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Nearest-neighbor interactions and the physical content of Fritzsch mass matrices
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We show that in the standard model with fewer than five generations, starting with arbitrary Yu-
kawa couplings, it is always possible to find a weak basis where the quark mass matrices have the
nearest-neighbor interaction form. Therefore, for three or four generations, the zeros of the
Fritzsch mass matrices are not a contrived feature of the Fritzsch Ansatz, but just a special choice of

weak basis.

The understanding of the pattern of quark masses and
mixings is one of the major unsolved problems in particle
physics. In the standard electroweak model' the Yukawa
couplings which generate the up- and down-quark mass
matrices M, and M, are arbitrary, and as a result the
quark masses and the mixing angles are free parameters.
In the past, there have been various attempts to relate the
quark masses and mixing angles through the imposition
of spectral Ansdtze for M, and M,;. One of the most pop-
ular Ansdtze, suggested by Fritzsch,? has the following
two distinctive features.

(i) Hermiticity: The matrices M, and M, are assumed
to be Hermitian.

(ii) Nearest-neighbor interactions (NNI): It is assumed
that the “light” quarks acquire their masses through an
interaction with their nearest neighbors. For n genera-
tions this implies the following form for M, and M,:

0x00 =~ 00
x 0 x0 00
0 x 0 x 00

M, M= |, . (1
0000 0 x
0000 -+ x x

where x stands for a generic nonvanishing matrix ele-
ment.

It is well known that in the standard model one can al-
ways choose, without loss of generality, the quark mass
matrices M, and M, to be Hermitian. This results from
the fact that in the standard model if two sets of quark
mass matrices (M,,M,;) and (M,,M;) are related by
M.=U'M,V,,M,=UM_,V,, with U, V,, and V, some
unitary matrices, then they give rise to the same quark
masses and charged-current flavor mixings. One can use
this freedom to choose M, and M, to be Hermitian.
Therefore, feature (i) of the Fritzsch Ansatz does not
have, by itself, any physical content.

In this paper we will address the question whether the
NNI hypothesis has by itself any physical content. This
hypothesis is the most striking feature of the Fritzsch 4n-
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satz and naively one may consider it to be rather con-
trived, since it requires a set of mass matrix elements to
vanish, at least in the tree approximation.

It turns out that the answer to the above question de-
pends on the number of generations. We will show that
for fewer than five generations one can always choose a
weak basis where the mass matrices M, and M, have the
form of Eq. (1), and therefore, the NNI hypothesis has no
content by itself. This has important consequences for
the Fritzsch Ansatz, since it implies that for three or four
generations the zeros of the Fritzsch mass matrices are not
a contrived feature of that Ansatz, but just a special choice
of weak basis. On the contrary, for five or more genera-
tions it is no longer possible to choose, without loss of
generality, a weak basis where M, and M, have the form
of Eq. (1), and therefore the Fritzsch Ansatz becomes less
appealing, and the NNI hypothesis has physical content
by itself, implying correlations between the quark masses
and mixings.

Next we will prove the above result for the case of
three generations, and then we generalize it to four gen-
erations.

Theorem. Given any two 3X3 quark mass matrices
M,, M,, there is always a weak-basis transformation
such that the new mass matrices M,, M, have vanishing
matrix elements (1,1), (1,3), (3,1), and (2,2).

Proof. Let us consider the Hermitian matrices
H, EMMMJ and Hy, EMdM;r, which have simple trans-
formation properties under a weak-basis transformation:

H,,=U'H,,U, (2)

with unitary U. We will first show that given two arbi-
trary Hermitian matrices H,,H,, it is always possible to
make a weak-basis transformation such that in the new
basis

(H,);,=(Hg);,=0 . (3)
We will then prove that if the 3 X3 Hermitian matrices
H,,H, satisfy the condition (3) it is always possible to
find V,,V, such that M,,M, have vanishing matrix ele-
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ments (1,1), (1;3), (3,1), and (2,2). In order to prove our
first assertlon we will show that, given two arbitrary
3X3 Hermitian matrices H,,H , one can always find an
unitary matrix U such that

A(H);U;p=0, (4a)
A(H;U;p=0, (4b)
AU,=0. (4c)

Equations (4) constrain the vector with components
U} to be orthogonal to three other vectors. For this to
be possible, U, should be chosen in such a way that those
three vectors are linearly dependent: namely,

U, +b(H,),;Up+ec(Hy),;Upy=0, )

for some nonvanishing a, b, and ¢. This equation simply
tells us that U, has to be a normalized eigenvector of the
matrix H,+(c/b)H,;, with eigenvalue (—a/b). Once
U,, is found, one can explicitly construct a vector U

satisfying Eqgs. (4): namely,

U=Ne UpUS(H, ) (6)

where N is a normalizing factor. It follows from Eq. (6)
that Egs. (4a) and (4c¢) are satisfied, and Eq. (5) then im-
plies that Eq. (4b) is also satisfied. It is obvious that once
U;; and U;, are found, the full unitary matrix U can be
constructed.’

We turn now to the second part of the proof namely,
that if a 3X3 Hermitian matrix H=MM" has the ele-
ment H,, vanishing, then one can always find a unitary
matrix ¥ such that M’'=MYV has the elements M};, M,
My}, and M), all vanishing. We give the proof by explic-
itly displaying the matrix V:

V!1=Nl€ijkM1jM3k N (73.)
Via=N,Mj; , (7b)
Vis=N3(M};H3;—M7%;Hy,) . (7Tc)

where the N; are normalization factors. Using the
definition H=MM" and the fact that H »1 =0 one may
easily verify that

M Vai=MVy=MV;3=M,V,,=0, (8a)
VaVE=V5Va=VyV35=0. (8b)
QED.

More than three generations

Before extending our analysis to more than three gen-

erations, we will do a simple counting of parameters. For.

n generations, the number of physically meaningful pa-
rameters contained in M, and M, includes 2n quark
masses and (n — 1) parameters characterizing the mixing
matrix, making a total of (n%2+1) parameters. In order
to count the number of parameters included in M, and
M, when the NNI form is assumed, note that there are in
this case (2n —1) nonvanishing complex matrix elements
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in each one of the quark mass matrices. However, one
can eliminate 2n phases through redefinitions of the
right-handed quark fields wuy,dp, and other (n—1)
phases through a common redefinition of the left-hand
quark fields u;,d;. These redefinitions of the quark-field
phases keep the charged current real, diagonal, and the
NNI form for M, and M,. Therefore, there are altogeth-
er (5n —3) real parameters in M, and M, when the NNI
form is assumed. This number exceeds the number of
physical parameters for n=2 or 3, equals it for N=4, and
is less than it for n =5. Thus, a parameter counting
shows that for five or more generations the NNI hy-
pothesis implies by itself some correlations between the
quark masses and mixings. On the other hand, the
counting of parameters leads us to suspect that for less
than five generations the NNI hypothesis has no physical
content by itself, being just a choice of weak basis. For
three generations, we have shown that this is indeed the
case. Next we will extend the proof to the case of four
generations.

We first note that if a 4 X4 matrix has the NNI form,
then the Hermitian matrix H=MM' has H 2=H,
=H,=0. The converse is also true: i.e., if those ele-
ments of the matrix H vanish, one can always find an uni-
tary matrix ¥ such that M’'= MYV has the NNI form. We
show this by explicitly displaying the matrix V:

Vi=Ni€M My M, , (9a)
V,Z_NZM“ s (9b)
Vis=N3[M};H3H3—M3H, Hj,

+M3(H Hy—|H;390, (9¢)

:NA(M;HL’I—M;‘IHI]) Py (gd)
where the N/ are normalization factors. It is easily
verified that with the above choice for V, the matrix M’
has the NNI form, provided that H,,, H,;, and H, van-
ish.

We have now to show that given two arbitrary Hermi-
tian matrices H,,H,, one can always find an unitary ma-
trix U such that

iai(Hu,d)ij U,=0, (10a)
A(H, 4);U;=0, (10b)
U,z(Hud) U]3 0. (10c)

Before indicating how the matrix U can be construct-
ed, it is convenient to make a counting of the free param-
eters and the constraint equations on U. First note that
the overall phases of each one of the columns of U are ir-
relevant. Furthermore, if we impose normalization of
columns, each one of the four columns of U contains at
this stage three complex parameters, making a total of 12
complex variables in U. These complex variables have to
satisfy the six complex equations (10a)-(10c), plus the six
complex equations arising from orthogonality of the
different columns of U. Therefore, as expected, we have
an equal number of variables and constraint equations.



We show next how the matrix U can be constructed.
From Eq. (10a) and the requirement that U}jU;,=0, it
follows that the three vectors Uj, Uf(H,);, and
Uji(Hy);; are all orthogonal to U;,. On the other hand,
it follows from Eq. (10b) together with U}U;,=0, that
the same three vectors are also orthogonal to U,,. Since
U;, and U;, cannot be collinear, one concludes that Uj,

% (H,);, and U}i(H,)j;, should span a space with less
than three dimensions; i.e., they should be linearly depen-
dent. It follows that U;, satisfies

(Hu+de)ijUjl:UUil ’ (11)

which determines U;;, apart from one complex degree of
freedom in the choice of ¥ and a discrete fourfold ambi-
guity in the choice of the eigenvalue o. In an entirely
similar fashion, using Eqs. (10a) and (10c) one can show
that (H,);;U,, (H,;);;U},, and U}, have to be orthogonal
to both U5 and U}}. It follows that (H, );;Uj,, (H,); U,
and U}, are linearly dependent and therefore

(H,+7'Hy)y;Up=0'U, . (12)

So far, we have the two columns U;; and U,, deter-
mined as solutions of Egs. (11) and (12), and we still have
two complex degrees of freedom, ¥ and y’. We now use
one of these degrees of freedom to impose the condition
Uj1U;,=0. Then from Egs. (11) and (12) one obtains

Ui’;(Hu)ijUjl_'_‘l/ i‘Z‘(Hd)ijUﬂ:O >
iz(Hu)ijUﬂ'*'Y'* ig(Hd)ijUﬂ:O'

(13a)
(13b)

For y#y'*, Egs. (13) guarantee that Eq. (10a) is satisfied.

We now define the column UJ as a normalized vector
orthogonal to U;;, Uy, and (H,);Uj,, and the column

% as a normalized vector orthogonal to U;;, U;,, and
(H,);;U;;. With these definitions and using Eqgs. (11) and
(12), one readily verifies that the four equations (10b) and
(10c) are satisfied. However, at this stage U3 and U, are
not automatically orthogonal. We can now adjust the
remaining degree of freedom in such a way that
U3XU;,=0. We have thus constructed a unitary matrix U
which satisfies Egs. (10a)—(10c).

It is clear that the procedure just outlined for the con-
struction of the unitary matrix U is much more involved
for four generations than it was for three generations.
However, the fact that it can be, at least in principle, car-
ried out, proves that the NNI hypothesis has, by itself, no
physical consequences for n=4.

Left-right models

We will now extend our analysis to the case of left-
right-symmetric (LRS) models.* A counting of parame-
ters shows that in LRS models with more than two gen-
erations it is not possible to put both M, and M, in the
NNI form, without loss of generality. In other words,
starting with arbitrary quark mass matrices M, and M,
for more than two generations, it is not possible to find
unitary matrices U,V such that both M, =UM,V and
M;=UM,V have the NNI form. Let us first recall that
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the number of physical parameters contained in the mass
matrices M, and M,, for n generations, includes 2n
quark masses, (n —1)?> parameters characterizing the
left-handed mixing matrix, and n? parameters entering in
the right-handed mixing matrix,” making a total of
(2n%+1) physical parameters. On the other hand, each
one of the matrices M, and M, in the NNI form have
(2n —1) nonvanishing complex matrix elements. The
fact that weak-basis transformations of the type
M,=LM,R, M;=LM R, with L and R diagonal unitary
matrices, do not alter the NNI form of M, and M,, al-
lows one to remove (2n —1) phases from M, and M. It
follows then that in LRS modes, the total number of pa-
rameters in M, and M, in the NNI form is 3(2n —1).
For n larger than two this number is less than the num-
ber of physical parameters, and therefore in LRS models
with more than two generations it is not possible to put
both M, and M, in the NNI form, without loss of gen-
erality. Thus, in LRS models with three or more genera-
tions, the assumption of the NNI form for both M, and
M, implies, by itself, correlations involving the quark
masses, the left-handed mixing angles and the right-
handed mixing angles.®

Naturalness

Naively, the most contrived aspect of the Fritzsch An-
satz is the assumption that various matrix elements of M,
and M, vanish, at least at the tree level. However, our
results show that, within the context of the standard
model with less than five generations, that “assumption”
is just a choice of a special weak basis, which we will
designate by “NNI basis.” For definiteness, let us consid-
er the standard model with three generations. We have
shown that, starting with completely arbitrary Yukawa
couplings,

.,LY:gg-miLdeq)+gi?fl/.iLujR&)+H.C. 5 (14)

one can always make a weak-basis transformation into
the NNI basis, where gi*, g%, g%*, and g%" all vanish.
For three generations, the physical content of the
Fritzsch Ansatz resides then in the assumption that in the
NNI basis

lgh l=1gh"], lgd=1g%"l . (15)
Although the relations (15) are not natural in the techni-
cal sense,” we find them plausible.

The difficulty in implementing the Fritzsch Ansatz in a
technically natural way originates from the need for a
sort of left-right symmetry under which the term
(¥, d,zx®) would transform into (¥,;d,z®)". Such a
symmetry cannot, of course, exist in the standard model.

For simplicity, we have considered the standard model
with only one Higgs doublet. For more than one Higgs
doublet, one has to distinguish between models with
Higgs natural flavor conservation (HNFC) and those
without it. In models with HNFC such as the minimal
supersymmetric model,? it is obvious that it is still possi-
ble, through a choice of weak basis, to make g%, g%, M ws
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and M, all have the NNI form. In models without
HNFC, where more than one Higgs doublet gives mass to
the quarks of a given charge, one can always find a weak
basis where both M, and M, have the NNI form, but, in
general, it is not possible to have all the Yukawa coupling
matrices in the NNI form simultaneously.

It should be pointed out that, in models with several
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Higgs doublets, it is possible® to implement the NNI form
for the quark mass matrices by means of ad hoc global
symmetries. Our results imply that for fewer than five
generations such models, although they lead to con-
straints on the Higgs interactions, do not enforce any re-
lations among the quark masses and mixing parameters,
contrary to what one might naively expect.
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