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We estimate various contributions to the hB =2 effective Hamiltonian in low-energy supergravity

models. Estimations are made not only an the gluino contribution but also on the contributions by

other supersymmetric particles and by the physical charged scalar, taking into account the external

line momenta of b quarks. We have found that the charged-scalar contribution dominates other

nonstandard contributions under the conditions of the radiative breakdown of SU(2)1 XU(1)&

gauge symmetry, and that the effects of external momenta are very small.

I. INTRODUCTION

The discovery of large B -B mixing has brought valu-
able information in particle physics. ' One of the most
striking pieces of information is that the top-quark mass
should be as large as 50 GeV or more in the standard
model. Some attempts have been made to obtain a light
top quark which is interesting from the present experi-
mental point of view. " We deal with supersymmetric
models in this paper as one such attempt. Previous anal-
yses have shown that the gluino-exchange contribution to
the b,B=2 effective Hamiltonian can dominate the usual
8'-boson-exchange contribution for suitable values of pa-
rameters (gluino mass, scalar-quark mass, and so on). '

In their analyses, masses of superparticles and the degree
of flavor mixing in quark-scalar —quark-gluino couplings
are taken as free parameters. Here, we make an analysis
based on the unification scheme. That is, we deal with
the so-called low-energy supergravity model, where the
above-mentioned parameters are not necessarily free but
have some relations among them. We further impose
constraints on those parameters from phenomenology,
e.g. , the lower bound of scalar-quark masses. In this kind
of model with constrained parameters, we estimate the
contributions to the kB =2 efI'ective Hamiltonian not
only by the gluino but also by other supersymmetric par-
ticles and by the physical charged scalar which necessari-
ly enters in supersymmetric models. The contributions
by those fields have been presumed to be negligible in
comparison with that by the gluino in the previous analy-
ses. But we show that this presumption is not necessarily
right in the models discussed here. We take account of
the mass of b quarks at the external lines in the calcula-
tions of box diagrams. This has never been done in the
analyses of supersymmetric models although often done
in those of the standard model.

The rest of this paper is organized as follows. In Sec.
II we review the low-energy supergravity model. Con-
straints on the parameters are given in Sec. III. We esti-
mate various contributions to the 6B=2 e6'ective Hamil-
tonian in Sec. IV. A summary is given in Sec. V.

II. LOW-ENERGY SUPERGRAVITY MODEL

(2.1)

Xss=(kinetic terms)

+(gauge interaction terms)

+(yP "E L„H+yD "D Q„H+yP "U Q„H'

+pHH')F +H. c.

(gmnECL H+ gmnD CQ H+ gmnUCQ

(2.2)

+ppHH' ) ~ +H. c.
—(m )~P;PI —g (M~/2)A~CA~, (2.3)

where A~ is a SU(X) [U(1) for N= 1] gauge fermion. The
SUSY-breaking part XsB is supposed to be born at a
very-high-energy scale near the Planck scale. Assuming
grand unification of the gauge interactions, we have the
following relations at the grand unification scale MG.

TABLE I. Chiral superfields and their components. The in-
dex n represents generation.

Superfields
Components

(fermion boson)
Under

SU(3) X SU(2) XU(1)

Qn
n gd

DC

dL, dL It

(ug u g)„

d g)n

L„= L'
EC

VL

(eC

eL
(1,2, —1)

(1,1,2)

H0
H= h0

(1,2, —1)

H+

symmetric extension of the standard model, where super-
symmetry (SUSY) is broken through super-Higgs eff'ects.
Chiral multiplets which appear in this model are shown
in Table I with their transformation properties under
SU(3) X SU(2)I XU(1)r. The Lagrangian is given as

+SS++SB ~

The low-energy supergravity model is a minimal super-
symmetric extension of the standard model, where super-

H'=
0 h0 (1,2, 1)
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gP"= Am yP" (P =E,D, U),

p =801g

(m );=m5),
M3 =M2 =M( =M~,

2 —2 —5g2 —g2

(2.4)

(2.6)

(2.7)

(2.8)

pL (D)=mg —(gz/4 —g, /12)(u —u' )

+ g (dg/2kiv)[1 (giv/gxx) ]Mx ~

pp=1 —(m /u) 5p, qp=(m /v')25U,

A p = A + (pu '/m u )

+ g (cp/2k~)[1 —(g~/g~x) ](Mx/mg ),
where tv is the gauge coupling constant of SU(N) [U(1)
for N= 1] gauge interaction. Though we assume grand
unification, we do not necessarily require Yukawa eou-
plings to obey the grand unification relations such as

yD =yE. This is what usually happens in superstring-
inspired models. The constants A, 8, m, and M~ in the
above equations are the parameters which show SUSY
breaking. The values of g, Mz, and the scalar masses at
lower energy are given by solving renormalization-group
equations (RGE's). The results are written in terms of
the SUSY-breaking parameters, Yukawa couplings and
some calculable constants:

A(mglu) exp, sp A(mg/u ) Pp

pR (D) =m —(g i /6)(u —u' )

+ r (dp/2k%)[i (giv/gÃx) ]Mx

(2.19)

kp= 1 —2(m /u) 5p,
where g&x =g& at MG, d~ =(d~, d~, d~) =( —", , 3, —,

' ),
k~=( —3, 1, 11), cp=( —", , 3, —', ), and dp=( —", , 0, —", ). Mass
matrix for scalar u-type quarks are given by the following
exchange of letters in the above equations:

M~=(gN/gx)Mx (X —,
' for %= 1), (2.9) D~U, d~u, V~V, U~U' . (2.20)

(2.10) andkp=Am yp(~p

kU=Am, yU(~U ~UyUyU 13Uypyp—)

mg =m (xg 5pypyp 5UyUyU)

mp =m (xp 25pypyp), —2= 2

mU =ms(xU —25UyUyU),2= 2

(2.11)

(2.12)

(2.13)

(2.14)

where the Yukawa eouplings are those at low energy not
at MG. For details please see the Appendix and Ref. 9.
Other quantities such as gz, mL are not important to our
following discussions, so that we do not show them here.

The Higgs scalars ho and h o develop vacuum expecta-
tion values (VEV's) u and v', respectively, at the symme-

try breaking of SU(2)L XU(1)i,. The mass matrix of sca-
lar d-type quarks is given as

(d L,d ii )Mp(dL, dii )

(L L)p-
—'d '" (L. —R)

L

(L —R)p dL

D R

(2.16)(L L)p =pL(D)+p—pM d
—qp V M „V,

g', /6 g', /3 in p', (U) .

The constants are defined as cU =( —", , 3, —", ) and

dU =( —", , 0, —", ). In the above mass matrices, scalar quarks
are in the basis where corresponding quarks are in mass
eigenstates. But these mass matrices are not generation
diagonal, which gives Aavor-changing interactions medi-
ated by neutral gauginos or Higgsinos. This will be dis-
cussed in detail in Sec. IV.

III. CONSTRAINTS AN PARAMETERS

The parameters in our model have some relations
among one another as described in the previous section.
Still some parameters are left free. They may be fixed if
we can put our model into the framework of a higher
theory such as extended supergravity or superstring
theory. Here we take another approach. We constrain
the parameters from phenomenology. The following con-
ditions are imposed: (1) SU(2)1 X U(1)r gauge symmetry
breaks down through renormalization effects; (2) SU(3)
gauge symmetry does not break down; (3) the mass of the
lightest charge superparticle should not exceed experi-
mental bound. Now let us examine each condition in de-
tail.

(L —R )p =Apm Qd (rp/mg)4d-
—(sp /m )1&d VtM „V,

(R —R )p =pii (D)+kpM d

(2.17)

(2.18)

A. Radiative breakdown of SU(2)L XU(1)r

The Higgs potential is given as

In the above equations, V is the Kobayashi-Maskawa
(KM) matrix, Md =diag( md m. mb ) M„=diag( m„,
m„m, ) and the definitions of others are

V = '(g +g )(lhol2 —Ih'
I )

+m i lhol'+m2 lh o I' —2m 3 Ihoh,'I, (3.1)
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where

mi =~p~ +mH

m,'= [pf'+mH,

m,'=fpp/ .

(3.2)

(3.3)

(3.4)

The conditions of the breakdown of SU(2)L XU(1)r are
given by Inoue, Kakuto, Komatsu, and Takeshita

Mx(Geq)

100
allative d

V1

100
(a)

9
I

mg
&GeV)

100

allowed
(d)

ml+m2 2m3 00 ~

m'm' —(m')'(0
(3.5)

(3.6)

Mx

100

a,lloaved

Mx
aiiow d

1
Pe3

1OO

The first condition is necessary for the potential to be
bounded from below. The second one means the ex-
istence of a negative direction in the quadratic terms of
the potential. At the scale MG, the second cannot be
compatible with the first since we have, at that scale,

0 /
P allowed 1 no

(b)

I

mg allowed 100
(e)

m 2i =m g
=m 2+ [p /', m 32 =

/
am iM /

. (3.7)
Mx

al

At a lower scale, the values of m &, mz, and m3 vary ac-
cording to renormalization-group scaling, so that those
two conditions can be simultaneously satisfied for some
suitable values of parameters. ' When the above condi-
tions are satisfied, the Higgs potential takes its minimal
value for

100

.-P2

allo~ved

~Y3

100
fC) a.ll oived

,
"/

mg

100

1 1

allo~ved 100
tf)

2UV

U +U

2111

f7' +Ol
(3.8)

FIG. 1. Allowed region of I& and mg. Values of other pa-
rameters are given in the text. The regions above the solid line
or enclosed by the solid line are allowed.

The solutions of REISE's for vl l Nl 2 and M3 are given by
Komatsu under the approximation of neglecting Yukawa
couplings except that for the top-quark mass. " In the
previous analyses of this kind of breakdown of
SU(2)L X U( 1)i, authors calculated m „m 2, and m 3 with
the aid of RGE's fixing some of the parameters such as
A, m, and so on, and checked if the conditions (3.5) and
(3.6) are satisfied. But in this work we take another ap-
proach.

First, we fix 3, u/v', mg, Mz, and the top-quark mass.
The mass squared of the Higgs scalars, mH, and mH, can
be expressed in terms of these parameters by using the
solution of Komatsu. Then the parameter ~iM~ can be
determined through the following relation which can be
obtained by exploring the Higgs potential:

B. Unbroken SU(3)

&ho') =&u ~ &
= &uL &~0,

which gives

V ' go(gp a'/3)

where

(3.10)

(3.1 1)

We have assumed the Higgs scalars alone develop
VEV's in the preceding discussion. Kounnas et a/. have
pointed out in Ref. 12 that there is another candidate of
minimum which breaks color:

(u/u') +1Mz= mz —m, (u/u')' —1

—(m 2+m i ), (3.9)
yo= —,'[—AU —(AU —8a /3)'~ ],
a =(m&3+mU3+mz)/mg .

(3.12)

(3.13)

with Eqs. (3.2) and (3.3).
Next we determine m3 from Eq. (3.8), which corre-

sponds to take v/u' as a new parameter instead of 8 from
the condition of electroweak breaking. Note that B is not
fixed by a relation such as B= A —1 in this approach, but
varies according to the values of other parameters.

Finally, we check the consistency. The first condition
(3.5) is automatically satisfied. If the second condition
(3.6) is also satisfied and ~p~ is not negative, we adopt
those values of parameters as the allowed ones. The al-
lowed regions are shown in Figs. 1(a)—1(Q. The region
above the line o. is allowed in each figure.

+H ~min + ~min (3.14)

The regions above the line P are allowed in Figs.
1(a)-1(f).

C. Mass bound on lightest charged superparticle

We put the lower bound on the masses of charged su-
perparticles. The bound is taken to be 25 GeV from
e+e collider experiments. A candidate of the lightest

They have put the condition V;„~0. But in this work
we require
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one is one of scalar top quarks. The mass matrix of sca-
lar quarks gives approximately

(3.15)

so that one of the masses gets smaller as the quark mass
gets larger. Other candidates are a scalar charged lepton
and a chargino which is a linear combination of 8'-inos
and Higgsinos. The mass matrix of the scalar charged
lepton is obtained in a similar way as we have obtained
the mass matrix of scalar d-type quarks. Mass matrix of
charginos is given in Eq. (4.29) of Sec. IVE. We examine
the eigenvalues of the mass matrices of these particles,
and obtain the allowed regions of parameters which satis-
fy that bound. The lines y1 and y2 are the bounds from
the scalar top quark and scalar charged lepton, respec-
tively. Allowed regions are above these lines. The char-
gino mass bound is shown by the lines y3. The region
below y3 in Fig. 1(a) and those between two y3 lines in
Figs. 1(b)—1(f) are forbidden.

Although the gluino is not electrically charged, we set
the lower bound of the gluino mass to be 50 GeV from pp
collider experiments. This corresponds to the limit on
M~.

1(a)—1(f). The top-quark mass is fixed to be 50 GeV. The
values of other parameters in each figure are given as

(a) 3 =3, u/u'=0. 9,
(b) 3 =2, u/u'=0. 9,
(c) A =3—&3, u/u'=0. 9,
(d) 3 =3, v/v'=0. 5,
(e) 3 =2, v/u'=0. 5,
(f) 2 =3—&3, u/u'=0. 5,

We have also explored the cases 3 =3, 2, 3 —&3 and
v/v'=0. 1, but no region m, Mz ~200 GeV is allowed
by the electroweak breaking condition.

In the next section we estimate the contributions to the
AB =2 effective Hamiltonian with thus constrained pa-
rameters.

IV. CONTRIBUTIONS TO THK 68 =2
KFFKCTIVK HAMII. TONIAN

Now we estimate various contributions to the AB =2
effective Hamiltonian.

M~~15 GeV . (3.16)
A. 8 boson

The bound is shown by the line g.
Finally, we combine these bounds, and allowed regions

of parameters are obtained. These are shown in Figs.
I

We first give here the usual 8'-boson-exchange contri-
bution. Feynman diagrams are shown in Fig. 2

2A. k

„(1—x;)(1—x )

X I'ds. XI X~1+ F
2

[x,s+x, (1—s)] Fo (bL y„dh )'

+2s(1 —s)xb 1+ Fo(biidl ) '+H. c (4.1)

F, =F,(x;,x, ;s)
2

(A, lnA, —A, +2 lnA, +~),
a =1

(4.2)

where A, ,
= V~b V;d and x, =(m, /Mw) . The functions are

defined as
A3=x;(1 —s)+s —xbs(1 —s ),
A4=(1 —s)+x,s —xbs(1 —s) .

(4.6)

(4.7)

Calculations have been made in the 't Hooft —Feynman
gauge.

B. Physical charged Higgs scalar

Fo =Fo(x, ,x;s )

2= g (lnA, —lnA, +2),
a =1

where

(4.3)

Because two Higgs doublets are present in the low-
energy supergravity model, there exists one physical
charged scalar y+. The interaction Lagrangian is given
as'4

A, =x;(1—s)+x.s —xbs(1 —s),
A~= 1 —xbs(1 —s),

(4.4)

(4.5)

u [(v /v')M„VPL+(u'/u ) VMdP& ]dcp+
2Mw

+H. c. , (4.8)
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B, = .— x x'xb j ds[2+s(1 —s)]FOl MH

2 M, (1—x')(1 —x')
I J

b,

g. , c, &

R, c, g

p+

I

X J ds ps(1 —s)+1

—2s ——Fo, (4.11)
p

where x = ( m; /MII ), p = ( U /U
' ), and the definitions of

the functions F, ,Fo are
l
l
I

l
1

I
Ir

u., c, &

I
I y+
l
I

L.r

F, =F) (x,', x ';s )

2= g ( I, ln I, —I, + ~ ln1", + ~ ),
a=]

(4.12)

FIG. 2. Box diagrams of 8'-boson exchange. The dashed
lines express the Goldstone boson Ps.. There are also crossed
diagrams which are not shown.

Fo =Fo(x,', x ';s )

2= g (lnI, —lnl, +2),
a =1

(4.13)

+H. c. (4.9)

where PI (~)= [1—(+ )y5]/2. The contribution shown in
Fig. 3 is estimated as

GFM~
A,;XJ[A,~(bl. y„dl. ) +B,~(b~dL) ]4~ ij =u

I,=x (1—s)+x's —xbs(1 —s),
I 3=x~(l —s)+s —xb(l —s),
I =x (1—s)+s —x's(1 —s),
I =x' (1—s)+x's —x's(1 —s) .

(4.14)

(4.15)

(4.16)

(4.17)
The coefficients 3, - and B; are defined as

M~ x x'.
1

2 M~ (1—x,')(1—x')

2 i MH
2

+ GB x x pFi
(x~ —x )(1—x') o 2 M~

(x(ixjp+xbx/s )Fp

(4.10)

M =M +I +m (4.18)

C. Gluino

Quark-scalar —quark-gluino couplings are written as

Xs(=i&2g3(B XI3B I+d LA3dl

The mass of charged Higgs scalar MH is given in our
model as

QgQ+A3 dgd~A3)+H. c. (4.19)

d
I
I
l y+
I

b

S

l
I

y+ )

l
r

FIG. 3. Box diagrams containing physical charged scalar.

Scalar quarks are not in mass eigenstates in the above La-
grangian, so that hery we diagonalize the mass matrix of
scalar d-type quarks (2.15), and obtain the interaction La-
grangian among physical fields.

As an approximation we drop the minor terms in Eq.
(2.15) keeping in mind that m, M&))quark masses ex-
cept those of third-generation quarks:

pL (D) —
qD V M, V

2

ADm Mb —[(sD/m )Mb V M, V] )M~(D)

(4.20)

where 1&,=diag(0, 0, m, ) and Mb =diag(0, 0, mb ). The
term in the square brackets in the above equation gives
fIavor mixings of left-right scalar quarks and is important
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QD= Ve,
with

(4.21)

for the processes such as electric dipole moment, but not
for the kB=2 e6'ective Hamiltonian so that we omit it
here. This MD is diagonalized in a very good approxi-
mation by

rL

I

I
f

R3 Qy
I
~8d
I

Rg, gy
/

(4.22)

6L

I

I

I

I
I

/

~3 I ~l'
I

pl3, gy

where 1„ is a n X n unit matrix. The matrix

C S

S C
(4.23)

FIG. 4. Box diagrams of the gluino exchange. Note that the
gluino is a Majorana fermion.

diagonalizes the third-generation part of the quark mass
matrix. The interaction Lagrangian is rewritten in terms
of mass-eigenstate scalar d-type quarks Sd.

gl g3[(dL ) n3(+D )nk(~d )k + ]+H c (4.24)

Feynman diagrams are shown in Fig. 4. The contribu-
tion is estimated to be

2
CX3

~gl p g (+D )3k(+D )kl(+D )3l(+D )ll
M3 kI

11 1 1 2 2 2X ds [F,(yk, yl, s )(bI y dI ) +2(mb /M3 ) s(1—s )Fo(yk, y&, s )(bll dL ) ]18 (1—
yk )(1—

yl ) o

1 1 1 2J ds[G(yk;s) —G(y&, s)1(bL1' dI ) +H. c. ,
(4.25)

where y =(m /M3) . The functions F, and Fo are already defined in Eqs. (4.2) and (4.3), respectively, while the
definition of 6 is

G(y;s) = ln
1

1 —y

1 —s+ys —y&s(1 —s)

1 —
yl, s(1 —s) (4.26)

D. Neutral gauginos and Higgsinos

In this case mass eigenstates are linear combinations of neutral gauginos (A, , A,z) and Higgsinos (A, H, A,»), contrary
to the case of the gluino which is an eigenstate of both mass and interaction. The mass matrix is given as

Az

~y

g2M)+g )M2

8 i+8z
0

0

g, g3(M2 —M, )

8 &+Re

—sin20H p —cos20H p
—cos20H p sin20H p

Mz

kz

g, g2(M3 —M, )

Ni+Nz

Mz

g2M2+g ]M]

8 i+Nz

(4.27)

where singH=v/(u +v )'~, cos+=u'/(u +u' )'~ . Diagonalization of this matrix is complicated, so that we give
here the contribution by A.z neglecting mixing among others for order estimation. Feynman diagrams are the same as
those of the gluino:
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~y 2 X (+D )3k(+D )kl(+D )3l(+D )ll
81M

f ds[F, (yk, yl'', s)(bLy„dL) +2(ml, /M ) s(l s)—Fo(yk, yl', s)(bBdL) ]
(1—

yk )(1—yl') y

f ds[G(yk', s) —G(yl'', s)](bLy„dL) +H. c. , (4.28)

where y~
= (m /M ), and M is the mass of A, . Note

y ' y
that the differences between that of the gluino are mass,
coupling constant, and color factor.

E. Charged gauginos and Higgsinos

This matrix gives two Dirac fermions: say g„+ and QB.
The relevant part of the interaction Lagrangian is

X~ =ig2(S„' ) .(QU )i„V„(dL)

Mass matrix of charged gauginos (g+~, A. ~) and Higgsi-
nos (Ayy, kH ) ale X [Q g ( UL ) A IY +4B ( UL )Bw ]+H. c (4.30)

~H' . g2U

gpU UR
B

(4.29)
where summations are taken for j = 1 —6 and n, m = 1 —3.
The unitary matrix QU diagonalizes the mass matrix of

- scalar u-type quarks:

lLl, L( U)+PU1&,
2

AUmgM, —(rU/m )M3

AUmg1&, (rU/m )M,—

lMB( U)+kUM, (4.31)

This matrix is obtained from Eqs. (2.15)—(2.18) with the replacements (2.20) and the same procedure to obtain the ap-
proximate form of MD in (4.20). This is already generation diagonal and off-diagonal elements lie in the third genera-
tion only, so that we have

n, =e',
where 6' is defined in the same way as that of 6 in (4.22). Finally, the contribution shown in Fig. 5 is estimated as

(4.32)

CX

~(UL)~~~ g ds[F, (z;,zj ,s)(bLy„dL') +2zbs(1 —s)FD(z, ,z;s)(badL) ]+H.c. ,
4M~

(4.33)

where z~ =(m~/M„) and g;= gk l V3k(QU)k, .(QU);l V». To obtain the above equation we estimate only the contribu-
tion by g~ for the simplicity of calculation. There also exist contributions by QB and a mixed one. We take tp+„ to be
the lighter of the two which gives the major contribution. Thus for order estimation the above expression is sufhcient.

F. Numerical analyses

Let us make a comparison among the contributions and see which one dominates. The following points are impor-
tant for this comparison. The usual W-boson contribution (4.1) is dominated by top-quark exchange; then we have, in a
very good approximation,

M, 2=(A, , ) X(real factor), (4.34)

where M, z is the dispersive part of (B ~&~~B ). The charged-Higgs-scalar contribution (4.9) is also dominated by
top-quark exchange since it is from Yukawa interaction, so we also h'ave

McH (g )2

For gaugino contributions (4.25) and (4.28), we can show by using Eqs. (4.21) and (4.22) that

(4.35)
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2 ( D }3k( D )kl(+D )3!(+D)lif (xk ~xl ) g ~~ &„f(xm, x„)—2s X, g A,„[f(x„,x3 ) —f(x x )]
k, l m, n =]

+s (A., ) [f(x3,x3)—2f (x3,x6)+f(x6,x6)]
=(&, )'I [f(x„x,)+f(x„x,) —2f(x„x,)]

—»'[f«3, x3) f(x~,xi) —f(x3,x6)+f(x„x6)]
+s [f(x3,x3)—2f(x3 x6)+f(x6,x6)]I, (4.36)

where f(x,y ) is a function which satisfies f(x,y) =f(y x ), and the last equality is obtained under the condition x, =x2,
which holds for y and yt in Eqs. (4.25) and (4.28). Therefore the contributions M/z and M~&2 are proportional to (A, , ),
too. In the same way we can show, for M, z from (4.33),

g g;g f(x, ,x, )=(A, , ) I[f(x3,x3)+f(x„x,) 2f(x—„x3)]—2s [f(x3,x3) f(x„x—, ) f(x3,x6—)+f(x„x6)]

+s [f(x3,x3)—2f(x3,x6)+f(x6,x6)]I . (4.37)

Thus all the contributions we have so far estimated are
written as (A, , ) X(real factor). We have only to compare
the real factors for the comparison.

As for the absorptive part I,z, supersymmetric parti-
cles cannot contribute since they are all heavier than the
B meson. Thus the value of I,z in the supersymmetric
models remains the same as in the case of the standard
model.

Now we make numerical estimations of the contribu-
tions. The top-quark mass has been Axed to be 50 GeV.
This is just the bound for the standard model to explain
the large B -B mixing. If supersymmetric contributions
are significant for this value of top-quark mass in com-
parison with the standard one, we can anticipate that the
existence of the light top quark will be proven at KEK
TRISTAN, the SLAC Linear Collider (SLC), or CERN
LEP. For other parameters, we have adopted the values
allowed in Fig. 1 in Sec. III. We have found that non-
standard contributions are much smaller than the stan-
dard one for most of the allowed values of parameters.
The ratio M;2 /M, 2 is shown in Fig. 6(a), where the
values of 3 and U/U' are chosen to be the same as the
case of Fig. 1(a). The shaded region is not allowed from
the constraints given in Sec. III. In the black-painted re-
gion electroweak breaking cannot take place, so that we
cannot estimate M &2. But we have estimated M, 2 even if
some superparticle masses get lower than the bounds to
see how much the constraints restrict the value of M]2.
In the same manner we have made estimations in the
cases of Figs. 1(b}—1(I). The results for cases (b} and (c}
are shown in Figs. 6(b) and 6(c), respectively. Minor

l

l
I
I

FIG. 5. Box diagram for the charged gaugino and the Higgs-
ino exchange.

Mx (Geq }
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100
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FIG. 6. The ratio M&2 /M» shown by the bold solid lines.
The values of A are 3,2, 3—&3 for the cases (a), (b), (c), and
U/v'=0. 9. The shaded region is not allowed from the con-
straints given in Sec. III.
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values of the ratio (10 —10 ') are obtained for cases
(d)-(f).

In the same manner, we have obtained the ratios
M fz /M, 2 and M I2/M, 2 which are shown Figs. 7(a)—7(c)
and 8(a)—8(c), respectively. These ratios are smaller than
10 for u/u'=0. 5 in all the allowed regions of m and

g

Mx. Figure 7 shows that the large contribution of the
gluino to M, 2 is inconsistent with the constraints given in
Sec. III. %'e have also found that the photino contribu-
tion is very small (Mtz/M, z & 10 ) in every allowed re-
gion.

Here we comment on the top-quark-mass dependence
of our estimations. Roughly speaking, the charged-
Higgs-scalar contribution varies as m, /(mH), which can
be seen from Eq. (4.10). The solutions of the RGE's and
Eqs. (3.9) and (4.18) show that MH varies approximately
as m, . Therefore, we approximately have M &z

~ m, ,
which is the same dependence of M, 2. [Note that this is
because we decided MH from Eq. (4.18). If we fix MH,
then M;2 ~ m, as in the case of other multi-Higgs-scalar
model. ] The gluino and photino contributions are ap-
proximately proportional to m, since the mass-squared

differences among scalar d-type quarks are proportional

to m, as shown in Eq. (4.20). The chargino contribution

complicatedly depends on m, because of the mixing be-

tween gauginos and Higgsinos, so we cannot give a sim-

ple explanation. We have made numerical estimations of
those contributions for m, =60 GeV and have found that

M I2 (m, =60 GeV)/M;z (m, =50 GeV)

—l.4= (60/50)

Mfz(m, =60 GeV)/MI(z(m, =50 GeV)-2 —(60/50)

MI2(m, =60 GeV)/MIz(m, =50 GeV) =3—6 .

The first two results support our preceding discussions.
Thus the contributions to the AB =2 effective Hamiltoni-
an get larger as the top quark gets heavier. The 8'-boson
contribution is enough to explain the observed B -B
mixing for I, & 50 GeV, so that if the top quark is found
to be heavy the masses of superparticles have to be large
enough not to give a too large mixing. On the other
hand, if the top-quark mass is as small as about 30 GeV,
we cannot explain the mixing even including the contri-
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FICr. 7. The ratio M/z /M, 2. FIG. 8. The ratiO M, 2/M 1~2.
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TABLE II. The ratios (f fo—)lf, where f (fo) is the value of a function f(x,x) evaluated with
(without) b-quark momenta. The b-quark mass is taken to be 4.6 GeV.

~, (GeV)

8' boson (M~=81 GeV)
50 60 70 80 90

(%) 3.8 3.0 2.4 2.0 1.7 1.5

~, (GeV)
Charged Higgs boson

50 60 70 80 90

(%)

'
(%)

MJI =40 GeV

MH=85 GeV

M„(GeV)

M3=50 GeV

M3=100 GeV

0.14

0.030

50

0.41

0.22

0.13

0.035

Gluino
60

0.33

0.18

0.039

70

0.28

0.15

0.12

0.040

80

0.24

0.13

0.11

0.040

90

0.21

0.11

0.03

0.18

0.10

(%)

M q (GeV)

M~=25 GeV

M~=50 GeV

0.72

0.38

0.58

0.32

0.48

0.27

Charged gaugino and Higgsino
50 60 70 80

0.40

0.23

90

0.35

0.20

100

0.30

0.18

butions of supersymmetric particles and that of charged
scalars in our model.

How large are the effects of the momenta of b quarks
at external lines? To answer this question we have evalu-
ated the functions obtained by calculating diagrams with
and without b-quark momenta. %'e have evaluated the
functions f (x,x) in Eqs. (4.36) and (4.37), but not M, z

because Glashow-Iliopoulos-Maiani (GIM) cancellation
obscures the effects by external momenta. The resu1ts are
shown in Table II for various values of particle masses.
It shows that the effects of b-quark momenta are very
small. However, they cannot be neglected if partic1e
masses are almost degenerate and the super-GIM cancel-
lation occurs to 0.1% order, which is often the case in the
gluino and the photino contributions in the low-energy
supergravity models.

V. SUMMARY

case of the gluino contribution where scalar d-type
quarks are exchanged.

The effects of the external line momenta of b quarks
have been found to be very small. They are less than 1%.
But they can be significant in the case where scalar-quark
masses are nearly degenerate in the super-GIM cancella-
tion.

Including the contribution by the physical charged sca-
lar, the sum of nonstandard contributions to the 68 =2
effective Hamiltonian in the low-energy supergravity
models discussed here is at most about 50% of the stan-
dard one, so they cannot dominate the 8' contribution.
However, if there is this extra 50% contribution, the
lower bound of the top-quark mass can be lowered to
about 40 GeV. The difference between 50 and 40 GeV is
very significant for LEP and SLC whose beam energies
are 100 GeV.

APPENDIX

We have found that the typical order of the ratio
among various contributions to the 68 =2 effective
Hamiltonian in the low-energy supergravity models is

M:M':M:M f':Mr

=1:10. —0.5:+ 10 '. & 10: 10

This shows that the contributions by SUSY particles are
minor under the constraints given in Sec. III. It is be-
cause the super-GIM mechanism works very well in the
low-energy supergravity models where flavor mixings
among scalar quarks in their mass matrix come from ra-
diative corrections. %'e have also found that the charged
gaugino contribution can be as large as or larger than the
gluino contribution, which has never been pointed out in
the previous works. This is because one scalar top quark
can be much lighter than other scalar quarks so that the
super-GIM mechanism works less effectively than in the

(Al)

(A2)

where f=(d/dt)f with t=(1/8~ ) ln(MG/s) (s is the

renormalization point). The constant cD is defined below

Eq. (2.19). To obtain exact analytic solutions is very

di%cult in practice, so that we solve the RGE perturba-

tively in terms of Yukawa coupling constants at the
grand-unified-theory (GUT) scale MG. To be concrete we

Here we give solutions of renormalization-group equa-

tions (RGE's) adopted in this work. The RGE's are

given in Refs. 10 and 15. For example,

yD (yD /2)[cpgN Tr(yFyE + 33 DyD ) 3yDyD

yUyUl ~

N 2=(g /2)[cDg& Tr(yzyz+ 3yDyD—)
—5yDyD yUy U]—

+y [caDgwM+ Tr(yak' + 33'D (D ) 2yD kD

yUCU) ~
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give the solution for yD:

D zDyDx I 1 TI [zD ~ w ]yDxyDx p
I[zU, w ]y Uxy Ux

(A3)

xF = 1+(dF /2k~ )[1—(g~/g~x ) ](Mx/ms )

(F=Q,D, U), (A14)

f dt ZD I 3+WD /1
0

where yDz, yU& are the Yukawa coupling constants at
MG, +(cD/kx)[1 (g—7v /gtvx)](Mx/m, )'I

(
2 / 2 )8/9( 2 / 2

)
—3/2(5 2 /3 2

)
—7/198 (A4) (A15)

wD =1+(cD/4 )[1—(gx/gxx)](Mx™8)

ctD =aD&+aD2(MX//tm„),

tzD) —zD I 2I[zDWD', w ] (3wD /2)I[zD, w ] I

DD2 =ZD CD f dt I (—g7v /gxx )I[ZD,' t ] I

(A7)

(A8)

(A10)

pD pD )
+pD2(

——MX //1 mg ),

pD, =zU pI[ZU(w U+ WD /2); w ]—(WD /2)I[zU, 'w ]I,

zU=z (5g /3g )

I[f;w]= f f(t)dt [w=(1/87r ) ln(MG/M~)] . (A6)
0

The RGE's for other quantities are solved in the same
way, and then we rewrite them in terms of the Yukawa
couplings at M~ using Eq. (A3) and the similar expres-
sions for yU and yz. This is because the experimentally
known values of quark masses and KM matrix elements
are related to the Yukawa coupling constants at low ener-
gy. After tedious calculations the parameters in Eqs.
(2.10)—(2.14) are written as

xg = 1+9.56(MX /ms )

xD = 1+9.40(MX/ms )

xU = 1+9.46(Mx/ms )

5D =0. 118(3+3 )+0.638/1 (Mx/ms)

(A19)

(A20)

(A21)

6U ZU f dt ZU[3+ WUc4

+(c,"/k„)[1 (g~—/gt'x)](Mx/ms )'I,
(A16)

where constants were already given below Eq. (2.19). The
results of our numerical calculations are given for con-
venience. We take a '(M~)=128 and sin 9~(M~)
=0.225 following Ref. 11, which gives gz =0.539:

$D=/lm yD I 1+4.88(MX/m )

—[0.354+0.957(MX/ms )]yDyD

—[0.116+0.320(MX/m )]yUyU), (A17)

gU= /lm yUI 1+4.92(MX/m )

—[0.118+0.319(MX /ms ) ]yDyD

—[0.349+0.961(MX /m )]y Uy U I, (A18)

W

pD2 zU —,'CD d—t I (g7v/gtvx)I[ZU, t]I
0

(A13) +2.13(Mx/ms) (A22)

Expressions for wU, aU, and pU are obtained by replac-
ing the subscript D by U in the above equations. And we
have, for the rest of the parameters,

5U=0. 116(3+3 )+0.640M(Mx/m )

+2. 15(M /ms) (A23)
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