Will the observation of $D_s^+ \rightarrow \omega \pi^+$ be a signal for the annihilation mechanism?

A. N. Kamal, N. Sinha, and R. Sinha

Theoretical Physics Institute and Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2J1

(Received 3 January 1989)

In the factorization model $D_s^+ \rightarrow \omega \pi^+$ is forbidden due to the absence of a spectator term, conserved vector current, and the absence of second-class axial-vector currents. We show that $B(D_s^+ \rightarrow \omega \pi^+)$ up to 3% can nevertheless be generated by final-state interactions. Hence a large ($\approx 3\%$) branching ratio for $D_s^+ \rightarrow \omega \pi^+$ may not necessarily be a signal for the annihilation mechanism in this decay mode.

I. INTRODUCTION

Considerable progress has been made in our understanding of charmed meson (D^0, D^+, D_s^+) decays in recent years. There exist several theoretical models¹⁻⁸ to explain hadronic two-body decays of charmed mesons. These models broadly agree and are reasonably successful in explaining experimental data.9 A point of contention is the contribution of the annihilation process. It used to be thought¹⁰ that the observation of $D^{0} \rightarrow \overline{K}^{0} \phi$ would establish the existence of an annihilation amplitude. It has now been shown^{3,11,12} that final-state interactions can generate $B(D^0 \rightarrow \overline{K}^0 \phi)$ at the level of $\approx 1\%$ in the absence of the annihilation term. It has recently been argued¹³ that a diagrammatic analysis¹ of two-body decays of D^+ , D^0 , and D_s^+ requires a significant annihilation term. Based on this it is predicted¹³ that $B(D_s^+ \to \omega \pi^+) \gtrsim B(D_s^+ \to \phi \pi^+)$. Since⁹ $B(D_s^+ \to \phi \pi^+)$ $\approx 3\%$, it implies a significantly large branching ratio for $D_s^+ \rightarrow \omega \pi^+$. The estimates of other models for $B(D_s^+ \rightarrow \omega \pi^+)$ differ greatly. Blok and Shifman⁷ include nonfactorizable contributions, but ignore factorizable annihilation, and estimate $B(D_s^+ \rightarrow \omega \pi^+) = 0.3\%$.

The mode $D_s^+ \rightarrow \omega \pi^+$ is particularly interesting for the following reason. In a factorization model, there is no contribution from the spectator diagram for this mode. Although an annihilation contribution would appear to be possible at the quark level, it in fact vanishes; the vector part of the $(\bar{u}d)$ current makes no contribution due to the conserved-vector-current (CVC) hypothesis and a first-class axial-vector current cannot connect the vacuum to a $\omega \pi^+$ state which has even G parity. The question then arises: What should be the magnitude of $B(D_s^+ \rightarrow \omega \pi^+)$?

II. METHOD AND CALCULATION

We investigate this problem in a factorization model. In the absence of final-state interactions, as argued above, $B(D_s^+ \rightarrow \omega \pi^+)$ should be zero. However, final-state interactions can change the picture substantially; $\omega \pi^+$ could be generated by coupling to other final states. Since the strong interactions responsible for final-state interactions conserve G parity, $\omega \pi^+$ will couple only to Geven states, i.e., to $\phi \pi^+$ and $|K^*K\rangle_{G=+1}$; Even though $\phi \pi^+$ has even G parity, $\phi \pi^+ \leftrightarrow \omega \pi^+$ is disallowed by Okubo-Zweig-Iizuka (OZI) rule.¹⁴ In the K^*K channel, the even and odd G-parity states are given by the symmetric and antisymmetric combinations, respectively:

$$|K^*K\rangle_{S,A} = \frac{1}{\sqrt{2}}(|K^{*+}\overline{K}^0\rangle \pm |K^+\overline{K}^{*0}\rangle)$$

Hence, the symmetric $|K^*K\rangle_S$ can couple to the $\omega \pi^+$ state. This interchannel coupling is achieved through the unitarization scheme described below.

In two-body scattering of n (open) coupled channels a convenient parametrization of a unitary S matrix is, in terms of the K matrix,

$$\mathbf{S}(s) = [\mathbf{1} - i\mathbf{K}(s)]^{-1} [\mathbf{1} + i\mathbf{K}(s)], \qquad (1)$$

where $\mathbf{K}(s)$ is an $n \times n$ Hermitian matrix. The ununitarized amplitudes $\mathbf{A}^{0}(s)$ (\sqrt{s} is equal to the charmed-meson mass) are unitarized through the prescription^{11,15}

$$\mathbf{A}^{u}(s) = [1 - i\mathbf{K}(s)]^{-1} \mathbf{A}^{0}(s) .$$
(2)

The normalization is such that in the limit the strong interactions are turned off $[\mathbf{K}(s) \rightarrow 0]$, the unitarized amplitudes $\mathbf{A}^{u}(s)$ become equal to the un-unitarized amplitudes $\mathbf{A}^{0}(s)$.

Assuming factorization, the un-unitarized amplitudes are generated through the Cabibbo-angle-favored Hamiltonian³

$$H_w = \frac{G_F}{\sqrt{2}} \cos^2 \theta_C [C_1(\overline{u}d)_H(\overline{s}c)_H + C_2(\overline{s}d)_H(\overline{u}c)_H], \quad (3)$$

where θ_C is the Cabibbo angle and the subscript H denotes hadron field operators. C_1 and C_2 are related to the short-distance QCD factors C_+ and C_- by

$$(C_1, C_2) = \frac{1}{2} [(C_+ \pm C_-) + \xi (C_+ \mp C_-)], \qquad (4)$$

where ξ , the color factor $\left[\frac{1}{3} \text{ for } SU(3)_c\right]$, is treated here as a free parameter. Our C_1 and C_2 are the coefficients a_1 and a_2 of Ref. 3. The un-unitarized amplitudes derived from Eq. (3) are listed in Table I. We have used the form factors evaluated in Refs. 3 and 16. We have also includ-

3503

TABLE I. Multiply each amplitude by $G_F/\sqrt{2}\cos^2\theta_C C_2$. R_s is an annihilation parameter. We use the normalization from Ref. 3: $f_K = 0.162$ GeV, $f_{\pi} = 0.133$ GeV, $g_V = 0.221$ GeV, $h_{\phi} = 0.7$, $h'_{K*} = 0.634$, $h_{K'} = 0.692$.

Mode	Un-unitarized amplitudes			
$D_s^+ \rightarrow K^{*+} \overline{K}^0$	$[4f_K m_{\kappa} * h'_{\kappa} * /(1 - m_K^2 / m_D^2) - R_s]/2$			
$D_s^+ \rightarrow K^+ \overline{K}^{*0}$	$[4g_V m_{K^*} h_K^{'} / (1 - m_{K^*}^2 / m_D^2) + R_s]/2$			
$D_s^+ \rightarrow ho^+ \pi^0$	$R_s/\sqrt{2}$			
$D_s^+ \rightarrow \rho^0 \pi^+$	$-R_s/\sqrt{2}$			
$D_s^+ \rightarrow \phi \pi^+$	$2\frac{C_1}{C_2}f_{\pi}m_{\phi}h_{\phi}$			
$D_s^+ \rightarrow \omega \pi^+$	0			

ed a weak annihilation amplitude, denoted by R_s , treated here as a free parameter. The un-unitarized amplitudes depend on C_1 , C_1/C_2 , and the annihilation parameter R_s . For a chosen value of the ratio C_1/C_2 , we evaluate C_2 from Eq. (4), by using the perturbative constraint¹⁷ $C_+^2C_-\approx 1$. This leads to

$$C_2 = \frac{(1+\xi)^{2/3}(1-\xi)^{1/3}}{(C_1/C_2+1)^{2/3}(C_1/C_2-1)^{1/3}} .$$
 (5)

Once the ratios C_1/C_2 and ξ are chosen, C_2 is calculated through (5) and used in the amplitudes $A^{0}(s)$ shown in Table I. The unitarized amplitudes $A^{u}(s)$ are generated through (2), and finally the branching ratios are calculated from

$$B(D_{s}^{+} \to VP) = \tau_{D_{s}} \frac{|A^{u}(D_{s}^{+} \to VP)|^{2}k^{3}}{8\pi m_{V}^{2}} .$$
 (6)

We now describe the parametrization of the K matrix. A coupled-channel analysis for $D_s^+ \rightarrow VP$ has already been performed in Ref. 11. The mode $D_s^+ \rightarrow \omega \pi^+$ was excluded in the discussion in Ref. 11. In the G-even state, we extend the K matrix of Ref. 11 from a 2×2 matrix to a 3×3 real-symmetric matrix, thereby including the $\omega \pi^+$ mode, as follows:

$$\mathbf{K} = \begin{bmatrix} k_1 b & (k_1 k_2)^{1/2} c & (k_1 k_3)^{1/2} f \\ (k_1 k_2)^{1/2} c & k_2 a & (k_2 k_3)^{1/2} d \\ (k_1 k_3)^{1/2} f & (k_2 k_3)^{1/2} d & k_3 e \end{bmatrix}$$
(7)

with channel labels i=(1,2,3) belonging to $\phi\pi^+$, $|K^*K\rangle_S$,

and $\omega \pi^+$, respectively. The parameters *a*, *b*, *c*, *d*, *e*, and *f* are chosen to be energy independent (zero range approximation¹⁸), since no known resonances with G=+1 and spin zero appear to exist; k_1 , k_2 , and k_3 are the c.m. momenta in the three channels, respectively. Since $\pi^+\phi\leftrightarrow\pi^+\phi$ and $\omega\pi^+\leftrightarrow\pi^+\phi$ transitions are disallowed by the OZI rule, we set *b* and *f* equal to zero as an approximation. Clearly, this disallows the OZI-violating transitions in the lowest order in the *K* matrix.

In the G = -1 channel, there exists an unconfirmed π -like resonance at 1770 MeV, i.e., close to the D_s^+ mass. We, therefore, parametrize the K matrix in G-odd state through a resonant form

$$\mathbf{K}(s) = \frac{1}{m_R^2 - s} \begin{bmatrix} k_1 \Gamma_{11} & (k_1 k_2)^{1/2} \Gamma_{12} \\ (k_1 k_2)^{1/2} \Gamma_{12} & k_2 \Gamma_{22} \end{bmatrix}$$
(8)

with $m_R = 1770$ MeV, the total width $\Gamma_R = 300$ MeV. The channel labels i=(1,2) belong to $\rho\pi$ and $|K^*K\rangle_A$, respectively.

Our model K matrix has four parameters a, c, d, and e in the G-even state and one parameter Γ_{11} in the G-odd state. The reduction of the number of parameters in Eq. (8) is accomplished by requiring factorization for the T matrix derived from Eq. (8) and fixing the total width $\Gamma_R = 300$ MeV. The reader is referred to Ref. 11 for details.

We vary the parameters of our model and search for fits to ARGUS (Ref. 9) and E691 data.⁹ For (d,e)=0, the $\omega\pi^+$ channel decouples from the other two channels and one gets $B(D_s^+ \rightarrow \omega\pi^+)=0$. For fits to data, in the case when $D_s^+ \rightarrow \omega\pi^+$ is decoupled from the other two channels, the reader is referred to Ref. 11. Because of the large number of parameters, an exact branching ratio for $D_s^+ \rightarrow \omega\pi^+$ cannot be predicted. However, we find that, for reasonable values of d and e, it is possible to produce $B(D_s^+ \rightarrow \omega\pi^+)$ up to 3%, keeping the other branching ratios (i.e., for $\overline{K}^{*0}K^+, \rho^0\pi^+, \phi\pi^+$ modes) within the experimental limits.

III. RESULTS AND DISCUSSION

Note that in our model, $D_s^+ \rightarrow \omega \pi^+$ is being generated via final-state interactions only and not directly from annihilation in the $\omega \pi$ channel. We do, however, include an annihilation parameter in the K^*K amplitude, which feeds into the $\omega \pi^+$ final state. In the following discussion the reader is reminded that by annihilation term we mean

TABLE II. Fits to ARGUS data (Ref. 9) for Cabibbo-angle-favored $D_s^+ \rightarrow VP$ decays. The various parameters in the model are selected to maximize $B(D_s^+ \rightarrow \omega \pi^+)$ consistent with data. The parameters *d*, *e* take values greater than *a*, *c* and lie in the range 0.1-1 GeV⁻¹. All branching ratios are in percent.

Branching ratio	Theory $\xi = 0$		Theory $\xi = \frac{1}{3}$		
	$C_1/C_2 = -2.0$ $R_s = 0.15 \text{ GeV}^2$	$C_1/C_2 = -2.2$ $R_s = 0.17 \text{ GeV}^2$	$C_1/C_2 = -2.0$ $R_s = 0.15 \text{ GeV}^2$	$C_1/C_2 = -2.2$ $R_s = 0.17 \text{ GeV}^2$	ARGUS data
$B(D_s^+ \to \overline{K}^{*0}K^+)$	3.86	3.71	4.32	4.13	5.0±1.3
$B(D_s^+ \rightarrow \rho^0 \pi^+)$	0.59	0.56	0.66	0.63	< 0.77
$B(D_s^+ \rightarrow \phi \pi^+)$	3.57	3.45	4.00	3.83	3.2±0.7±0.5
$\frac{B(D_s^+ \to \omega \pi^+)}{2}$	1.66	0.74	1.86	0.83	

TABLE III. Fits to E691 data (Ref. 9) for Cabibbo-angle-favored $D_s^+ \rightarrow VP$ decays. The various parameters in the model are selected to maximize $B(D_s^+ \rightarrow \omega \pi^+)$ consistent with data. The parameters d, e take values greater than a, c and lie in the range 0.1-1 GeV⁻¹. The values in parentheses correspond to $R_s = 0.0 \text{ GeV}^2$. All branching ratios are in percent.

Branching ratio	Theory $\xi=0$		Theory $\xi = \frac{1}{3}$		
	$C_1/C_2 = -2.0$ $R_s = 0.10 \text{ GeV}^2$	$C_1/C_2 = -2.2$ $R_s = 0.11 \text{ GeV}^2$	$C_1/C_2 = -2.0$ $R_s = 0.09 \text{ GeV}^2$	$C_1/C_2 = -2.2$ $R_s = 0.11 \text{ GeV}^2$	E691 data
$B(D_{s}^{+} \to \overline{K}^{*0}K^{+})$	2.24	2.11	2.13	2.10	2.6±0.5
$B(D_s^+ \to \rho^0 \pi^+)$	0.27	0.24	0.25	0.27	< 0.28
$B(D_s^+ \rightarrow \phi \pi^+)$	(0.006) 3.64	(0.004) 3.43	(0.006) 3.52	(0.005) 3.43	3.5±0.8
$B(D_s^+ \rightarrow \omega \pi^+)$	(3.76) 2.48	(3.43) 1.73	(4.21) 2.75	(3.51) 2.02	
	(1.84)	(0.89)	(2.05)	(1.15)	

the annihilation parameter R_s (see Table I) which appears in the decay amplitudes for $D_s^+ \rightarrow K^{*+}\overline{K}^0$ and $\overline{K}^{*0}K^+$. Note also that the un-unitarized amplitude for $D_s^+ \rightarrow \omega \pi^+$ is zero (Table I).

A fit to ARGUS data⁹ requires that the annihilation parameter R_s be nonzero, even if we require $B(D_s^+ \to \omega \pi^+)=0$. Although fits to E691 data⁹ may be obtained for vanishing R_s , nonvanishing R_s is also allowed by the data; larger $B(D_s^+ \to \omega \pi^+)$ being obtained for $R_s \neq 0$. The maximum value of $B(D_s^+ \to \omega \pi^+)$ consistent with a fit to ARGUS data requires an annihilation term $\simeq 40\%$ of the spectator term in $D_s^+ \to K^{*+}\overline{K}^0$ and that for E691 $\simeq 25\%$ of the spectator term. For E691 data, even with the annihilation parameter set equal to zero, final-state interactions alone can generate $B(D_s^+ \to \omega \pi^+)$ up to about 2%.

In Table II we show a fit to the ARGUS data (for $\xi=0$ and $\xi=\frac{1}{3}$), where the various parameters are chosen such that $B(D_s^+ \rightarrow \omega \pi^+)$ is at its maximum value. Table III lists the same for E691 data. Note that the E691 data, where $B(D_s^+ \rightarrow \overline{K}^{*0}K^+)$ is lower than in ARGUS data, allows a larger value of $B(D_s^+ \rightarrow \omega \pi^+)$ than the ARGUS data. This presumably results from more of the $\overline{K}^{*0}K^+$ rate being siphoned off into the $\omega \pi^+$ mode.

Lastly, a word about our choice of the ratio C_1/C_2 . We note that $B(D_s^+ \rightarrow \omega \pi^+)$ falls as C_1/C_2 increases in magnitude. In Ref. 3, from a fit to $D \rightarrow K\pi$ data the ratio C_1/C_2 was estimated to lie in the range $-3.3 \le C_1/C_2 \le -2.0$. We chose C_1/C_2 close to the maximum of this range in order to generate as large a value for $B(D_s^+ \rightarrow \omega \pi^+)$ as possible. A next-to-leading-log (NLL) calculation with reasonable values of QCD parameters μ and Λ also gives¹¹ C_1/C_2 roughly in the range $-3.3 \leq C_1/C_2 \leq -2.0$ for $\xi=0$. For $\xi=\frac{1}{3}$ a value of C_1/C_2 in the same range can be secured¹¹ in an NLL calculation only by raising Λ to about 0.5 GeV or by lowering μ below 1.2 GeV.

In summary, we find that in a factorization model, where the quark level amplitude for $D_s^+ \rightarrow \omega \pi^+$ is zero, final-state interactions can generate $B(D_s^+ \rightarrow \omega \pi^+)$ as large as ~3%. An observation of a signal at this level will not necessarily constitute an evidence for an annihilation term in the decay amplitude for $D_s^+ \rightarrow \omega \pi^+$ at the quark level. A measurement of this branching ratio will be very desirable.

Note added in proof. In a revised version of Ref. 13, the prediction of $B(D_s^+ \rightarrow \omega \pi^+)$ has been lowered to $\frac{1}{10}B(D_s^+ \rightarrow \phi \pi^+)$. See L. L. Chau and H. Y. Cheng, University of California, Davis, Report No. UCD-88-12 (unpublished). We thank Dr. Cheng for bringing this report to our attention.

ACKNOWLEDGMENTS

This research was supported in part by a grant from the Natural Sciences and Engineering Research Council to A.N.K.

- ¹L. L. Chau, Phys. Rep. **95**, 1 (1983); L. L. Chau and H. Y. Cheng, Phys. Rev. D **36**, 137 (1987).
- ²M. Bauer and B. Stech, Phys. Lett. **152B**, 380 (1985).
- ³M. Bauer, B. Stech, and M. Wirbel, Z. Phys. C **34**, 103 (1987).
- ⁴A. N. Kamal, Phys. Rev. D **33**, 1344 (1986).
- ⁵T. Tanuma, S. Oneda, and K. Terasaki, Phys. Rev. D **29**, 444 (1984); **29**, 456 (1984); K. Terasaki and S. Oneda, *ibid.* **34**, 2778 (1986).
- ⁶F. Hussain and M. D. Scadron, Phys. Rev. D **30**, 1492 (1984); A. N. Kamal and M. D. Scadron, *ibid.* **32**, 1164 (1985).
- ⁷B. Yu Blok and M. A. Shifman, Yad. Fiz. **45**, 211 (1987) [Sov.

- J. Nucl. Phys. **45**, 135 (1987)]; **45**, 478 (1987) [**45**, 301 (1987)]; **45**, 841 (1987) [**45**, 522 (1987)].
- ⁸M. Wirbel, Prog. Part. Nucl. Phys. (to be published).
- ⁹D. G. Hitlin, Nucl. Phys. B (Proc. Suppl.) 3, 179 (1988).
- ¹⁰I. I. Bigi and M. Fukugita, Phys. Lett. **91B**, 121 (1980).
- ¹¹A. N. Kamal, N. Sinha, and R. Sinha, Z. Phys. C **41**, 207 (1988).
- ¹²J. F. Donoghue, Phys. Rev. D 33, 1516 (1986).
- ¹³L. L. Chau and H. Y. Cheng, in *Proceedings of the XXIV In*ternational Conference on High Energy Physics, Munich, West Germany, 1988, edited by R. Kotthaus and J. Kuhn

(Springer, Berlin, 1988).

- ¹⁴S. Okubo, Phys. Lett. 5, 165 (1963); G. Zweig, CERN Report No. 8419/TH412, 1964 (unpublished); I. Iizuka, K. Okada, and O. Shito, Prog. Theor. Phys. 35, 1061 (1966); G. Zweig, in Symmetries in Elementary Particle Physics, edited by A. Zichichi (Academic, New York, 1965).
- ¹⁵P. S. Lee, G. L. Shaw, and D. Silverman, Phys. Rev. D 10, 2251 (1974); Y. Iwamura, S. Kurihara, and Y. Takahashi, Prog. Theor. Phys. (Kyoto) 58, 1669 (1977); A. N. Kamal, Can. J. Phys. 57, 1815 (1979).
- ¹⁶M. Wirbel, B. Stech, and M. Bauer, Z. Phys. C 29, 637 (1985).
- ¹⁷The constraint $C_{+}^{2}C_{-}=1$ is strictly valid in the leading-log

approximation. In next-to-leading-log approximation it is violated by less than 3%. See G. Attarelli, G. Curci, G. Martinelli, and R. Petrarca, Phys. Lett. **99B**, 141 (1981); Nucl. Phys. **B187**, 461 (1981); A. J. Buras, J. M. Gerard, and R. Rückl, *ibid*. **B268**, 16 (1986); D. Hitlin, in *Techniques and Concepts of High Energy Physics IV*, proceedings of the Advanced Study Institute, St. Croix, Virgin Islands, edited by T. Ferbel (NATO ASI, Series B: Physics, Vol. 164) (Plenum, New York, 1987), p. 105.

¹⁸M. H. Ross and G. L. Shaw, Ann. Phys. (N.Y.) 9, 391 (1960); 13, 47 (1961).