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In view of the apparent inconsistency of the Stech, Fritzsch-Stech, and Fritzsch-Shin models and

only marginal agreement of the Fritzsch and modified Fritzsch-Stech models with recent data on
Bd-B d mixing, we analyze the general quark mass matrices for three generations. Phenomenologi-
cal considerations restrict the range of parameters involved to different sectors. In the present
framework, the constraints corresponding to various Ansatze have been discussed.

I. INTRODUCTION

The quark and lepton masses as well as the charge-
current mixing angles and the Kobayashi-Maskawa (KM)
phase, which is responsible for CP violation, are the free
parameters within the standard model. The experimental
knowledge on these parameters has recently been
strengthened following a recent discovery of a relatively
large B -B mixing' and the observation of charmless b
decays involving baryons. These results leave very little
arbitrariness in the parameters of the quark sector of the
standard model with three fermion generations.

In recent years a lot of eC'ort has been directed towards
understanding the values that the ten independent pa-
rameters characterizing the quark sector of the three-
generation standard model (namely, the six quark masses,
the three mixing angles, and the KM phase) assume. At-
tempts were made to make some Ansatze about the up-
and down-quark mass matrices to obtain relations be-
tween the ten parameters. The idea is to start with some
lesser numbers of parameters, so that some of the param-
eters come out as predictions of the model. The most
prominent of these phenomenological models are the
eight-parameter Fritzsch mass matrices and the seven-
parameter Stech mass matrices. Several modifications of
these two types have also been considered.

Except for the Fritzsch Ansatz, the other models
mentioned here predict maximal CP violation, that is the
KM phase assumes a value n. /2. When the predictions of
the Stech A nsatz and the Fritzsch-Stech A nsatz for the
mixing angles are confronted with the experimental
values, one obtains a limit on the top-quark mass
m, " '~46 GeV, whereas for other models ' ' the limit is
m,~"~'& Ss GeV.

A reanalysis of these models in the light of the re-
cent experiments' has been done. It has been demon-
strated that the limit on the top-quark mass m,""~'~46
GeV and the maximal CP violation (Stech model and
Fritzsch-Stech model ) is in contradiction to the value of
@=2.3X10 in the K -K system and the new measure-
ment' of the Bd-B „mixing parameter r„=0.21+0.08. It

has also been pointed out that the Fritzsch-Shin Ansatz
cannot undergo all the confrontations with experiments
successfully, whereas the Fritzsch model and the
modified Fritzsch-Stech model can agree with all avail-
able information on KM parameters only for m, " '
around 85 GeV and for specific values of other parame-
ters. Any improvement on the experimental limits on the
mixing angles or if m,I'""' is other than 85 GeV can rule
out these two models also.

All these prompt a model-independent study of the
problem. In this paper we make such an attempt. We
start with the most general form of the quark mass ma-
trices. We then go to a basis where the up-quark mass
matrix is diagonal. Then by some unitary transformation
on the right-handed down-quark field we make the
down-quark mass matrix Hermitian. The three diagonal
terms of the up-quark mass matrix and the seven parame-
ters of the Hermitian down-quark mass matrix are then
related to the six quark masses, three mixing angles, and
the KM phase. We determine the allowed values of the
parameters of this model from experimental results. We
can then write down any quark mass matrices in this
basis and compare the parameters with the allowed
values directly.

In Sec. II we list all the experimental inputs. We
present our model in Sec. III. We write down other mod-
els in this basis in Sec. IV and compare. We summarize
our result and conclude in the last section.

II THE QU. ARK MASSES
AND THE WEAK MIXING MATRIX

In this section we discuss the various parameters the
relations between which one seeks to explain in the
framework of various models. While seven of the ten pa-
rameters, namely, five quark masses and two mixing an-
gles s, z and sz3, are experimentally determined to some
degree of accuracy, only very weak limits exist for the
other three, viz. , m„s,3, and the KM phase 6. An exact
determination of these quantities would constrain the
possible choices of the mass matrices and hopefully be a
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pointer to a possible structure explaining these very
values.

In QCD, the coupling constant and the quark masses
are "running" parameters; i.e., they depend on the renor-
malization point at which they are computed. The
renormalization-group equations for them are

p g(p) =p[g(p)1
dp

p m;(p) = —y[g (p)]m;(p)
dp

with the boundary conditions that g(A, ), m, (A, ) coincide
with the bare constants g, m as the value of the cutoff
A,~ oo . In the modified minimal subtraction (MS)
scheme the P and y functions are given by

3 5

p(g)= —po g, —p, g, , +0(g'),
16~ (16m. )

2 4

y(g) =y, g +y, g +o(g'),' 47r' ' (4~')'

Po=1 1 ', Nf, P, =—1—02 —", Nf, yo=2—,

(8 Xf Xf number of flavors

m, ""'=m, (m, ) 1+ a, (m, )
4

(2.3)

While nonobservation of the top quark gives a lower limit
to its mass

m,~"~'&45 aev, (2.4a)

experimental consistency of the radiative corrections in
the standard model requires"

m,p"~'~ 180 GeV . (2.4b)

which gives

75 GeV ~ m, (1 GeV) ~ 300 GeV . (2.5)

The physical masses of charm and bottom quarks can be
obtained from e+e data by using QCD sum rules for
the vacuum-polarization amplitude. The running masses
at p = 1 GeV and A&co= 100 MeV are'

m, (1 GeV) =1.35+0.05 GeV,

Substituting Nf =6 and A&co=100 MeV, we have for the
above range of interest

m, ""'=0.6m, (1 GeV),

The renormalized coupling constant and quark masses
given by the solutions to the differential equations are m~(1 GeV)=5. 3+0.1 GeV .

(2.6)

( )
g P( )

s 4

4m P& lnL

P~ Po L L

2

(2.1)

The determination of the light-quark masses involves
larger errors. These are best evaluated using chiral QCD
perturbation theory and meson and baryon spectrosco-
py. ' Though the individual error bars are relatively
large, restrictions on the ratio of the masses reduce the
indeterminacy somewhat:

Lm;(p)=m;

L—:ln(p /A ) .

lnL
2

(2.2)

2P&'Vo lnL +11— +
p~ L p~2

m„=5.1+1~ 5 MeV,

md =8.9+2.6 MeV,

m, = 175+55 MeV,

m, /md =19.6+1.6,
md /m„= l.76+0.13,
m, /m„=34. 5+5. 1,

(2.7)

A and m; are the renormalization-group-invariant
scale and masses. The physical mass of an object is its
value calculated at the same scale. Thus to one-1oop or-
der, the physical mass of the top quark would be

mu md

m„+md
= —0.28+0.03 .

For the KM matrix we use the Maiani parametrization

C12C13

i5
C23512

—
C12523513e

C13$12

i6
C12C23 512523513e '

$13
i5

C13$23e (2.8)
—I'. 6—

C12C23$13 +$12$23e
' —

C23512$13 —c12$23e C23C13

wh; = o 0;- and s,"= '
0,".

mined' to an accuracy of 1%

5 12
=0.22 1+0.002

While s12 is deter-

(2.9)

the value of s23 has a large error associated with it. It

can be calculated from the semileptonic B-meson partial
width assuming it to be given by 8'-mediated decay. This
involves phase factors depending on mb and m, and thus
the theoretical errors in their evaluation. Under the as-
sumptions
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and

B( b —+cl v& ) =0. 121+0.008 (Ref. 15 )

rb =(1.16+0.16)X 10 ' sec (Ref. 10),

one obtains

~23 =0 043 —O. o09 ~

+0.007 (2.10)

K„b
0.07 «

cb

«0.22 . (2.11)

Since ~s»l ~0.0S, ~s»~ ~0.011.

The recent observation of charmless B decay
[I (b ulv, )/I (b clV, )] puts a limit'

where Md =K (Md )K and M„are diagonal and K is the
KM matrix. Since none of the quarks are expected to be
massless, Md is nonsingular and hence we can find a uni-
tary matrix U such that Md U is Hermitian and positive
definite and is diagonalized by the KM matrix. But
choosing a particular form of the KM matrix as in Eq.
(2.8) would take one away from a positive-definite Md. In
general, both M„and Md would have negative eigenval-
ues, which is not surprising as a sign of a mass term for
fermions has no significance in the standard model.

In the basis in which M„ is diagonal, we have for three
generations

III. THE GENERAL THREE-GENERATION
MASS MATRIX

m, (3.1)

The fermion mass terms in the standard model arise
from the Yukawa couplings due to the assumption of a
nonzero vacuum expectation value by the Higgs field.
Thus the mass term is not diagonal in the fermions and
not even Hermitian.

So in the weak basis (denoted by prime) we have, for
the charged current and the mass terms

X = u I y„di W~+ +H. c. ,

= u L M,' u R +d L Md dR +H. c.

R)e IPi

A]e ' R2e

and the most general Hermitian Md is given by

Md = &HAM„+ 3,
where

(3.2)

I
uL —UL ul, ug —Ug ug

As the left- and right-handed fields in the standard model
are independent and can be rotated differently, one can
diagonalize these matrices by multiplying with two
different unitary matrices, one from the left the other
from right: i.e.,

UI M„'UIi =Q„(real diagonal),I

where UL and Uz diagonalize M„'M„' and M„' M„', re-
spectively. Defining

Thus the mass matrices are a ten-parameter family
determined by m„, m„m„a, f, d, R, 2 3, and the invari-
ant phase p, +p3 —p2. Though on the face of it this pa-
rametrization has no predictive power as we are using ten
parameters to relate ten others, in our analysis we would
not be using all of them and most of our conclusions
would be drawn from consideration of diagonal elements
only.

On diagonalizing Md we have

K&dK =Md=aM„+ A,
where

dI =ULdL, and Md = U~Md,

we have in the new basis
Md =diag(md, m„mb ) . (3.3)

XI = u r. M U u ~ +d L, Md d~ +H. c.
The diagonal elements of the matrix equation give

three relations, of which one is the trace condition
and

=ul y„dl 8'i++H. c. ,
md+ m, +mb f—d—

m„+m, +m,
(3.4)

where the up-quark fields are mass eigenstates. Though
we can phase rotate u~ so that all eigenvalues of M„are
positive, for future convenience in discussing the Fritzsch
matrix we shall not do so and fix only m„and I, to be
positive and let m, take either sign. In general, Md is not
Hermitian but if we can find a unitary matrix U such that
Md =Md U is Hermitian, then we can diagonalize it by a
unitary matrix K. Defining dz =K dI and dz =K U d&
we have

m
= u L,

M„' u& +d I Md dz +H. c.
=ul y „KdI W+ +H. c. ,

a„m= m dc+, 3zS(i,m—md )+s i3(mb —md ), (3.5)

am, +f=m +d' c ~c i322sips23si3e I (ms™d)i512

+Ci3$23(mb md )
2 (3.6)

A. The two-generation limit

As a first approximation we assume that the third gen-
eration essentially decouples from the first two —a not
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am„=md+s t2(m, —md ),2

am, +f=md+ct2(m, —m&) .

Eliminating a from above, we obtain

(3.7)

too strong assumption as experimentally s23 and s,3 are
small compared to st2. In this limit (3.5) and (3.6) reduce
to

Using (2.7) and (2.9) in (3.8) gives an allowed range for f
for a given md, which has been plotted in Fig. 1. It is

seen that for md /m, &0, f assumes small values irrespec-
tive of the sign of m„/m„and is consistent with zero,
while for md/m, )0, f is comparatively larger and its
sign opposite to that of m„/m, .

$2
12

f mu

m m

md

m,
(3.8)

B. Back to three generations

m„1+
m,

md1— Assuming the two-generation limit result for s,2 and
using it as an input in Eq. (3.6), we have, for c» = 1,

-4.00— - 5.02

-4.24— - 4.84

-4.42- - 4.66

-4.60— -'4.4 8

e -478
.12 (c)

4.30
.12

-.18- —.18

-.36—

I

8.0
l

10.0
I I

12.0 6.0

~a n peV

l

8.0
l

10.0
I

1 2.0

FIG. 1. The allowed range off (shaded region) as a function of m~ [see Eq. (3.8)]. All values are calculated at p= 1 GeV. md has

been assumed to be positive. For md &0, f~ f. (a) m, /md) 0, m„/m, )—0. (b) m, /md )0, m„/m, &0. (c) m, /md &0,
m„/m, )0. (d) m, /md (0, m„/m, &0.
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m, (mb —d)(m, +m„)+m, (f —m, —md )

m, +m, +m„mb(m, +m„)—(mdm, +m, m, +fm„)
(3.9)

i.e.,

mb m„
'$23 1+

md Pl

m, m„1+ +
md Pld Plc

m, +1+ 1—
Pl Pl d

Pl

m„ mb , m„1+ —$23 I+
Pl Pl d Pl

Plb Pl
1+

Pld Pl

m, m„1+ +
mdmc

Thus for a given s23 we have a linear relation between d
and m, with the slope and intercept depending on the
signs of various mass ratios. In the Stech model, for ex-
ample, d was required to be zero, thus Axing m, up to er-
ror bars due to the experimental uncertainties. A
nonzero value of d would unfreeze this restriction and al-
low for better agreement with experiments. The allowed
region for d for a fixed m, has been given in Table I.
Similar to the case for f, d takes "small" values about
zero for md /m, (0 while for a positive value of the ratio
it is considerably larger and a vanishing value is not con-
sistent with observations.

Taking the two-generation result exactly and substitut-
ing in Eq. (3.5) one obtains

$23

1/2
ms . —i—e
mb

m md

1/2

(3.11)

13
mb Plb

+e
Pl

1/2
Pl

Plb

But this result is in direct contradiction to the Fritzsch
model (Sec. IVB) wherein alternate generations have
masses of opposite signs. Indeed in this scheme we have

mu
$2

m, +m, +m„
-ig mc—e 2

1/2

(m, +m„)(mb d) m—, (m,—+md f)—
mb(m, +m„) m„(m,—+md f)—

Pl
$23

mu 1—
mc

(3.10)
mb

This implies that m„/m, )0. The analysis and the re-
sult are similar to Stech's. An attempt to obtain a better
approximation by an iterative procedure [i.e., substituting
current expressions for s, 3 and s23 in Eq. (3.7) and (3.8),
instead of taking them to be zero and then redoing the
same analysis] yields an extra term much smaller in mag-
nitude.

where P; are certain phases in the model. These expres-
sions agree with the experimental limits. If Eqs. (3.11)
are squared, one obtains an equation similar to (3.10) but
with an extra term typically larger than the right-hand
side.

The inconsistency lies in the analysis where one is aim-
ing to solve for three angles from two equations. The re-
lations (3.10) are thus shown not to be an outcome of the
Stech Ansatz but rather arising from an overkill of Eqs.
(3.7) and (3.8). The best one can achieve without using
the off-diagonal terms is an expression for $» in terms of
three unknowns m„ f, and d and the measured parame-
ters $,2 and the other quark masses:

TABLE I. Limits on d(1 GeV) in terms of m, (1 GeV) as im-
posed by Eq. (3.9). The limits are calculated for positive m„,
m„and md. For md &0, d~ —d.

(xm„[md+(m~ md )s i2 ]
$13 2

mb —[md+ (m, —md )s i2 ]
(3.12)

mb ms
sgn , m~

md md
Limits on d{1 GeV) (GeV}

—3.43m, +5. 19 & d & —3.27m, +S.39—3.47m, +5.19 & d & —3.29m, +5.39
0.15m, +5.19 &d & +0.19m, +5.19—0.18m, +5.19 & d & +0.1Sm, +5.19—3.46m, +S.21&d & —3.35mr+5. 21
3.44m r +5.21 & d & —3 ~ 26m r +5.41—0.18m, +S.21 & d & +0. 16m, +5.21—0.16m, +5.21 &d & +0.18m, +5.21

C. The o8'-diagonal terms

Until now we have used only the diagonal terms of the
matrix equation (3.2) ignoring the off-diagonal terms,
considering which would give exact results. We continue
in the same vein but would like to look at these relations
so as to get an idea of the relative magnitude of these
terms. We have
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+C]2C]3$]2$23(md m, )e i5

R 3e =
C]2C 23$]2$]3( md m~ )

2

(3.13)

IpIR ]e =c]2c23c]3s]2(m, —md )

2 2 —i5+C]3S]3S23(mb —c,2C23md
—$12m, )e

R2e =c23c]3$]3(mb —$,2m, —c,2md )
'p 2 2

choosing a particular basis for the KM matrix would
necessitate a unitary transformation by a phase matrix.
While this would leave M„ invariant, A would lose its an-
tisymmetry, and would be a Hermitian matrix with all di-
agonal elements zero.

Thus we see that the Stech Ansatz involves making the
following choices for the three-generation case:

(4.3)

+C]2$12$23S]3(m md )e2 2i6

2 2 2 2+C23S23 [C ]3mb + (C ]2$ ]3 $ ]2 )md

+($]2S]3 C]2)m~]e

d=0,
P i P2+P3 90 ~

Using (4.5) in Eq. (3.13) one gets

(4.4)

(4.5)

The complex phases p& and p2 are relatively small and
lie in the same quadrant as can be seen from the fact that
tanp, tanp2=sz3. While sinp& attains its maximum of 0.12
when m, and s&2 assume the lowest allowed values and
s f 3 s 23 m b the highest and 6 =83', sinp2 is maximized to
0.15 by giving

kub

k,b

IV. MODELS AS SPECIAL CASKS
OF THE GENERAL FORM

In this section we discuss some of the better studied
models for fermion imass generation. We demonstrate
how these models could be obtained from the general
mass matrix on imposing suitable constraints. This
would exhibit the restrictions one is preimposing on the
various parameters and hopefully afford a better under-
standing of the implications of an Ansatz.

A. Stech model

This model was motivated by grand unified theories
where the gauge group has a SU(5) subgroup and the fer-
mions of one generation are contained in an irreducible
representation. The fermion masses arise from nonzero
vacuum expectation values of Higgs fields transforming
under different representations. The assumption was that
the mass matrices belonging to the symmetric Higgs rep-
resentations of SU(5) dominate and that the antisyin-
metric representations do not contribute to the up sector.
A further choice of Hermiticity of the mass matrices re-
strict their form to

M =M =M~
u u u (4.1)

and mb their lowest values, m„s&2 their highest and put-
ting 5=81.5. On the other hand P3=5. Thus most of
the CP-violating contribution comes from this term.

md(1 GeV)~7 MeV for m„/m, )0,
md(1 GeV) ~ 8. 5 MeV for m„/m, (0 .

Using (4.3) and (4.4) in (3.8) and (3.9) we get

(4.6)

2
$~2

1+

m

m

(4.7)

mbm~ mtm

(m]+m. )(mb m. )
(4.8)

Utilizing the entire allowed range of the measured pa-
rameters involved it is seen that for the above two rela-
tions to hold, m, ""'~ 46 GeV.

The derivation of the Stech prediction $,3 =(m„/
m, )$23 is similar to that in Sec. III C. We have already
shown that this result is not a consequence of the Ansatz
but due to a Aaw in the analysis in a recent analysis.
Harari and Nir claim that in the light of these restric-
tions, the predictions of the Stech model do not agree
with the Bd -B d data. But if one offers certain
modifications of the Stech Ansatz as, for example, a
nonzero d, or an invariant phase (p, —p2+p3) diff'erent
from 90, then this restriction can be circumvented.
Furthermore, if Higgs-boson exchange is responsible for
Bd-B d mixing theli these data cannot constrain the
quark mass matrices. '

$13
cos5=0 .

$23

This could be seen directly in the light of the discussion
following Eq. (3.13). The Stech Ansatz thus restricts the
mass matrices to a seven-parameter family which predicts
near maximal CP violation.

The first two conditions obviously restrict the mass
matrices to the negative m, /md sector. Also a lower lim-
it on the mass of the d quark is set:

Md =Md =aM„+ A, (4.2)
B. Fritzsch matrix

where A is an antisymmetric matrix.
M„can be brought irito a diagonal form by an orthogo-

nal transformation. In this basis A is still Hermitian and
antisymmetric. An analysis similar to that in Sec. III can
now be effected. It should however be noticed that

This model was first obtained for a field theory with
SUI (2) SU]](2) U(1) as the gauge group and two
Higgs fields on imposition of a certain discrete symmetry.
The cornerstone of this Ansatz is that, to start with, only
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the heaviest quarks are massive and the lighter quarks
gain mass by weak-interaction mixing with the next
higher generation. In a basis in which the up-quark ma-
trix is real, one obtains

0 a„0
M (F)= a 0 b

0 b„c„

Md(F) can be brought into real form by performing a
phase rotation on both the right- and left-handed down
quark fields:

I
Md(F) =I Md(F)P

w~ere

'0 ad 0

—ip)
Md(F) = ade

0

0
—i/2

bde

0

(4.10)

e
i ($)+$2)

e

and Md(F) = ad 0 bd

0 bd cd

(4.11)

The quark sector is then characterized by eight pararne-
ters and thus predicts two relations between the masses
and the KM matrix parameters. The expression in (4.10)
implies that the middle eigenvalue of both M„(F) and

Md(F) would have a sign opposite to that of the other two. O„M„~F~O„=M„—:diag(m„, m„m, ), (4.12)

M„(F) and Md(F) being real symmetric matrices can both
be diagonalized by orthogonal transformations. For ex-
ample,

Ou=

1

N1

m

N1a„
—m„b„

X&a„(m, +m, )

m,

N2a„
—m bc u

Xza„(m„+m, )

m,

N3a„
—m bt u

N3a„(m„+m, )

(4.13)

The eigenvalues m; can be obtained by inverting the rela-
tions

K =0„"I'~Od

we have

(4.16)

a„=(—m„m, m, /c„)'~

b„=[—(m„+m, )(m „+m, )(m, +m, )/c„]'~

c„=(m„+m,+m, ),
(4.14}

md

1/2

u
e

mc

' 1/2

1/2

m„m 1+
m m m

m„ m, m, +mu
(4.15}

and N; are the normalization for the eigenvectors of
Mu (F)'

m, —m„(m, +m„)m„
N1 — 1+

m (m, +m, )m,

$23

$13
ms md

mb mb

—ip)—e

1/2

' 1/2
mc

e
m,

1/2

(4.17)

mi

m, m„(m, +m„)
m, +m, m„—m„m, m„(m, +m„)

X 1 — +
m m

The weak mixing matrix being given by

sin5 S1I1$)

S 12$23

$13
—cos5 cosp&—

mdm

m m„

1/2

The first two of these relations could be used to deter-
mine P, and Pz and then the other two expressions are
the predictions of the model.
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The expression for s23 leads to

m,
—m,

1/2

mb
$23

2

or m, ""'~88 GeV, a condition that must be satisfied for

Fritzsch form to hold good.
The simplest way to find the constraints to be imposed

upon the general form to obtain the Fritzsch matrix is to
rotate Md with O„and compare with Md ~+~.

M„„,=O„M,O„'

gives the two required constraints

am„am, +f am, +d 2R, cosp, 2R zcosp2 2R 3cosp3+ + =0,
N1 N2 3 N1 N2 N1 N3 N2N3

3 2 2am„ m m, m„m, m„m, m, m,
+(am, +f) +(am, +d) +2 R, cosp&+2 R2cospz+2 R3cosp3=0.N2 N2 1 3 2 3

(4.18)

(4.19)

Using Eqs. (3.13) and (4.15) in the above any two of the
ten parameters can be eliminated. For example, if f and
d are evaluated in terms of the masses and the KM pa-
rameters, then substituting the expressions for them in
(3.8) and (3.9) would give us, say, s&3 and m, in terms of
the others and these would be the predictions of the mod-
e1.

Harari and Nir have, on the basis of certain assump-
tions about some hadronic factors involved, shown that
the Fritzsch scheme agrees with the present experimental
data only if the following are satisfied simultaneously: (i)
Bd-B d mixing is at the lowest level allowed by the
ARGUS group experiment at DESY; (ii) the B meson de--
cay constant assumes a value -0.2 GeV (maximum of
the "reasonable" range); (iii) the hadronic factor B~ in
the expression for the CP-violating parameter e in the
K -K system (believed to be in the range —,

' Bk ~ 1) is
about 1; (iv) the ratio ~m, /mb ~

is approximately 0.22 and
this corresponds to m, and mb taking the lowest and
highest allowed values, respectively; (v) the value of s23
assumes the maximum of the allowed range.

Also Oh, Rhee, and Kim' point out that while an at-
tempt to explain the weak CP nonconservation by the
KM matrix would demand (t, =90', $2=0, to have ~e~

for K -K system consistent with experiments one needs
a small P, .

With only such tenuous agreement with the experi-
ments, we feel that a more critical examination of the
Fritzsch model and its possible extensions are due.

C. Fritzsch-Shin scheme

Shin s parametrization of the Fritzsch matrix fixes the
two hitherto arbitrary complex phases:

Pe=0' . (4.20)

This reduces the variable number by two and now we
have four predictions of the model.

This is equivalent to imposing two additional con-
straints on the general form over and above Eqs. (4.18)
and (4.19):

(m, —m„) R, sinp, +(m, —m„) Rzsinp2+(m, —m, ) R3sinp3=0,
1 2 N1N3 N2N3

am„(am, +f)m, (am, +d)m, m„+m, m„+m, m, +m,+ + +2 R, cosp, +2 R2cosp2+2 R3cosp3 —0 .
N N3 N1N2 N1N3 N2N3

(4.21a)

m

md
and

m

have the lowest possible value.

Proceeding in a manner similar to that for the general
Fritzsch form, (4.21a) directly gives two more relations
between the masses, the weak mixing angles and the CP-
violating phase.

To be phenomenologically consistent one must apart
from the conditions enumerated earlier also require that
s, 2 =0.223 (highest allowed value) and

D. Fritzsch-Stech matrices

The Fritzsch and Stech Ansatze are not inconsistent
with each other. Gronau, Johnson, and Schechter con-
sidered a model in which both these assumptions are in-
corporated. In a suitable basis the mass matrices are thus
given by

0 a„O
M„= a„O b„

0 b„c,



39 MODEL-INDEPENDENT ANALYSIS OF QUARK MASS MATRICES 3433

and

0 ia 0 0 ad 0

This gives a six-variable dependent model obtainable
from the Fritzsch form by demanding that

Md =aM„+ —ia 0 ib—:ad* 0 bd . (4.2 lb)

d d
0 ib 0 - 0 b* c

Cd c
Re(ad ) = a„, Re(bd ) = b„

Cu CQ

or in our language by requiring

(4.22)

am 3 (am, +f)m, (am, +d)m, 2m„m, R, cosp,

N, (m, +m, ) N2(m„+m, ) N3(m„+m, ) N&N2(m +mt)(m +mi)

2m„m, R 2cosp2 2m, m, R3cosp3+ +
N, N3(m„+m, )(m, +m, ) N2N3(m„+m, )(m, +m, )

(m„+m, )(m„+m, )(m, +m, )

(m„+m, +m, )

am„am, +f am, +d m„+m, m +mt m„+m,
m, +

2 m, +2 R &cosp&+2 R3cosp3+2 R2cosp,
2 3 1 3

am„3

N, (m, +m, )

(am, +f)m, (am, +d)m,

Nz(m„+m, ) N3(m„+m, )

1 ] m~m~+ + R i cospi+
m„+m, m, +m, N&%2

1 m, m,+ R ~cosp2m„+m, m„+ m, N2N3

m mt

m„+m, m, +m, iV, X3
+ R3cosp3 (4.23)

Imposing (4.23) over and above (4.19) and (4.20) is ob-
viously equivalent to imposing (4.3) and (4.4) along with
the second named. Equation (4.5), contrary to naive ex-
pectation, does not represent an extra constraint as it is
trivially satisfied on imposition of the other four.

V. SUMMARY AND CONCLUSION

Our analysis has shown that the parameters involved in
the general three-generation quark mass matrix are not
fixed by the current experimental data but are allowed a
continuous range. However, this range is limited to
different sectors depending on the relative sign of the
mass terms. Most of the large width of these sectors
arises due to the large indeterminacy in the masses of the
lighter quarks and only to a lesser degree from the inac-
curacy of cb mixing strength.

From the expressions in Sec. III C we see that the off-
diagonal terms in Md are relatively small. In fact

Ri, 2 R3&01 and ~1 .
m m

In light of this if one demands that

not be too large either, then from Fig. 1 and Table I, we
are limited to the (mdlm, )(0 sector. All the specific
models that we have encountered so far lie in this
category.

This implies that future model building could take two
different courses. The more conservative course, given
the relative success of the current models, would be to
reexamine the present constraints and offer slight
modifications that would alter or extend the models to a
degree without drastically changing the basic structure.
All these would be expected to lie in the md /m, &0 sec-
tor. The other more radical approach would be to con-
sider an entirely different class of models. This would en-
tail f and d assuming much larger values compared to
the other parameters in Md and would demand a theoret-
ical justification for such behavior.
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