Will the observation of $D_{s}^{+} \rightarrow \omega \pi^{+}$be a signal for the annihilation mechanism?

A. N. Kamal, N. Sinha, and R. Sinha
Theoretical Physics Institute and Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2 J1

(Received 3 January 1989)

Abstract

In the factorization model $D_{s}^{+} \rightarrow \omega \pi^{+}$is forbidden due to the absence of a spectator term, conserved vector current, and the absence of second-class axial-vector currents. We show that $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)$up to 3% can nevertheless be generated by final-state interactions. Hence a large ($\approx 3 \%$) branching ratio for $D_{s}^{+} \rightarrow \omega \pi^{+}$may not necessarily be a signal for the annihilation mechanism in this decay mode.

I. INTRODUCTION

Considerable progress has been made in our understanding of charmed meson (D^{0}, D^{+}, D_{s}^{+}) decays in recent years. There exist several theoretical models ${ }^{1-8}$ to explain hadronic two-body decays of charmed mesons. These models broadly agree and are reasonably successful in explaining experimental data. ${ }^{9}$ A point of contention is the contribution of the annihilation process. It used to be thought ${ }^{10}$ that the observation of $D^{0} \rightarrow \bar{K}^{0} \phi$ would establish the existence of an annihilation amplitude. It has now been shown ${ }^{3,11,12}$ that final-state interactions can generate $B\left(D^{0} \rightarrow \bar{K}^{0} \phi\right)$ at the level of $\approx 1 \%$ in the absence of the annihilation term. It has recently been argued ${ }^{13}$ that a diagrammatic analysis ${ }^{1}$ of two-body decays of D^{+}, D^{0}, and D_{s}^{+}requires a significant annihilation term. Based on this it is predicted ${ }^{13}$ that $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right) \gtrsim B\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right) . \quad$ Since ${ }^{9} \quad B\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)$ $\approx 3 \%$, it implies a significantly large branching ratio for $D_{s}{ }^{+} \rightarrow \omega \pi^{+}$. The estimates of other models for $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)$differ greatly. Blok and Shifman ${ }^{7}$ include nonfactorizable contributions, but ignore factorizable annihilation, and estimate $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)=0.3 \%$.

The mode $D_{s}^{+} \rightarrow \omega \pi^{+}$is particularly interesting for the following reason. In a factorization model, there is no contribution from the spectator diagram for this mode. Although an annihilation contribution would appear to be possible at the quark level, it in fact vanishes; the vector part of the ($\bar{u} d$) current makes no contribution due to the conserved-vector-current (CVC) hypothesis and a first-class axial-vector current cannot connect the vacuum to a $\omega \pi^{+}$state which has even G parity. The question then arises: What should be the magnitude of $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)$?

II. METHOD AND CALCULATION

We investigate this problem in a factorization model. In the absence of final-state interactions, as argued above, $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)$should be zero. However, final-state interactions can change the picture substantially; $\omega \pi^{+}$ could be generated by coupling to other final states. Since the strong interactions responsible for final-state in-
teractions conserve G parity, $\omega \pi^{+}$will couple only to G even states, i.e., to $\phi \pi^{+}$and $\left|K^{*} K\right\rangle_{G=+1}$; Even though $\phi \pi^{+}$has even G parity, $\phi \pi^{+} \leftrightarrow \omega \pi^{+}$is disallowed by Okubo-Zweig-Iizuka (OZI) rule. ${ }^{14}$ In the $K^{*} K$ channel, the even and odd G-parity states are given by the symmetric and antisymmetric combinations, respectively:

$$
\left|K^{*} K\right\rangle_{S, A}=\frac{1}{\sqrt{2}}\left(\left|K^{*+} \bar{K}^{0}\right\rangle \pm\left|K^{+} \bar{K}^{* 0}\right\rangle\right)
$$

Hence, the symmetric $\left|K^{*} K\right\rangle_{S}$ can couple to the $\omega \pi^{+}$ state. This interchannel coupling is achieved through the unitarization scheme described below.
In two-body scattering of n (open) coupled channels a convenient parametrization of a unitary S matrix is, in terms of the K matrix,

$$
\begin{equation*}
\mathbf{S}(s)=[1-i \mathbf{K}(s)]^{-1}[1+i \mathbf{K}(s)], \tag{1}
\end{equation*}
$$

where $K(s)$ is an $n \times n$ Hermitian matrix. The ununitarized amplitudes $\mathbf{A}^{0}(s)$ (\sqrt{s} is equal to the charmed-meson mass) are unitarized through the prescription ${ }^{11,15}$

$$
\begin{equation*}
\mathbf{A}^{u}(s)=[1-i \mathbf{K}(s)]^{-1} \mathbf{A}^{0}(s) . \tag{2}
\end{equation*}
$$

The normalization is such that in the limit the strong interactions are turned off [$\mathbf{K}(s) \rightarrow 0$], the unitarized amplitudes $\mathbf{A}^{u}(s)$ become equal to the un-unitarized amplitudes $\mathbf{A}^{0}(s)$.

Assuming factorization, the un-unitarized amplitudes are generated through the Cabibbo-angle-favored Hamiltonian ${ }^{3}$
$H_{w}=\frac{G_{F}}{\sqrt{2}} \cos ^{2} \theta_{C}\left[C_{1}(\bar{u} d)_{H}(\bar{s} c)_{H}+C_{2}(\bar{s} d)_{H}(\bar{u} c)_{H}\right]$,
where θ_{C} is the Cabibbo angle and the subscript H denotes hadron field operators. C_{1} and C_{2} are related to the short-distance QCD factors C_{+}and C_{-}by

$$
\begin{equation*}
\left(C_{1}, C_{2}\right)=\frac{1}{2}\left[\left(C_{+} \pm C_{-}\right)+\xi\left(C_{+} \mp C_{-}\right)\right], \tag{4}
\end{equation*}
$$

where ξ, the color factor $\left[\frac{1}{3}\right.$ for $\operatorname{SU}(3)_{c}$], is treated here as a free parameter. Our C_{1} and C_{2} are the coefficients a_{1} and a_{2} of Ref. 3. The un-unitarized amplitudes derived from Eq. (3) are listed in Table I. We have used the form factors evaluated in Refs. 3 and 16. We have also includ-

TABLE I. Multiply each amplitude by $G_{F} / \sqrt{2} \cos ^{2} \theta_{C} C_{2}$. R_{s} is an annihilation parameter. We use the normalization from Ref. 3: $f_{K}=0.162 \mathrm{GeV}, f_{\pi}=0.133 \mathrm{GeV}, g_{V}=0.221 \mathrm{GeV}$, $h_{\phi}=0.7, h_{K^{*}}^{\prime}=0.634, h_{K^{\prime}}=0.692$.

Mode	Un-unitarized amplitudes
$D_{s}^{+} \rightarrow K^{*+} \bar{K}^{0}$	$\left[4 f_{K^{\prime}} m_{K^{*}} h_{K^{*}}^{\prime} /\left(1-m_{K}^{2} / m_{D}^{2}\right)-R_{s}\right] / 2$
$D_{s}^{+} \rightarrow K^{+} \bar{K}^{* 0}$	$\left[4 g_{V} m_{K^{*}} h_{K}^{\prime} /\left(1-m_{K^{*}}^{2} / m_{D^{*}}^{*}\right)+R_{s}\right] / 2$
$D_{s}^{+} \rightarrow \rho^{+} \pi^{0}$	$R_{s} / \sqrt{2}$
$D_{s}^{+} \rightarrow \rho^{0} \pi^{+}$	$-R_{s} / \sqrt{2}$
$D_{s}^{+} \rightarrow \phi \pi^{+}$	$2 \frac{C_{1}}{C_{2}} f_{\pi} m_{\phi} h_{\phi}$
$D_{s}^{+} \rightarrow \omega \pi^{+}$	0

ed a weak annihilation amplitude, denoted by R_{s}, treated here as a free parameter. The un-unitarized amplitudes depend on $C_{1}, C_{1} / C_{2}$, and the annihilation parameter R_{s}. For a chosen value of the ratio C_{1} / C_{2}, we evaluate C_{2} from Eq. (4), by using the perturbative constraint ${ }^{17}$ $C_{+}^{2} C_{-} \approx 1$. This leads to

$$
\begin{equation*}
C_{2}=\frac{(1+\xi)^{2 / 3}(1-\xi)^{1 / 3}}{\left(C_{1} / C_{2}+1\right)^{2 / 3}\left(C_{1} / C_{2}-1\right)^{1 / 3}} \tag{5}
\end{equation*}
$$

Once the ratios C_{1} / C_{2} and ξ are chosen, C_{2} is calculated through (5) and used in the amplitudes $A^{0}(s)$ shown in Table I. The unitarized amplitudes $A^{u}(s)$ are generated through (2), and finally the branching ratios are calculated from

$$
\begin{equation*}
B\left(D_{s}^{+} \rightarrow V P\right)=\tau_{D_{s}} \frac{\left|A^{u}\left(D_{s}^{+} \rightarrow V P\right)\right|^{2} k^{3}}{8 \pi m_{V}^{2}} . \tag{6}
\end{equation*}
$$

We now describe the parametrization of the K matrix. A coupled-channel analysis for $D_{s}^{+} \rightarrow V P$ has already been performed in Ref. 11. The mode $D_{s}^{+} \rightarrow \omega \pi^{+}$was excluded in the discussion in Ref. 11. In the G-even state, we extend the K matrix of Ref. 11 from a 2×2 matrix to a 3×3 real-symmetric matrix, thereby including the $\omega \pi^{+}$ mode, as follows:

$$
\left.\mathbf{K}=\left\lvert\, \begin{array}{ccc}
k_{1} b & \left(k_{1} k_{2}\right)^{1 / 2} c & \left(k_{1} k_{3}\right)^{1 / 2} f \tag{7}\\
\left(k_{1} k_{2}\right)^{1 / 2} c & k_{2} a & \left(k_{2} k_{3}\right)^{1 / 2} d \\
\left(k_{1} k_{3}\right)^{1 / 2} f & \left(k_{2} k_{3}\right)^{1 / 2} d & k_{3} e
\end{array}\right.\right]
$$

with channel labels $i=(1,2,3)$ belonging to $\phi \pi^{+},\left|K^{*} K\right\rangle_{S}$,
and $\omega \pi^{+}$, respectively. The parameters a, b, c, d, e, and f are chosen to be energy independent (zero range approximation ${ }^{18}$), since no known resonances with $G=+1$ and spin zero appear to exist; k_{1}, k_{2}, and k_{3} are the c.m. momenta in the three channels, respectively. Since $\pi^{+} \phi \leftrightarrow \pi^{+} \phi$ and $\omega \pi^{+} \leftrightarrow \pi^{+} \phi$ transitions are disallowed by the OZI rule, we set b and f equal to zero as an approximation. Clearly, this disallows the OZI-violating transitions in the lowest order in the K matrix.

In the $G=-1$ channel, there exists an unconfirmed π like resonance at 1770 MeV , i.e., close to the D_{s}^{+}mass. We, therefore, parametrize the K matrix in G-odd state through a resonant form

$$
\mathbf{K}(s)=\frac{1}{m_{R}^{2}-s}\left[\begin{array}{cc}
k_{1} \Gamma_{11} & \left(k_{1} k_{2}\right)^{1 / 2} \Gamma_{12} \tag{8}\\
\left(k_{1} k_{2}\right)^{1 / 2} \Gamma_{12} & k_{2} \Gamma_{22}
\end{array}\right]
$$

with $m_{R}=1770 \mathrm{MeV}$, the total width $\Gamma_{R}=300 \mathrm{MeV}$. The channel labels $i=(1,2)$ belong to $\rho \pi$ and $\left|K^{*} K\right\rangle_{A}$, respectively.

Our model K matrix has four parameters a, c, d, and e in the G-even state and one parameter Γ_{11} in the G-odd state. The reduction of the number of parameters in Eq. (8) is accomplished by requiring factorization for the T matrix derived from Eq. (8) and fixing the total width $\Gamma_{R}=300 \mathrm{MeV}$. The reader is referred to Ref. 11 for details.

We vary the parameters of our model and search for fits to ARGUS (Ref. 9) and E691 data. ${ }^{9}$ For $(d, e)=0$, the $\omega \pi^{+}$channel decouples from the other two channels and one gets $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)=0$. For fits to data, in the case when $D_{s}^{+} \rightarrow \omega \pi^{+}$is decoupled from the other two channels, the reader is referred to Ref. 11. Because of the large number of parameters, an exact branching ratio for $D_{s}^{+} \rightarrow \omega \pi^{+}$cannot be predicted. However, we find that, for reasonable values of d and e, it is possible to produce $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)$up to 3%, keeping the other branching ratios (i.e., for $\bar{K}^{* 0} K^{+}, \rho^{0} \pi^{+}, \phi \pi^{+}$modes) within the experimental limits.

III. RESULTS AND DISCUSSION

Note that in our model, $D_{s}^{+} \rightarrow \omega \pi^{+}$is being generated via final-state interactions only and not directly from annihilation in the $\omega \pi$ channel. We do, however, include an annihilation parameter in the $K^{*} K$ amplitude, which feeds into the $\omega \pi^{+}$final state. In the following discussion the reader is reminded that by annihilation term we mean

TABLE II. Fits to ARGUS data (Ref. 9) for Cabibbo-angle-favored $D_{s}^{+} \rightarrow V P$ decays. The various parameters in the model are selected to maximize $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)$consistent with data. The parameters d, e take values greater than a, c and lie in the range $0.1-1$ GeV^{-1}. All branching ratios are in percent.

Branchingratio	Theory $\xi=0$		Theory $\xi=\frac{1}{3}$		ARGUS data
	$\begin{gathered} C_{1} / C_{2}=-2.0 \\ R_{s}=0.15 \mathrm{GeV}^{2} \\ \hline \end{gathered}$	$\begin{gathered} C_{1} / C_{2}=-2.2 \\ R_{s}=0.17 \mathrm{GeV}^{2} \end{gathered}$	$\begin{gathered} C_{1} / C_{2}=-2.0 \\ R_{s}=0.15 \mathrm{GeV}^{2} \end{gathered}$	$\begin{gathered} C_{1} / C_{2}=-2.2 \\ R_{s}=0.17 \mathrm{GeV}^{2} \end{gathered}$	
$B\left(D_{s}^{+} \rightarrow \bar{K}^{* 0} K^{+}\right)$	3.86	3.71	4.32	4.13	5.0 ± 1.3
$B\left(D_{s}^{+} \rightarrow \rho^{0} \pi^{+}\right)$	0.59	0.56	0.66	0.63	<0.77
$B\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)$	3.57	3.45	4.00	3.83	$3.2 \pm 0.7 \pm 0.5$
$\underline{\left.\underline{B(} D_{s}^{+} \rightarrow \omega \pi^{+}\right)}$	1.66	0.74	1.86	0.83	

TABLE III. Fits to E691 data (Ref. 9) for Cabibbo-angle-favored $D_{s}^{+} \rightarrow V P$ decays. The various parameters in the model are selected to maximize $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)$consistent with data. The parameters d, e take values greater than a, c and lie in the range $0.1-1$ GeV^{-1}. The values in parentheses correspond to $R_{s}=0.0 \mathrm{GeV}^{2}$. All branching ratios are in percent.

$\begin{gathered} \text { Branching } \\ \text { ratio } \\ \hline \end{gathered}$	Theory $\xi=0$		Theory $\xi=\frac{1}{3}$		$\begin{gathered} \text { E691 } \\ \text { data } \end{gathered}$
	$\begin{gathered} C_{1} / C_{2}=-2.0 \\ R_{s}=0.10 \mathrm{GeV}^{2} \\ \hline \end{gathered}$	$\begin{gathered} C_{1} / C_{2}=-2.2 \\ R_{s}=0.11 \mathrm{GeV}^{2} \end{gathered}$	$\begin{gathered} C_{1} / C_{2}=-2.0 \\ R_{s}=0.09 \mathrm{GeV}^{2} \end{gathered}$	$\begin{gathered} C_{1} / C_{2}=-2.2 \\ R_{s}=0.11 \mathrm{GeV}^{2} \end{gathered}$	
$B\left(D_{s}^{+} \rightarrow \bar{K}^{* 0} K^{+}\right)$	2.24	2.11	2.13	2.10	2.6 ± 0.5
	(2.30)	(2.11)	(2.57)	(2.14)	
$B\left(D_{s}^{+} \rightarrow \rho^{0} \pi^{+}\right)$	0.27	0.24	0.25	0.27	<0.28
	(0.006)	(0.004)	(0.006)	(0.005)	
$B\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)$	3.64	3.43	3.52	3.43	3.5 ± 0.8
	(3.76)	(3.43)	(4.21)	(3.51)	
$B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)$	2.48	1.73	2.75	2.02	
	(1.84)	(0.89)	(2.05)	(1.15)	

the annihilation parameter R_{s} (see Table I) which appears in the decay amplitudes for $D_{s}^{+} \rightarrow K^{*+} \bar{K}^{0}$ and $\bar{K}^{* 0} K^{+}$. Note also that the un-unitarized amplitude for $D_{s}^{+} \rightarrow \omega \pi^{+}$is zero (Table I).

A fit to ARGUS data ${ }^{9}$ requires that the annihilation parameter R_{s} be nonzero, even if we require $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)=0$. Although fits to E691 data ${ }^{9}$ may be obtained for vanishing R_{s}, nonvanishing R_{s} is also allowed by the data; larger $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)$being obtained for $R_{s} \neq 0$. The maximum value of $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)$consistent with a fit to ARGUS data requires an annihilation term $\simeq 40 \%$ of the spectator term in $D_{s}^{+} \rightarrow K^{*+} \bar{K}^{0}$ and that for E691 $\simeq 25 \%$ of the spectator term. For E691 data, even with the annihilation parameter set equal to zero, final-state interactions alone can generate $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)$up to about 2%.

In Table II we show a fit to the ARGUS data (for $\xi=0$ and $\xi=\frac{1}{3}$), where the various parameters are chosen such that $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)$is at its maximum value. Table III lists the same for E691 data. Note that the E691 data, where $B\left(D_{s}^{+} \rightarrow \bar{K}^{* 0} K^{+}\right)$is lower than in ARGUS data, allows a larger value of $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)$than the ARGUS data. This presumably results from more of the $\bar{K}{ }^{* 0} K^{+}$ rate being siphoned off into the $\omega \pi^{+}$mode.

Lastly, a word about our choice of the ratio C_{1} / C_{2}. We note that $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)$falls as C_{1} / C_{2} increases in magnitude. In Ref. 3, from a fit to $D \rightarrow K \pi$ data the ratio C_{1} / C_{2} was estimated to lie in the range $-3.3 \leq C_{1} /$ $C_{2} \leq-2.0$. We chose C_{1} / C_{2} close to the maximum of
this range in order to generate as large a value for $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)$as possible. A next-to-leading-log (NLL) calculation with reasonable values of QCD parameters μ and Λ also gives ${ }^{11} \quad C_{1} / C_{2}$ roughly in the range $-3.3 \leq C_{1} / C_{2} \leq-2.0$ for $\xi=0$. For $\xi=\frac{1}{3}$ a value of C_{1} / C_{2} in the same range can be secured ${ }^{11}$ in an NLL calculation only by raising Λ to about 0.5 GeV or by lowering μ below 1.2 GeV .

In summary, we find that in a factorization model, where the quark level amplitude for $D_{s}^{+} \rightarrow \omega \pi^{+}$is zero, final-state interactions can generate $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)$as large as $\sim 3 \%$. An observation of a signal at this level will not necessarily constitute an evidence for an annihilation term in the decay amplitude for $D_{s}^{+} \rightarrow \omega \pi^{+}$at the quark level. A measurement of this branching ratio will be very desirable.

Note added in proof. In a revised version of Ref. 13, the prediction of $B\left(D_{s}^{+} \rightarrow \omega \pi^{+}\right)$has been lowered to $\frac{1}{10} B\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)$. See L. L. Chau and H. Y. Cheng, University of California, Davis, Report No. UCD-88-12 (unpublished). We thank Dr. Cheng for bringing this report to our attention.

ACKNOWLEDGMENTS

This research was supported in part by a grant from the Natural Sciences and Engineering Research Council to A.N.K.
${ }^{1}$ L. L. Chau, Phys. Rep. 95, 1 (1983); L. L. Chau and H. Y. Cheng, Phys. Rev. D 36, 137 (1987).
${ }^{2}$ M. Bauer and B. Stech, Phys. Lett. 152B, 380 (1985).
${ }^{3}$ M. Bauer, B. Stech, and M. Wirbel, Z. Phys. C 34, 103 (1987).
${ }^{4}$ A. N. Kamal, Phys. Rev. D 33, 1344 (1986).
${ }^{5}$ T. Tanuma, S. Oneda, and K. Terasaki, Phys. Rev. D 29, 444 (1984); 29, 456 (1984); K. Terasaki and S. Oneda, ibid. 34, 2778 (1986).
${ }^{6}$ F. Hussain and M. D. Scadron, Phys. Rev. D 30, 1492 (1984); A. N. Kamal and M. D. Scadron, ibid. 32, 1164 (1985).
${ }^{7}$ B. Yu Blok and M. A. Shifman, Yad. Fiz. 45, 211 (1987) [Sov.
J. Nucl. Phys. 45, 135 (1987)]; 45, 478 (1987) [45, 301 (1987)]; 45, 841 (1987) [45, 522 (1987)].
${ }^{8}$ M. Wirbel, Prog. Part. Nucl. Phys. (to be published).
${ }^{9}$ D. G. Hitlin, Nucl. Phys. B (Proc. Suppl.) 3, 179 (1988).
${ }^{10}$ I. I. Bigi and M. Fukugita, Phys. Lett. 91B, 121 (1980).
${ }^{11}$ A. N. Kamal, N. Sinha, and R. Sinha, Z. Phys. C 41, 207 (1988).
${ }^{12}$ J. F. Donoghue, Phys. Rev. D 33, 1516 (1986).
${ }^{13}$ L. L. Chau and H. Y. Cheng, in Proceedings of the XXIV International Conference on High Energy Physics, Munich, West Germany, 1988, edited by R. Kotthaus and J. Kuhn
(Springer, Berlin, 1988).
${ }^{14}$ S. Okubo, Phys. Lett. 5, 165 (1963); G. Zweig, CERN Report No. 8419/TH412, 1964 (unpublished); I. Iizuka, K. Okada, and O. Shito, Prog. Theor. Phys. 35, 1061 (1966); G. Zweig, in Symmetries in Elementary Particle Physics, edited by A. Zichichi (Academic, New York, 1965).
${ }^{15}$ P. S. Lee, G. L. Shaw, and D. Silverman, Phys. Rev. D 10, 2251 (1974); Y. Iwamura, S. Kurihara, and Y. Takahashi, Prog. Theor. Phys. (Kyoto) 58, 1669 (1977); A. N. Kamal, Can. J. Phys. 57, 1815 (1979).
${ }^{16}$ M. Wirbel, B. Stech, and M. Bauer, Z. Phys. C 29, 637 (1985).
${ }^{17}$ The constraint $C_{+}^{2} C_{-}=1$ is strictly valid in the leading-log
approximation. In next-to-leading-log approximation it is violated by less than 3%. See G. Attarelli, G. Curci, G. Martinelli, and R. Petrarca, Phys. Lett. 99B, 141 (1981); Nucl. Phys. B187, 461 (1981); A. J. Buras, J. M. Gerard, and R. Rückl, ibid. B268, 16 (1986); D. Hitlin, in Techniques and Concepts of High Energy Physics IV, proceedings of the Advanced Study Institute, St. Croix, Virgin Islands, edited by T. Ferbel (NATO ASI, Series B: Physics, Vol. 164) (Plenum, New York, 1987), p. 105.
${ }^{18}$ M. H. Ross and G. L. Shaw, Ann. Phys. (N.Y.) 9, 391 (1960); 13, 47 (1961).

