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Analytic solution of a chaotic inAaton
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We directly solve the Langevin equation of motion for a scalar field in the slow-roll limit for a

kP /4 potential. The probability distribution for the inflaton and several moments of the distribu-
tion are also calculated. An upper bound to the percentage deviation of the mean of the distribu-
tion from the classical value is also derived. For the case of an initially uniform field, non-Gaussian
features only appear when the inflaton deviates from the classical value by more than -A, ' stan-
dard deviations. We also show that in the non-Gaussian regime the slow-roll Langevin equation of
motion is no longer adequate.

I. INTRODUCTION

A number of works have explored the effect of quan-
tum Auctuations on the inAaton. A fruitful approach is
via stochastic methods, developed by Starobinsky. ' For a
recent review of these methods, see Ref. 2. Graziani and
Qlynyk numerically studied the "Mexican hat" Higgs
potential, with the assumption that the scalar field was al-
ways Gaussian distributed. Linde analytically examined
the inAaton probability distribution for chaotic inAation,
and demonstrated the possibility of eternal inAation.
Several potentials were also explored by Bardeen and
Bublik, where they numerically solved for the evolution
of the probability distribution in the slow-roll limit. Fur-
ther numerical work evolved moments of the probability
distribution for the kP potential, again with the
assumption/approximation that the scalar field was al-
ways Gaussian distributed. The issue of whether or not
nonlinear effects could transform an initially Gausian dis-
tribution into a non-Gaussian one was explored in Ref. 6.
They examined the simple m P /2 potential for the case
m /mp, =0.1 (realistic values of m could not be studied
due to a "prohibitive increase in CPU time"), and
claimed that nonlinear effects would be unimportant for
realistic theories in which m is chosen small enough so
that the Auctuation amplitude is consistent with the ob-
served isotropy of the microwave background.

It was also argued, however, that non-Gaussian Auc-
tuations could arise in power-law inAation, as a result of
the curvature of an exponential potential. And more re-
cently, there has been some analytic work, by the same
group, on the evolution of the probability distribution of
the inAaton, in the slow-roll limit, for a wide class of po-
tentials, where it is claimed that non-Gaussian distribu-
tions are a generic outcome of inAation. This is some-
what surprising, as the statistics of the nearly scale-
invariant Auctuation spectrum' should be Gaussian to a
good approximation, due to the extreme Aatness of the
potential. Non-Gaussian perturbations are certainly pos-
sible, but seem to require more complicated mechanisms,
typically involving more than one field. " Here, we ex™
plore in detail the properties of a simple analytic solution
of the Langevin equation of motion in the slow-roll limit

for the A,P potential. We quantify where non-Gaussian
effects might appear, and also discuss the validity of the
slow-roll Langevin equation in this regime.

P+ 3H Q+ d V /d P =0,
where the Hubble parameter H is

(2.1)

H =, [p„,d+p /2+ V{/)] .
3m p]

{2.2)

During inAation, the potential energy dominates the
Hubble parameter, any curvature becomes irrelevant, and
the motion of P is friction-dominated. (If P is very large,
tt ~ mp&/A, '~, the motion of P is quantum fluctuation
dominated. However, scales in the observable Universe
correspond to $~5mp, .) In these approximations, Eq.
(2.1) can be solved:

(=Poex p[ .—a(t /to —1)], (2.3)

where ct—:m p~ /4rrgo, and the subscript cl refers to a clas-

II. STATISTICAL PROPERTIES OF THE A,Q INFLATON

In the popular "chaotic inAation" model of Linde, a
weakly coupled scalar field P emerges from the Planck
epoch with a "random" distribution (which has yet to be
well defined). The idea is then that there must be, some-
where, a suSciently smooth patch of field that is
su%ciently displaced from the minimum so that it leads
to an acceptable Universe (e.g. , solving the horizon prob-
lem and diluting unwanted relics) via inflation. We
brieAy review a number of relevant features of this model,
before we account for the effects of quantum Auctuations.
For detailed reviews of inAation, see Ref. 12.

The potential we consider is V(P)=A,P /4. A smooth
patch of field with P =Po will temporarily exit a
radiation-dominated Friedmann-Robertson-Walker phase
into a quasi —de Sitter phase when the potential energy
V($0) dominates the radiation density p„,~=3/32vrGt
(assuming curvature is unimportant when inflation
starts), which occurs at to =(3m p, /Strkgo)'/, where mp,
is the Planck mass. The evolution of the scalar field P,
with spatial gradients neglected, is given by
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II'"
J rI(t)dr

0
(2.5)

leads to fluctuations ((P—(P )) ) that match the de Sit-
ter result H (t to)/—4vr for a massless scalar field. '

The equation of motion (2.4) is interpreted as describing
the coarse-grained evolution of P inside a given Hubble
volume -H . Fields in different Hubble volumes are
assumed to evolve independently of one another, with
field gradients ignored.

By trying potentials of the form V ~ P" (and using
H ~P"~ ), one finds that Eq. (2.4) can be integrated if
n =4. The solution is

(p„/p) =1 +A, /127r aI(—t/to),
where

t /to
I(t/to)—:I exp[ —2a(s —1)]g(s)ds .

1

(2.6)

(2.7)

In obtaining this solution, H in the equation of motion
was replaced by an expression

ccrc,

which is only valid
for P 0. This is an appropriate solution, however; if we
assume that P is initially positive at the start of inflation
then regions which evolve below P,„d should be
ignored —hence there is no need to also consider the
$(0 solution [which can be obtained by changing the
sign of I in Eq. (2.6)]. We also note that the solution (2.6)
becomes ill-defined if I)+12~ a/A, . However, P has to
be infinite before this solution can become ill-defined, so
the solution never enters such a regime for a physically
meaningful theory. We also mention here that the equa-
tion of motion (2.4) could be reformulated so that the
noise term has H dependence in the correlator
(rj(t)rI(t') ), and in such a case the simple solution (2.6)
for P would be replaced by an integral equation in P. The
inconsistency arises because H is treated as a constant in
the normalization of the noise amplitude with the de Sit-
ter result, but in the actual solution H is allowed to vary
with P.

sical, deterministic solution. The inflationary period be-
gins to fizzle out when the kinetic energy P /2 becomes
comparable to the potential energy, which occurs when

P,„d/mp, = 1/&3m and t,„d /to = 1+0.5a 'lna '. To
obtain sufhcient inflation, the number of e-folds
N = fH dt ~ 60, which translates to the constraint

Po ~ 4.4m p, . To get the correct amplitude of the
inflation-predicted nearly Zel'dovich spectrum of density
perturbations, Auctuations at the time of horizon crossing
should be of order 10 "—10,which leads to values of k
of order 10

Now, we account for the effects of quantum Auctua-
tions on the evolution of the inflaton. A noise term g(t)
is added, in the standard way, ' ' to the equation of
motion Eq. (2.1). In the slow-roll limit, the equation is

P+(3H) 'dV/dg=r)(t)H'~ /2', (2.4)

where g is assumed to be Gaussian distributed, with
(rl(t)) =0 and (g(t)rj(t')) =5(t t'). H—igher moments
can be obtained using the moment theorem. It is readily
verified that the solution of the above equation with con-
stant potential and Hubble parameter,

Using a central-limit-theorem-type argument, the in-
tegral I(t/to) should be Gaussian distributed. Since
(P —P,, ) =0, and

This is similar to the' distribution derived in Ref. 9, ex-
cept that we are missing one of their terms. No attempt
has been made here to keep track of a small amount of
probability that is lost in Eq. (2.9) due to the fact that it is
only valid for $~0 (more correctly, it is only valid for

P,„d). Adequate approximations of the distribution,
for potentials of the form V o: P", are given in Ref. 2.

Moments of the distribution are easily calculated by
taking advantage of the smallness of k and performing an
expansion of the solution (2.6):

(2.10)

The deviation of the mean of the distribution (P ) from
the classical value P, ~

is then given by

(2.1 1)

Therefore, given an initially uniform field, the deviation
of the mean from the classical solution will be bounded
by A,PO/8mp„a very small number. As noted, the
effect of Auctuations on the inAaton puts the mean of the
distribution slightly ahead of the classical value, since
P,&/Po ~ 1 by Eq. (2.3). The next moment is given by

cr'=((y y„)') =[1——(y„/y ) ]Ay y,', /12m, +O(A, ').

(2.12)

We now consider the conditions necessary for non-
Gaussian behavior. First, it should be noted that if we
could neglect the O(A, ) and higher-order terms in the ex-
pansion (2.10) of P in terms of the noise I (t /to), P would
be Gaussian distributed. This indicates that non-
Gaussian features are related to the size of X, and become
less prominent as k decreases. This statement can be
made more quantitative by massaging the exponential
portion of the probability distribution (2.9) into

exp (2.13)

where we have used the fact that w =4cr /P„. It is then
clear than non-Gaussian behavior is expected when

(2.14)

as one might have guessed. We assess the likelihood of
entering such a regime by writing P —P, —:Mcr, and
determining the required number of standard deviations
M. The result is that

the probability distribution for P is immediately deduced:

dP(P)/dg=2$ exp[ —(P P, ~

—
) /2w ]/&2vrw,

(2.9)
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M ~(t„/o =
4 1/2

12m p)

~t))o[I (4 i/0o) ]
(2.15)

The probability of finding a Hubble volume that has
"wandered" into the non-Gaussian regime is well approx-
imated bv P=&2/~exp( —M /2)/M, which leads to—io~'P —10 ' for typical parameters ( A, —5 X 10
Po/trtp~ —5), indicating that non-Gaussian behavior is
highly improbable, to say the least.

We have been considering, so far, the statistics of the
inflaton for an initially uniform field —and found that the
distribution was highly Gaussian and strongly peaked
about the classical value. The effects of expansion alone
on the distribution are easy to analyze. Starting with
Gaussian initial conditions, with mean Ao and standard
deviation So, it is easy to show, for the case that there are
no Auctuations, that the distribution remains Gaussian
with a time-evolved mean = Aoexp[ a(t/to ——1)] and
standard deviation =Soexp[ —a(t/to —1)].

III. CONCLUDING REMARKS

We analytically solved the Langevin equation of
motion in the slow-roll limit for Linde's A,P chaotic
inflation model. The probability distribution was de-
duced, and it was shown that moments of the distribution
could easily be calculated from an expansion of the
inflaton solution in powers of A, . Finally, we showed,
given Gaussian initial conditions, that non-Gaussian
features in the evolved distribution only appear for ex-
tremely improbable values of the scalar field. In any case,
we emphasize that in the regime where such features

occur, the slow-roll Langevin equation of motion breaks
down. For example, for the case with P=Po initially,
non-Gaussian features appeared only when
~P

—P, ~~ /P, ~

& l. If P & Pd and $0 & 0, then non-Gaussian
features are encountered only after the end of the
inflationary period (i.e. , for P &P,„d), where the kinetic
energy term P /2 can no longer be neglected in the Hub-
ble term, and the P term in the equation of motion can no
longer be neglected. Another constraint arises if we con-
sider the maximum allowed Auctuation AP of P in a Hub-
ble time consistent with the assumption of inflation:
H (bP) & V(P), or b, P &0.3mp~. The non-Gaussian re-
gion can therefore violate the assumption that the kinetic
term is negligible in the Hubble parameter (2.2). Non-
Gaussian features may very well appear in this regime,
but kinetic terms must be included for a self-consistent
treatment. Works ' which have attempted to explore
non-Gaussian features using the "standard" Langevin
equation should be very cautious. Therefore, the best
way to sum up this work is to say that the Langevin
equation (2.4) yields a very adequate, self-consistent,
description of the evolution of P, primarily because
A, ((1, which does not generate any significant, or self-
consistent, non-Gaussian features.
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