8)

p&+ (pi+pi)+(po+po)['U' i+ —,'(h ')+h q+h 3)]

=0 (3.9)

Additionally, we get from the conservation of the
energy-momentum T" . =0, in first order, conservation
of energy

p i /pi =po/po . (3.15)

We now assume that (3.15) is satisfied and perform the
transformation (3.11)—(3.13) in order to remove all
matter fluctuations (those of energy, density, pressure,
and four-velocity).

In the new coordinate system we obtain, from (3.5),
(3.6), (3.9), and (3.10) [we have used the conservation
equations instead of the dynamical equations (3.7) and
(3.8)],

2

Equation (3.15) is satisfied if the equation of state under
consideration is valid not only for the background quanti-
ties but also for those in the perturbed universe and if the
pressure in that equation can be expressed by the energy
density p exclusively or vice versa. Namely, in this case
we have p, =(dp/dp)oui, (0 refers to the unperturbed
background) and po = (dp /dp)ot'io and this leads to (3.15).
For example, p=wp (w = const) and po=wpo satisfies
our criterion and we obtain a gauge-invariant expression
for the ratio p, /p, :

(3.16)

and conservation of momentum

po+po
u11+ 2

h o1

8~6P0 —6
R R ~

1 2R——h — h
R ' R

h 2, »
R

(3.17)

+ + [(p o+p o)(' O'R +ho, )]=0 .
Bt R

(3.10)

2
R R hoo, 1

3 — +8+Gp h ' ——
R

h 2, 1
2

=0,
R

(3.18)

Now we want to perform the transformation into the
pure-metric-fluctuation system. For that purpose we
choose the transformation

h 1+2h 2=0 (3.19)

e'(x, t ) = —p, (x, t ) /po( t ),
e'(x, t)= f ['U'(x, t')dt'],

(3.1 1)

(3.12)

oo 1 R Po Poh +
2R R po+po

(3.20)

e =e =0. (3.13)

In the new coordinate system the following relations ob-
viously hold:

1Ut 1 0P1 (3.14)

We now investigate the important question of whether or

We are now in the position to decouple this system of
differential equations. We express h 2» by means of Eq.
(3.17), use (3.19) and differentiate with respect to the
time. Next we form the expression for the same quantity
using (3.18) and differentiating with respect to x. Equat-
ing both expressions and differentiating with respect to x
again we arrive at

(5R +2RR+8mGpoR )h'o, i
——hoo „,=(6R —8~GpoR )'hoo, +(6R —%rtGpoR )hoo, 2RRh 'o „. —(3.21)

We remove boo» „hoo», , and boo, with the help of (3.20) and obtain finally a differential equation for h o:
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~ ~

2RR —5R +8~GpoR 2R—R h'o „2R—(6R —8mGpoR )h 'o
Po Po

2R (6R —8vrGpoR )'+(6R —8+GpoR ) 14RR+2R
L

Po +Pp
h'o

2P6+Po+ (6R 8m.G—poR ) 10RR+2R
Pp+Po

h'o . (3.22)

With that we have succeeded in decoupling the coupled
system of differential equations describing the develop-
ment of the perturbation regardless the form of the equa-
tion of state provided that our criterion (3.15) is satisfied.

IV. TRANSFORMATION INTO SOME GAUGES

, hoo(x, t')
E = dt

2
(4.5)

Note that the prime in (44) indicates the synchronous
system in this context. Similarly, hol'=0 imPlies h

' 'o=0
and thus we have, with the help of (2.9),

Before performing such transformations we study the
inhuence of the remaining freedom in choosing our coor-
dinate system within the pure-metric-Auctuation gauge.
The requirement pl =pl=0 leads to the conclusion that e'
must vanish. Similarly, the vanishing ' U' and 'U' ' allow
a e'(x ) with e '(x )=0. Equation (2.9) shows that this
remaining freedom of performing transformations does
not change boo and h 'o but might add to h ', and h 2 or
l6 3 a function which does not depend on time. We re-
strict ourselves to such coordinate systems which reveal
the symmetry properties of the problem; i.e., all perturba-
tion quantities shall depend only on x and t. Thus that
function can depend only on x. The integration of (3.19)
yields

h';(x )=~(x) . (4.1)

A. Transformation into the synchronous gauge

This gauge is characterized by the condition

We now see that r(x ) has no deeper meaning but refiects
merely the remaining freedom of performing transforma-
tions within the pure-metric-fluctuation system.

From now on we assume a dependence of all perturba-
tion quantities on x proportional to exp(iqx). Realistic
cases must be treated by Fourier composition of the
thereby obtained solutions.

O=h' ' =h' + ' +i' .0 0 (4.6)

The solution for e' reads

hoo(x t )dte'= J dt' iq I —h'o(x, t') . (4.7)
2R

The density contrast is de6ned by

&=pi~(po+S'o) .

With the help of (2.4) we get, for the density contrast,

(4.8)

Po

Po+Po
(4.9)

B. Transformation into the Lagrangian gauge

Here we demand

'U' '=A' ' =00, 1 (4.10)

This set of coordinate systems corresponds to an observer
who is comoving with the fiuid. With the help of (2.7) we
obtain

where e' is the temporal component of the transformation
from the pure-metric-fluctuation system into the con-
sidered gauge; in the case of the synchronous gauge E' has
to be replaced by (4.5).

h„,p
—=-0 . (4.2) 0 1Ut 1 1U 1 ~ 1 ~ 1 (4.11)

It distinguishes a set of coordinate systems corresponding
to an observer who moves free-falling in Newtonian ap-
proximation. This can be seen easily by considering the
equation describing a geodesic in the limit of a slowly
moving particle; we obtain, in the lowest approximation,

j d~ ' . ] BAop+— boo =
2 dt 2R ~ dx' io (4.3)

With the help of (4.2) this equation reduces to
d x'/dt =0; i.e., the observer does not realize a gravita-
tional potential. With the help of (2.9) we obtain

O=h op=hop 2E

This yields

e' =E exp(iqx ), (4.12)

where E is a constant.
Next, we get, from h' pl=0,

e= —R ho.l 2 1 (4.13)

C. Transformation into the de Donder gauge

Here we demand that the following condition holds:

(4.14)

Of course, the prime here indicates that the quantity
refers to the Lagrangian gauge. Equation (4.11) yields



39 EVOLUTION AND CLASSIFICATION OF COSMOLOGICAL. . . 3583

The de Donder gauge corresponds to the point of view of
an observer who is fixed on the background in the sense
that he obtains the correct Newtonian limit. Arguments
for it are given by Rose, Rahmstorf and Dehnen.

With the help of (2.9) and noting the commutator rela-
tions for the convenient derivatives, we obtain, from
(4.14),

h 'o=(A&t' + Azt ~ )exp(iqx) (5.5)

with two constants A, and A z. With the help of (3.20) it
follows that

with arbitrary functions 3 1 and A 2 depending only on x.
We consider here only perturbations proportional to
exp(iqx ); thus we have

0e'.z
—eR „=—Q„,

where R „is the Ricci tensor and

Q„=h „.q —
—,h q.„.

For e =e'=0

(4.15)

(4.16)

j/0 K
3

h 00 A, exp(iqx ) . (5.6)

(The appearance of the imaginary unit i means that h '0 is
phase shifted by ~/2 with respect to boo. ) By means of
Eqs. (3.17), (3.18), and (4.1) we obtain [note that
r(x ) =r exp(iqx ) with a constant r]

2
~t 11 .. R+3

R
3R . 2R 3R ~, +&

8 22~3 i 8 K iK 80
q 3 q3 t q3 9

(4.17)
X exp(iqx ), (5.7)

R . 2(RR+2R ) 2R
1 R 1+—E ——E + E 1 R t, l 1

where

Q =h — h ——It — It
3R R 1 2R
R R ' R

0
j

h00 h —h
2 2 2'

(4. 18)

(4.19)

4 22~3 ) 4K sK 40
2 3 1 3t 2 3 9 1

Xexp(iqx) . (5.8)

We can check these solutions by inserting them into the
dynamical field equations.

We are now in the position to perform the transforma-
tions into some gauges. These yield the perturbation [ex-
pressed by (5.5)—(5.8) in the pure-. metric-fluctuation sys-
tem] described from the point of view of these gauges.

A. Transformation into the synchronous gauge

We have to solve this coupled system of differential equa-
tions in order to obtain e' and e', with the help of the
latter and using (4.9) we get the density contrast in the de
Donder gauge. The mathematical scheme of the trans-
formation method is not completely presented; in the
next section we will solve Eq. (3.22) for a simple equation
of state and will study the development of perturbations
in such a universe.

V. THE DUST UMVERSE

Such a universe is characterized by a vanishing pres-
sure. Although that kind of equation of state is not very
realistic with regard to the formation of galaxies, the fol-
lowing calculation shows all important features of what
we can learn about the treatment of a perturbed universe
from our method. Therefore we consider it here in detail.
The Friedmann equations imply

From (4.5) and (4.7) we obtain, with the help of (5.5)
and (5.6),

ix'e'= — t ~ A, exp( iqx ) +A,„„exp(iqx, ), (5.9)

e'=3 A2 — " t '~ exp(iqx)+II, „exp(iqx),
K

(5.10)
where A,s „and II, „are arbitrary constants which arise
by integrations in (4.4) and (4.6). These constants have
no deeper meaning; they merely reAect the remaining
freedom in pe&forming transformations within the syn-
chronous gauge. Equations (5.9), (5.10), and the transfor-
mation formulas of Sec. II yield, for the perturbation in
the synchronous gauge,

2iK . 2/3 2~syn
A &exp(iqx )t — exp(t'qx ), (5.11)1

R (t)=Kt, K =const,

Po=(6~Gt )

(5.1)

(5.2)

1q AtsynU,„„= A2 — t exp(iqx ), (5.12)

Inserting this in equation (3.22) we obtain

h' +2h1 — 4 h' =0.0 t 0 9 2 0

The general solution is

h' =A, (x)t' +A (x)t

(5.3)

(5.4)

q ~syn
hsyn z

= ~+6
2 +iqA2 t

+211,„„— A, t + ex p(iqx ) .
4/K 2 y3 4~syn

q

(5.13)
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B. Transformation into the Lagrangian gauge gP= pP+g' P (5.18)

Equations (4.3) and (5.5) imply

e = — A, t exp(iqx ) — A2exp(iqx ),1K 5/3, LK

q q.
(5.14)

and inserting this into (4.9) we obtain for the density con-
trast in the Lagrangian gauge (p)h „=h„+e„.+e .„, (5.19)

Let h' '„be the metric obtained by transforming our
first set (p„' U~, h„) into the pure-metric-fluctuation sys-
tem and h „'

' the metric which we obtain by performing
the same procedure starting with our second set
(p', ,

' U' ~, h '„). We have

5L = /f, t exp(iqx)+ — —/f 2t exp(iqx ) .2iK 2/3 . 2iIC h (p)„=h' +~'„. +~' .„;
(5.18) yields

(5.20)

Note that the remaining freedom of performing transfor-
mations within the Lagrangian gauge has no inAuence
upon the density contrast. Sakai has expressed this fact
by stating that in the Lagrangian gauge, in opposition to
the synchronous gauge, a fictitious density contrast mode
does not exist. In agreement with him we find here a t
and a t ' mode (we do not give the solutions for 'UL and
h j, here).

A very similar result was obtained by us in the syn-
chronous gauge, but the t ' mode there has a different
meaning. Namely, in the synchronous gauge the corre-
sponding coefficient has no relation to the history of the
universe in question, whereas in the Lagrangian gauge it
has.

In order to elucidate this we consider the solution in
the pure-metric-fluctuation system (5.5) —(5.8). We found
at the beginning of Sec. IV that App and h p do not
change within the pure-metric-fluctuation gauge; thus the
constants 3

&
and 3 2 have an inherent meaning. Their

values determine the history of the universe.
Let (p„h„,'UJ) and (pI, h'„, 'U'J) be two representa-

tives of the same class; i.e., one of these sets can be car-
ried over into the other by virtue of an infinitesimal coor-
dinate transformation. They both describe the same per-
turbed universe. Let e" be the transformation from the
first-coordinate system (to which our first representative
refers) into the pure-metric-fluctuation system, e'" the
transformation from the second coordinate system into
the latter, and e" the transformation from the first co-
ordinate system into the second. With the help of (2.4)
and (2.7) we obtain

I (p) —I (p)
)MV LMV

(5.21)

This shows that both sets are related to the same pair
(A, /A2). Moreover, consider two sets with difFerent
pairs (A, /A2) obtained by transforming these sets into
the pure-metric-Auctuation system. In this case a trans-
formation e" which transforms the first set into the
second cannot exist, for then, according to the above ar-
gument, (5.21) would hold, which implies the equality of
the two pairs.

We have therefore shown that the pairs ( A, /A 2) clas-
sify all possible histories of the perturbed universe; the
map between the history classes [(pi, 'U~, h„)] and the
pairs (3, /A2) is bijective and does not depend on the
particular representative of the class. The pair (0/0) cor-
responds to the unperturbed Friedmann universe, be-
cause in this case in the pure-metric-fIuctuation system
all fluctuations vanish (choose r=0). This complete spa-
tial homogeneous and isotropic space-time must be the
Friedmann universe.

We now see that the coefficients of some of the density
contrast modes (as, for example, that of the t / mode in
the synchronous gauge) are related to the history of the
universe in question; the coefficients of other modes like
that of the t ' mode in the same gauge are not at all re-
lated to that history and can be chosen arbitrarily. Note
that in the synchronous gauge A z does not appear, thus,
and that is a lack of that gauge, 6 does not reproduce the
complete information about the history of the universe in
question. The diferent worlds (0/0) and (0/A2) (where
32&0) are described in this gauge by the same density
contrast.

E' =6 +6
e'= e '+ e' '+c'(x ),

(5.16)

(5.17)

where c'(x ) are arbitrary functions depending only on x.
We have seen at the beginning of Sec. IV that such func-
tions c '(x ) merely reflect the freedom of performing
transformations within the pure-metric-Auctuation gauge
and can therefore be disregarded. Thus we can write

C. Transformation into the de Donder gauge

We consider here the case that the wavelength of the
perturbation is large compared with the horizon. For
such q we obtain, from (4.15) and (4.9),

50 iK
51

2/3 + 3&q+ t 1 /3+(2y I &)+2y2 t 7/3+2/1 t 3/2+11 /12+2/2 t 3/211/12()
q

1 2 2 dD + dD dD dD exp i'
(5.22)
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where ydD, ydD, as well as A,dD, A,do, are arbitrary con-
stants which were supplied by the solution of the homo-
geneous system of (4.14). We know that the correspond-
ing modes merely reAect the remaining freedom in per-
forming transformations within the de Donder gauge.

Rose, Rahmstorf, and Dehnen have found only the
two A.dD modes. They have used for their derivation the
approximation

which has the solution

h 'o= 2
&

r J (yt~)exp(iqx )

+ 3 2t I (y t~)exp(iqx ),
where J+ is the Bessel function of order +p and

1 —5W

2+2w

(6.4)

(6.5)

'U' «h j
, 1 j (5.23)

VI. UNIVERSE WITH p =wp, w =const

in the energy-conservation equation in order to decouple
their system of difFerential equations. But this approxi-
mation is not allowed for nonvanishing q even if q is very
small. This can be easily seen with the help of our trans-
formation method by calculating 'U' and h in the de
Donder gauge using the transformation formulas of Sec.
II and the solution of (4.15). One finds that the expres-
sion for 'U' contains, compared with h, one more q in
the denominator, thus q'U' is of the same order with
respect to q as h ~ .

For q=0, however, all derivatives with respect to x
vanish; in that case we can disregard ' U'

1
in the energy-

conservation equation and perform the decoupling. In
our formalism we obtain, for q =0, Qo = 2r/3t, —and in-
serting this in (4.14) we get the Rose result. But q =0 im-
plies that the universe is not really perturbed; the Fried-
mann universe in displaced coordinates is then under
consideration and in this case we cannot expect instabili-
ties provided that the imposed gauge is "reasonable. "
For a really perturbed universe [(2, /Az)W(0/0) and
qAO] we obtain additional modes; if A&%0 we get also
growing modes. Thereby we have disproved the state-
ment by Rose, Rahmstorf, and Dehnen that the growing
mode in the synchronous gauge is a pure coordinate
e6'ect for small q.

Note that the q =0 case cannot be obtained by consid-
ering q~O, for this limit does not exist [a sufftciently
large x prevents exp(iqx ) from being near to 1 regardless
of the smallness of q (q&0)].

3w+1
3w +3
3w +3
3w +1
3w +5p=
6w +2

(6.6)

(6.7)

(6.8)

1 A t(9w+1)/(3w +3)+ A t(6w —4)/(3w+3)
2 (6.9)

We have included all constants in 3, and A2. An analo-
gous calculation like that in the previous section supplies
the other components of h„and with the help of the
transformation formulas of Sec. IV we obtain finally the
following.

Synchronous gauge:

~ 26w + 10 1K (6w +2)/( 3w +3) + syn
A)t(9w+5)(w+1) q

Xexp(i' ) .

Lagrangian gauge:

(6.10)

iK A1 (6w +2) /(3w + 3)
1+w

rK A2 2 t' " ' +" exp(iqx) .
q 1+w

A1 and A2 are arbitrary constants. We consider here
only the case yt~&&p, i.e., a wavelength beyond the
Jean s stability region (characterized by the opposite con-
dition). Thus we can approximate (6.4) by

Finally, we consider an equation of state which is more
realistic (in the time long before the recombination era
m =

—,
' should be a fairly good approximation) than that of

the previous section. The calculations are very similar to
those of the dust-universe case, thus we present here only
the final results.

Using the Friedmann equations p =wp implies

R (r)=Kr (6.1)

de Donder gauge:

5dD (5]+52+53+ham)exp(iqx )

where

iA1 (6w +2)/(3w + 3)

(6.11)

(6.12)

(6.13)

po( t ) = [67r G (w + 1 ) t ]

Inserting this in (3.22) we obtain

(6.2)
~

A t (9w —1)/(3w + 3)

53 cc r ( r= const, arbitrary )

(6.14)

(6.15)

I„' 1

w h' —h' = 2 —4w«0
0, 11 0

(I+9m)(4 —6tU) " o
1

9(tU+ 1) t

(6.3)

We put the spatial part of h 'o proportional to exp(iqx ),
then we obtain a dift'erential equation of Bessel type

and where horn comprises all solutions of the homogene-
ous system of differential equations (4.14) which refiect
the remaining freedom in performing transformations
within the de Donder gauge.

Equations (6.10) and (6.11) are in agreement with Lif-
shitz' and Sakai, respectively. Equations (6.12)—(6.15)
are the complete solution in the de Donder gauge and are
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not in agreement with Rose, Rahmstorf, and Dehnen;
their solution is only valid for the unperturbed Fried-
mann universe for reasons mentioned in the previous sec-
tion. We see that for all w and for A, WO one obtains
growing modes in all three gauges mI, th the same ex-
ponent. Again, the pair ( 2, /A2), or the pair ( 3, /2 z)
if we drop the approximation leading from (6.4) to (6.9),
determines the history of the universe. !n the synchro-
nous gauge A2 does not appear; thus the history of the
universe in question can only partially be gathered from
the corresponding density contrast in that gauge.

VII. CONCLUSIONS

Rose, Rahmstorf, and Dehnen have claimed that in
the de Donder gauge for sufficiently large perturbation
wavelength only decaying density contrast modes arise.
We agree with them that the de Donder gauge is ap-
propriate to examine the evolution of the perturbation
and to answer the question whether or not it is stable; but
we saw in this paper that always growing modes appear
provided that the extension of the perturbation is large
enough. Thus the calculation in the de Donder gauge
does not lead, as Rose, Rahmstorf, and Dehnen have
claimed, to an upper boundary for the spatial extension

of unstable density perturbations; in any case not in such
a simple manner.

For later theoretical examinations it may be advanta-
geous to use a gauge-invariant classification of all possible
histories of a perturbed universe. It is provided in this
paper for some simple equations of state. Bearing in
mind this classification one might formulate a necessary
criterion for the qualification of a gauge. If we want to
use the density contrast for description of the evolution
of the perturbation it should supply the complete infor-
mation about the history of the universe in question.
Thus we require that the general expression for the densi-
ty contrast involves A, as well as A 2, where the pair
( 3 &/Az) determines that history. The Lagrangian and
the de Donder gauge satisfy this criterion but the syn-
chronous gauge does not.
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