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Exact solution of a class of two-state periodic Schrodinger probleItts
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A neutral system coupled to an external periodic magnetic field is considered. The proposed form
of the applied field allows us to solve the resulting coupled-charinel two-state problem exactly. The
transition probability is discussed in detail in a wide range of parameters of the system. The optimal
parameters are identified exactly, thus providing maximum control of the experimental conditions
in the degaussing problem. Special attention is paid to the problem of neutron-antineutron oscilla-
tions.

A neutral system can couple to an external magnetic
field due to the magnetic moments of the constituents of
the system. The increasing interest in this problem
comes in recent years in connection with the experimen-
tal possibility of detecting baryon-nonconserving transi-
tions. A prominent example is neutron-antineutron oscil-
lations. ' The coupling of the anomalous magnetic mo-
ment of a neutron to Earth's magnetic field reduces the
n~~n transitions by many orders of magnitude. A natu-
ral idea to restore these oscillations is with an applied os-
cillating magnetic field, driving the system for many
periods of the field at its fundamental frequency. The fre-
quency of the magnetic field pulses is then of decisive irn-
portance for the efFect rather than their shape and inten-
sity. Several authors have tried to solve the problem
either analytically or numerically, starting from the sys-
tem of coupled differential equations (A'=c = 1)

Wo =coo+ ( R i R ~ ) /2 (3a)

(3b)

a(T) a(0)
f3( T) — P(0)

It has the form

R =(R i+Re)/2 .

The T is a period of the oscillations, R, and R2 are the
amplitudes of the fs(t) in the two parts of the period
with the duration T, and T2, respectively (Fig. 1), and k
is a non-negative integer (R i

=R z =0 for t (0). At small
amplitudes (such as Earth's magnetic field), the rectangu-
lar oscillation s can be produced with no technical
difFiculties.

The evolution matrix ~ of the system, after a period T
is defined as

da/dt = icos(t—)a(t) i co P(t—),
dP/dt = —ico a(t)+icos(t)P(t),

(la)

(1b)

r»(T)= —,
'

[ A+cos(8+)+ A cos(8 )

—i [8+sin(8+ )+8 sin(8 )]I, (4a)

where cos(t) is the time-dependent external magnetic field
coupling energy. In the ri ~~n example' ~ is the energy
characterizing the fundamental barion mixing force
co =10 s ', while Earth's static magnetic field cou-
pling energy coo-10 s ' defines the order of magnitude
of cos(t) [cats(t)=coo+ fan(t), where ftt(t) is an applied
periodic magnetic field]. In this case a and P are the neu-
tron and antineutron wave functions, respectively.

If fs(t) is taken to be a simple harmonic function, the
system of coupled equations (1) is equivalent to a Hill
equation and can be solved only approximately. But
when the applied periodic magnetic field is shaped in the
form of rectangular pulses (Fig. 1), the resulting transi-
tion probabilities can be calculated exactly and these
show some peculiar features that have not been stressed
in the approximate treatments. Therefore, we take, for
the coupling energy,

W, = Wo+R, t E(kT, T, +kT],
W~ = Wo —R, t E(Ti +kT, (k +1)T],

where

0

FIG. l. The applied periodic magnetic field fe(t) of the
period T = T& + T2; coo is the external static magnetic field.

39 347 1989 The American Physical Society



39BRIEF REPORTS348
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+, [D+ sin(0+ ) sin(9 — ]I '

, (T)=rii(T»( T) ——%~i( T)& 22&12

(4b)
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FIG. 4. The transition probability in a resonant region, nor-
malized to its peak value, vs scaled frequency go(co —co&)/co+
(thick line); the sharply peaked factor P2I of Eq. (9) (thin line);
sin (yt) (dashed line).

y~t &&1, the probability at an exact resonance can be
written in the form

the order of resonance are considered, the maximum
probability is obtained for K,„=1 and for the lowest n.
Thus, ~ „=1.366 at n = 1 and it shifts toward 1 with an
increase of n (~,„=1.06 at n =5). The linear portion of
the thick line curve of Fig. 2 represents maximum proba-
bility of the system for a given g as long as 6 is small.
For g=10, P&& -1.l. 8X10 which is about the max-
imum probability that can be obtained for the neutron-
antineutron transition, in the half-life time of a neutron.

The thick line curve of Fig. 4 is independent of 5, v, n,
and t as long as the values of these parameters keep the
probability on the linear portion of the curves of Fig. 2.
This and the appearance of the satellites is the conse-
quence of the superposition of the sharply peaked struc-
ture of the P2, in Eq. (9) (thin line of Fig. 4) and the fast
oscillating nature of the Flocquet exponent y [the dashed
line of Fig. 4 represents sin (yt)]. The latter always has
minima [given by Eq. (10)] at the resonant frequences.
The factor P2, in the transition probability picks up the
values of these minima. On the other hand, the two
nearest maxima of the sine term pick up the values of the
P2i at the far wings, determining the behavior of the reso-
nant peak at the wings. The satellites come from the
next-nearest maxima of the sine term.

The width of the resonant peak is defined as
I =b,co/catt, where Ace is the frequency range about the
resonance where the transition probability is greater or
equal to —,

' of its peak value. I is found to be dependent
only on go= Wot /(2m. ). This dependence has the form

P2, (t)=sin (pent)=C„(~)g
I =0.44/go . (12)

where i) =cu t /(2m ). Equation (11) explains the
straight-line portion of the P2I curves at Fig. 2 and their
independence on 5. The oscillating part for ~=1.366 is
due to the sine in Eq. (11) and it appears after the C„(x)g
reaches a value of -m/2 (g=0.2). For the dashed line
(~=2.99) this happens much later, at i'd=23. This is a
consequence of the strong dependence of C„(I~) on both ~
and n. In view of the applications, since u is assumed
small, it is not very probable to have such a long time on
disposal in a possible experiment to drive the resonant
transition probability outside the straight-line portion of
the curves of Fig. 2 (for example, the half-life time of a
neutron is less than 10 min). Therefore, the time interval
(0, (m/2)/y ) is of most interest. Far enough froin a reso-
nance, the probability has the order of magnitude of 5
and it oscillates with frequency 8'o.

The curves of Fig. 3 are independent of 5 and t as long
as the linear region of Fig. 2 is considered. Obviously, in
this region these present the normalized C„(x) curves and
their structure is clear from Eq. (10). The probability is
zero when n~ and n are integers of the same parity, i.e.,
when n(jr+1) is an even integer (and, in addition, for
x=0). The exception is a=1, where this rule is not
obeyed [Eq. (10)]. Thus, P2, =0 for n = 1 at
K=0, 3, 5, 7, . . . , (2l + 1), . . . , for n =2 at x=0, 2, 3,
4p ~ ~ 4 $ Ip ~ e \ p foI pj 5 at K 0$ g 7 5 g 5 p g p e ~

(21+1)/5, . . . , . The envelope of the local maxima (for
Ic) K „) of Fig. 3 is a decreasing function of both x and
n. Therefore, as far as the dependences on the field and

The calculated I is presented in Fig. 2 (thin line) as a
function of g, for 5= 10 . The value of g when the reso-
nant peak splits (and the results for I are no longer valid
giving the thin-line oscillatory structure) corresponds to
the termination of the linear porion of the Pz] curve.
Equation (12) can be explained by expanding the proba-
bility in Ax &&1 about the resonant xz and neglecting
the terms of order 5 /b, x. The defining equation for the
half-width then simplifies to sin(y)/y = 1/&2, where
y =4m.gohx /n. The solution of this equation is y =0.44m.
and taking into account both wings Eq. (12) follows.

For the n ~~n system, for g =10, we get
I =4.4X10, which is at least an order in magnitude
larger than the width which would be expected from the
peaked factor P2, . A remarkable result is that I is
significantly larger for shorter times. An additional pos-
sibility is to increase I for a fixed t by decreasing 8'o,
without changing the transition probability, which can be
done by a proper choice of the asymmetry in the pulse
amplitudes R, and R z, Eq. (3a).

In conclusion, the proposed form of the applied period-
ic magnetic field, with the exact solution of the coupled-
channel two-state problem allows us for the first time to
identify the optimal parameters exactly, thus providing
the maximum control of the experimental conditions in
the degaussing problem of an electrically neutral system.
In the vicinity of resonances the dependence of the transi-
tion probability on the R /8'o is not critical (see the n = 1
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curve of Fig. 3) and therefore the uniformity of both am-
plitude of periodic (-R) and static ( —8'o) magnetic
fields is also not critical in a possible experiment. More-
over, the degaussing by an additional static magnetic field
is not necessary, but if done has the desirable efFect of
widening the resonant peaks in the frequency domain.
Although the main motivation for working on this prob-

lem is connected to the possibility of stimulated n~~n
transitions, the derived results can be applied to any neu-
tral system which dominantly interacts with an applied
magnetic field. Ef the coupling parameter 5 is of the or-
der of unity or even larger, the present theory needs small
modifications to allow for the oscillations of the probabil-
ity within a period of the applied magnetic field.
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