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Will the observation of D,+ = con+. be a signal for the annihilation mechanism?
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In the factorization model D,+~co++ is forbidden due to the absence of a spectator term, con-
served vector current, and the absence of second-class axial-vector currents. We show that
B(D,+~con+) up to 3% can nevertheless be generated by final-state interactions. Hence a large
(=3%) branching ratio for D, ~co~+ may not necessarily be a signal for the annihilation mecha-
nism in this decay mode.

I. INTRODUCTION

Considerable progress has been made in our under-
standing of charmed meson (D,D +,D,+ ) decays in re-
cent years. There exist several theoretical models' to
explain hadronic two-body decays of charmed mesons.
These models broadly agree and are reasonably successful
in explaining experimental data. A point of contention
is the contribution of the annihilation process. It used to
be thought' that the observation of D ~K P would es-
tablish the existence of an annihilation amplitude. It has
now been shown "" that Anal-state interactions can
generate B(D ~K P) at the level of =1% in the ab-
sence of the annihilation term. It has recently been ar-
gued' that a diagrammatic analysis' of two-body decays
of D+, D, and D,+ requires a significant annihilation
term. Based on this it is predicted' that
B (D,+ ~tort+ ) ~ B (D,+ +Pm+). Si—nce . B (D,+ ~Pm. +

)

=3%, it implies a significantly large branching ratio for
D,+ ~co++. The estimates of other models for
B (D,+ ~tom+ ) diff'er greatly. Blok and Shifman include
nonfactorizable contributions, but ignore factorizable an-
nihilation, and estimate B (D,+ +co~+ ) =—0.3%%uo.

The mode D,+ —+co++ is particularly interesting for the.
following reason. In a factorization model, there is no
contribution from the spectator diagram for this mode.
Although an annihilation contribution would appear to
be possible at the quark level, it in fact vanishes; the vec-
tor part of the (ud) current makes no contribution due to
the conserved-vector-current (CVC) hypothesis and a
first-class axial-vector current cannot connect the vacu-
um to a co~+ state which has even G parity. The ques-
tion then arises: What should be the magnitude of
B (D,+ ~tom+ )?

II. METHOD AND CALCULATION

We investigate this problem in a factorization model.
In the absence of final-state interactions, as argued above,
B(D,+ +tom+) should be zero. —How.ever, final-state in-
teractions can change the picture substantially;
could be generated by coupling to other final states.
Since the strong interactions responsible for final-state in-

teractions conserve G parity, cue+ wi11 couple only to G-
even states, i.e., to Prr+ and ~K*K &G +, ', Even though

has even G parity, P~++ carr+ is disallowed by
Okubo-Zweig-Iizuka (OZI) rule. ' In the K*K channel,
the even and odd G-parity states are given by the sym-
metric and antisymmetric combinations, respectively:

~K*K &, „= (~K*+K'&+~K+K*'&) .s,

A"(s)= [1—iK(s)] ' A (s) . (2)

The normalization is such that in the limit the strong in-
teractions are turned off'[K(s) ~0], the unitarized ampli-
tudes A"(s) become equal to the un-unitarized ampli-
tudes A (s).

Assuming factorization, the un-unitarized amplitudes
are generated through the Cabibbo-angle-favored Hamil-
tonian

G~H„= —cos Oc[C, (ud)H(sc)H+ C2(sd)H(uc)H ],
2

(3)

where 0C is the Cabibbo angle and the subscript H
denotes hadron field operators. C& and C2 are related to
the short-distance QCD factors C+ and C by

(C„C2)= —,'[(C++C )+g(C+ + C )],
where g, the color factor [—,

' for SU(3), ], is treated here as
a free parameter. Qur C, and C2 are the coe%cients a,
and a2 of Ref. 3. The un-unitarized amplitudes derived
from Eq. (3) are listed in Table I. We have used the form
factors evaluated in Refs. 3 and 16. We have also includ-

Hence, the symmetric ~K'K &s can couple to the co~+
state. This interchannel coupling is achieved through the
unitarization scheme described below.

In two-body scattering of n (open) coupled channels a
convenient parametrization of a unitary S matrix is, in
terms of the K matrix,

S(s)=[1—iK(s)] '[1+iK(s)],
where K(s) is an n X n Hermitian matrix. The un-
unitarized amplitudes A (s) (v's is equal to the
charmed-meson mass) are unitarized through the
prescription
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Mode

D,+~K*+K'
D,+~K+K *

D+ 0 +

D,+ ~P~+

D —+co&

Un-unitarized amplitudes

[4f„m ~h' ~ /(1 —mir/mD) R,—]/2
[4g~m ~hx. /(1 —m ~ /m ~ )+R, ]/2
R, /&2
—R, /&2

C]
2 f m~h~

2

TABLE I. Multiply each amplitude by 6+/&2cos OcC2. R,
is an annihilation parameter. We use the normalization from
Ref. 3: fz =0.162 GeV, f =0.133 GeV, gv=0. 221 GeV,
hp=0. 7, h' ~=0.634, h~ =0.692.

and co~+, respectively. The parameters a, b, c, d, e, and f
are chosen to be energy independent (zero range approxi-
mation' ), since no known resonances with G=+1 and
spin zero appear to exist; k&, k2, and k3 are the c.m. mo-
menta in the three channels, respectively. Since
m+P~m. +P and covr+++rr+-P transitions are disallowed by
the OZI rule, we set b and f equal to zero as an approxi-
mation. Clearly, this disallows the OZI-violating transi-
tions in the lowest order in the K matrix.

In the G = —1 channel, there exists an unconfirmed ~-
like resonance at 1770 MeV, i.e., close to the D,+ mass.
We, therefore, parametrize the K matrix in G-odd state
through a resonant form

1K(s)=
2 1/2

m s (klk2) I 12

(k, k, )'/2r „
(8)

ed a weak annihilation amplitude, denoted by R„ treated
here as a free parameter. The un-unitarized amplitudes
depend on C„C,/C2, and the annihilation parameter
R, . For a chosen value of the ratio C, /C2, we evaluate
C2 from Eq. (4), by using the perturbative constraint'
C+C = 1. This leads to

( 1+g)2/3( 1 g)1/3
C~=

(C /C + 1) (C, /C2 —1)'

Once the ratios C, /C2 and g are chosen, C2 is calculated
through (5) and used in the amplitudes A (s) shown in
Table I. The unitarized amplitudes 2 "(s) are generated
through (2), and finally the branching ratios are calculat-
ed from

I
& "(D,+ VP) ~'k'

B (D,+~VP) = rD
S 8~m v'

We now describe the parametrization of the K matrix.
A coupled-channel analysis for D,+~VP has already-
been performed in Ref. 11. The mode D,+ ~co~+ was ex-
cluded in the discussion in Ref. 11. In the G-even state,
we extend the E matrix of Ref. 11 from a 2X2 matrix to
a 3 X3 real-symmetric matrix, thereby including the co~+
mode, as follows:

k, b (k, k~)' c (k, k, )' f
K= (k k )' c k, a (k, k, )' 'd

(k, k )' 2f (k k )' d k e

with channel labels i= (1,2,3) belonging to P~+, iK*K )s,

with m~ = 1770 MeV, the total width I ~ =300 MeV.
The channel labels i=(1,2) belong to per and ~K*K)~,
respectively.

Our model K matrix has four parameters a, c, d, and e
in the G-even state and one parameter I » in the G-odd
state. The reduction of the number of parameters in Eq.
(8) is accomplished by requiring factorization for the T
matrix derived from Eq. (8) and fixing the total width
I ~ =300 MeV. The reader is referred to Ref. 11 for de-
tails.

We vary the parameters of our model and search for
fits to ARGUS (Ref. 9) and E691 data. For (d, e) =0, the
con+ channel decouples from the other two channels and
one gets B(D, ~cour+)=0. For fits to data, in the case
when D,+~me. + is decoupled from the other two chan-
nels, the reader is referred to Ref. 11. Because of the
large number of parameters, an exact branching ratio for
D,+ —+con+ cannot be predicted. However, we find that,
for reasonable values of d and g, it is possible to produce
B(D,+~con+) up to 3%%uo, keeping the other branching
ratios (i.e., for IC* K+,p m+, Pm. + modes) within the ex-
perimental limits.

III. RKSUI.TS AND DISCUSSION

Note that in our model, D,+ —+co++ is being generated
via final-state interactions only and not directly from an-
nihilation in the con. channel. We do, however, include an
annihilation parameter in the K*K amplitude, which
feeds into the m~+ final state. In the following discussion
the reader is reminded that by annihilation term we mean

TABLE II. Fits to ARGUS data (Ref. 9) for Cabibbo-angle-favored D,+~ VP decays. The various parameters in the model are
selected to maximize B(D,+~con.+) consistent with data. The parameters d, e take values greater than a, c and lie in the range 0.1 —1

GeV '. All branching ratios are in percent.

Branching
ratio

Theory /=0
Cl /C2 = 2.0 C, /C, = —2.2

R, =0.15 GeV R, =0.17 GeV

Theory g= —'

C[ /C2 = 2.0 Cl /C2 = 2.2
R, =0.15 GeV R, =0.17 GeV

ARGUS
data

B(D,+ K *'K+)
8(D,+~p m+)
B (D,+ ~Per+ )

B(D, ~cow+)

3.86
0.59
3.57
1.66

3.71
0.56
3.45
0.74

4.32
0.66
4.00
1.86

4.13
0.63
3.83
0.83

5.0+ 1.3(0.77
3.2+0.7+0.5
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TABLE III. Fits to E691 data (Ref. 9) for Cabibbo-angle-favored D,+~ VP decays. The various parameters in the model are
selected to maximize 8 {D,+cue+) consistent with data. The parameters d, e take values greater than a, c and lie in the range 0.1—1

GeV '. The values in parentheses correspond to R, =0.0 GeV . All branching ratios are in percent.

Branching
ratio

Theory g'=0
C] /C2 = —2.0 C] /Cq = —2.2
R, =0.10 GeV R, =0.11 GeV

Theory g= —,
'

C] /C2 = —2.0 Ci /Cz = —2.2
R, =0.09 GeV R, =0.11 GeV

E691
data

a(D,+~X "Z+)

a (D,+ ~po~+ )

B (D,+ ~Pm. +
)

8 (D,+ ~co~+ )

2.24
(2.30)
0.27
(0.006)
3.64

(3.76)
2.48
(1.84)

2.11
(2.11)
0.24
(0.004)
3.43

(3.43)
1.73

(0.89)

2.13
(2.57)
0.25

(0.006)
3.52

(4.21)
2.75

(2.05)

2.10
(2.14)
0.27
(0.005)
3.43

(3.51)
2.02
(1.15)

2.6+0.5

(0.28

3.5+0.8

the annihilation parameter R, (see Table I) which appears
in the decay amplitudes for D,+~%*+K and K E+.
Note also that the un-unitarized amplitude for
D,+ ~con+ is zero (Table I).

A fit to ARGUS data requires that the annihilation
parameter R, be nonzero, even if we require
B(D,+~co~+)=0. Although fits to E691 data may be
obtained for vanishing R„nonvanishing R, is also al-
lowed by the data; larger 8(D,+ —+con ) being obtained
for R, WO. The maximum value of B(D,+ +cotr+) —con-
sistent with a fit to ARGUS data requires an annihilation
term =40% of the spectator term in D,+ —+%*+K and
that for E691 =25%%uo of the spectator term. For E691
data, even with the annihilation parameter set equal to
zero, final-state interactions alone can generate
8 (D,+ ~cotr+ ) up to about 2%.

In Table II we show a fit to the ARGUS data (for /=0
and g= —,

' ), where the various parameters are chosen such
that B(D,+~cour+) is at its maximum value. Table III
lists the same for E691 data. Note that the E691 data,
where 8 (D,+ —+K* K+) is lower than in ARGUS data,
allows a larger value of 8 (D,+ +corr+ ) than the A—RGUS
data. This presumably results from more of the K E+
rate being siphoned off into the co~+ mode.

Lastly, a word about our choice of the ratio C, /C2.
We note that 8 (D,+ +cotr+) falls as—C, /C2 increases in
magnitude. In Ref. 3, from a fit to D ~K~ data the ratio
C, /C2 was estimated to lie in the range —3.3 ~C, /
C2 —2.0. We chose C, /C2 close to the maximum of

this range in order to generate as large a value for
8 (D,+ ~cosr+ ) as possible. A next-to-leading-log (NLL)
calculation with reasonable values of @CD parameters p
and A also gives" C, /C2 roughly in the range—3.3& C, /C2~ —2.0 for /=0. For g= —' a value of
C, /Cz in the same range can be secured" in an NLL cal-
culation only by raising A to about 0.5 GeV or by lower-
ing p below 1.2 GeV.

In summary, we find that in a factorization model,
where the quark level amplitude for D,+~~a+ is zero,
final-state interactions can generate 8(D,+ +cosr+) a—s
large as -3%. An observation of a signal at this level
will not necessarily constitute an evidence for an annihi-
lation term in the decay amplitude for D,+ —+con+ at the
quark level. A measurement of this branching ratio will
be very desirable.

Rote added in proof. In a revised version of Ref. 13,
the prediction of 8(D,+~co+ ) has been lowered to
—,',8 (D,+ +Per+ ). See —L. L. Chau and H. Y. Cheng, Uni-

versity of California, Davis, Report No. UCD-88-12 (un-
published). We thank Dr. Cheng for bringing this report
to our attention.
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