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Theoretical and phenomenological aspects of nonstandard multiplets of anomaly-free fermions
{exotic generations) are examined. The standard quark-lepton generation is shown to be the sim-

plest nontrivial member of a class of fermion multiplet structures allowed by the gauge and Higgs
structure of the minimal standard model. The next simplest member includes weak-isospin-triplet
quarks and leptons, whose structure and phenomenology is investigated. A feature of some of these
models is the presence of small Aavor-changing neutral currents at the tree level; however, these
currents are shown to be within existing experimental bounds. It is shown that it is possible that
some of the known members of the incomplete third generation {b quark, ~, and v, ) may actually be
part of such a triplet family, rather than a standard doublet family. Upper bounds on the masses of
the new particles are obtained from data on the p parameter.

I. INTRODUCTION

Given the results of the concerted effort made to test
aspects of the standard model' (SM) in the last few years,
one can be fairly confident that the essential framework
of a theory of quark and lepton interactions is known.
While the SM represents the simplest embodiment of this
general structure, it is also possible that nature utilizes a
nonminimal manifestation. Indeed, in the next several
years, the minimal SM will be tested ever more thorough-
ly as new accelerators such as the CERN LEP, SLAC
Linear Collider (SLC), and (possibly) the Superconduct-
ing Super Collider (SSC) come on line. Thus it is impera-
tive that all reasonable extensions of the minimal SM be
studied, so that rival theories can be efficiently sifted
through once the data are available, and in fact also to
guide the analysis of experimental results.

One may class extensions of the SM into roughly two
groups. The first group selects certain phenomena of
known physics that the minimal SM perhaps does not ex-
plain in a sufficiently compelling way and then tries to
provide a more satisfactory explanation. Elements of this
set include, to list a few, left-right-symmetric models,
models of spontaneous CP violation, Majoron models,
and axion models. These theories tackle the issues of par-
ity violation, CP violation, lepton-number symmetry to-
gether with neutrino masses, and the strong CP problem,
respectively. The second group simply studies the con-
cept that "nature often offers a surprise. " A historical
example of such a surprise is the discovery of the muon.
The muon, at the time, just did not seem to have a pur-
pose, by contrast with, for example, the pion. Indeed we
still do not understand today why the muon, and higher
generations in general, are there. Perhaps the best-
known example of a theory in this second group is the
much-studied CP-conserving two-Higgs-doublet model
with an explicitly broken Peccei-Quinn symmetry. Here
the chief surprise is a physical charged Higgs particle.
Although such a particle is not, as far as we know, strict-
ly necessary, it does have very interesting phenomenology

and is worthy of considerable attention.
Most of the extensions of the SM studied so far have

involved an increase in the Higgs sector and/or an in-
crease in the gauge group. However, it is also possible
that history will repeat itself and that an apparently use-
less new fermion will be discovered. By this we do not
mean a conventional fourth generation, which would not
be such a surprise (although it would still be inexplic-
able). Instead, in a series of papers, ' the physics of
weak-isospin-triplet leptons has been recently studied.
The minimal extension of this type hypothesizes a weak
hypercharge neutral triplet of either left- or right-handed
color-singlet fermions. If one demands, for example, that
the SM pattern of SU(2)t interacting left-handed leptons
and SU(2)L-singlet right-handed leptons continues, then
it is necessary to also introduce a triplet of Higgs bosons.
Weak-isospin-triplet leptons can also be used to general-
ize the conventional seesaw mechanism ' for generating
small neutrino masses. The purpose of this paper is to
again investigate the possibility of fermions in higher-
dimensional representations of weak isospin, but this time
in theories where the requirement that the right-handed
components be in SU(2)L singlets is relaxed. In particu-
lar we focus on multiplets which require only the stan-
dard Higgs doublet for the particles to gain mass.

Two scenarios are considered in this paper. Leptonlike
generations, which assume that the SU(2)L@U(l)r
anomalies cancel within the lepton spectrum are con-
sidered. Alternatively, one can have exotic generations
which have both quarks and leptons with the
SU(2)LU(1)~ anomalies of the quarks canceling with
the anomalies of the leptons. This latter case generalizes
the standard-model generation.

The plan of this paper is as follows. In Sec. II we dis-
cuss the systematics of anomaly cancellation within the
framework of the one-Higgs-doublet model. In Sec. III
we investigate the simplest leptonlike generation. Section
IV is then devoted to an elucidation of the simplest
quark-lepton-like generation. From this analysis we
show in Sec. V that the b quark may be a member of an
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exotic triplet generation, rather than the usual doublet
generation. In Sec. VI constraints from the 8'-Z boson
mass difference (note that p= 1 at the tree level) are used
to indicate upper bounds on the masses of the exotic fer-
mions. We then conclude in Sec. VII with some phenom-
enological comments.

II. EXOTIC GENERATION STRUCTURES

0

y0
(2.1)

[where electric charge is given by Q=T3+(1'/2)], we

require that the dimension of fermion SU(2)r representa-
tions form a sequence of consecutive integers. The gener-
ic structure of a generation is then

Rf NIi&1lN, (N —1 )r en~ 2(N 2)~$ . . 83n2—2L

There are a multitude of ways of extending the SM. In
this paper we will consider one generic way of extending
the fermion sector. Our investigation is defined by the
following assumptions.

(i) There is only one Higgs doublet in nature. (We cer-
tainly know that this is enough to account for the masses
of the two complete fermion generations that have been
discovered, together with the electroweak boson masses. )

(ii) Fermions come in units called "generations" or
"families" which are defined as SU(3),SU(2)LU(1)r
representations which are free of gauge anomalies (and
which cannot be broken down into smaller such units).
The two complete generations we know are also clearly
separated in a mass hierarchy (except for possibly the
neutrinos). The fragments of the third generation are
again higher in mass, with the as yet hypothetical top
quark required to be. even more massive. However, if
there is, for example, a fourth generation, then there is no
reason why this pattern cannot be broken —there may be
mass level mixing. We will not assume that the genera-
tional mass hierarchy is an inviolate principle.

(iii) New generations can either be leptonlike, quarklike
or have both quarks and leptons. The last case is dis-
tinguished from the sum of the first two by the require-
ment that the SU(2)I U(1)r anomalies of the leptons
cancel with those of the quarks, rather than having indi-
vidual cancellation within the leptons and within the
quarks. A standard generation is, of course, of the last
type.

(iv) There should be no charged particles which are
necessarily massless.

(v) Fermions are chiral. One can simply introduce
nonchiral fermions which have arbitrary masses into the
SM. Although such mass terms may have a role to play
in nature, ' they will not be central to the present
analysis.

Since we are hypothesizing the standard 7=1 Higgs
doublet

The small subscripted n's are the multiplicities of the
SU(2)r multiplets. We have defined the sequence as alter-
nating in chirality. This has no absolute meaning (until
one assigns hypercharges) since one can simply take
charge-conjugate representations and hence define
equivalent sequences with any assignment of chiralities.
The choice above is, however, an obvious one in that it
emphasizes that adjacent multiplets mix with each other
after spontaneous symmetry breaking to form massive
Dirac particles. That is to say, Yukawa coupling terms
such as Nz(N —1)L P, Nz (N —1)I P, (N —1)1(N —2)~P,
(N 1)L(—N —2)it/, and so on, exist. Since only those
representations whose dimensions diQ'er by one can have
the doublet representation in the decomposition of their
Kronecker product, this also means that Yukawa terms
involving nonadjacent multiplets are not allowed. We
may allow the series (2.2) to terminate before the singlets
are reached (i.e., nM =0 for all M less than some integer),
but we will not consider a series with a representation
missing in the middle.

Note that for simplicity we have put the multiplicity of
the highest-dimensional representation equal to one. The
unit Eq. (2.2) will be a leptonlike or quarklike generation
if SU(2)I U(l)r anomalies cancel within itself. [For a
quarklike generation SU(3), anomalies must of course
also vanish. ] We will construct lepton-quarklike genera-
tions by making copies of Eq. (2.2). So if we have one
lepton unit plus a color triplet of quarks, the number of
units will equal four.

What are the hypercharges of these multiplets? Let the
hypercharge of Xz be y. Then since N~ can couple to
N —1I through both a P and a P, it follows that there are
in general two types of N —

1L 's: one type has

Y&,=y+ 1 and the other Y~, =y —1. It is clear then
that the nz, (N i ) multiplet —breaks up into members
with hypercharges given by y+i, y+i —2, . . . , y —i.
We will denote the multiphcities of these representations
by n~;, n~'; ', . . . , nz';, etc., respectively. Clearly,

(2.3)

An important constraint on the representation Eq. (2.2)
is that the triangle anomaly vanishes. Of course, for any
representation Rf, one can always add a mirror represen-
tation (which has the chiralities interchanged) which
leads to trivial anomaly cancellation. However, here we
are interested in the problem of nontrivial anomaly can-
cellation as is indicated by the generations of the SM.
The anomaly coefficient has the form Tr(T'[T, T'I )

where T', T",T' are generators in the appropriate repre-
sentation of the Lie algebra of SU(2)L XU(1)r. Consider
now the contribution to the [SU(2)I ] U(1)r anomaly
from the multiplet X—i. It is given by

A~; =( —1)'+'q(N i )([n~ ';(y+i )+n~ ';(y—i)]—
+ [nN+' '(y+i —2)

(2.2) + . ) (2.4)
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where q(N —i) is an SU(2) factor whose explicit value
will not be required. Az; breaks up into a piece pro-
portional to y and a piece independent of y:

, =(—1)'+'q(N i —)[n~;y+i(n~ '; —n~ '; )

where we have implemented all the conditions. (Note
that the %=2 case is ruled out because of the global
anomaly. ) This is the exotic lepton family we will study
in Sec. III. Actually, there is a series defined by

We now demand that

+. ] (2.5)
N~ (y )eN —

1L (y —1)eN 1L—(y+ 1)eN —2z (y ),
(2.10)

+(i —2) —(i —2)
+N —i (2.6)

so that the complete [SU(2)L ] U(1) i anomaly is given by

A2 =y g ( —1)'+'q(N i )n—z (2.7)

that is, it is proportional to the hypercharge of the repre-
sentation Xz. As well as dramatically simplifying the
equations, we will show that the usual SM generation
structure follows from the requirement Eq. (2.6). This
will allow us to easily build structures which generalize
the standard family in a systematic way.

Under the assumption Eq. (2.6) and under the require-
ment that there be equal numbers of left- and right-
handed particles [that is g; ( —I)'+'n~; =0] the
[U(l) r ] anomaly is also proportional to y:

Ay~y . (2.8)

3g (0)eZL( —1)e2L,(+1)e Ig (0), (2.9)

This additional requirement follows as a necessary condi-
tion for allowing all particles to gain mass. The impor-
tance of the assumption Eq. (2.6) lies in the result that
both the [SU(2)L] U(1)r and the [U(1)r] anomaly turn
out to be proportional to y.

Representations of the group SU(2) may also possess
global anomalies. The inconsistent theories arise de-
pending on whether trT&, summed over all of the chiral
fermions is an integer or half-integer. For instance, a
standard lepton doublet or a standard quark doublet is
anomalous; however, a standard generation with a quark
doublet and a lepton doublet is consistent. In particular,
note that for any quark-lepton representation [i.e., with
quarks and leptons in identical SU(2) representations] the
global anomaly trivially vanishes [as (3+ 1)trTi is always
an integer].

We can now readily construct anomaly-free structures.
Leptonlike generations are defined by requiring that all
fermions be color singlets and have y =0. The simplest
nontrivial example is derived by taking %=3,

Yi+3Y =0 . (2.12)

If one takes Y& =+1 then Eqs. (2.11) and (2.12) define a
standard generation of quarks and leptons (charge conju-
gated) together with a left-handed antineutrino. Of
course the left-handed antineutrino does not contribute
to the anomaly and may be removed, as can any neutral
SU(2)-singlet field.

Having now studied the structure of exotic generations
in a wider framework, we can gain further insight into
multiplets such as Eq. (2.10) and indeed other multiplets
(see below). Before continuing this general discussion, we
will present the exotic generation we will study in Secs.
IV —VI of this paper: the quark-lepton version of Eq.
(2.9). It is given by

which features Eq. (2.9) as a member. Observe that the
series Eq. (2.10) satisfies Eq. (2.6), so that the contribution
of the triangle anomaly is proportional to y. Therefore,
quark-leptonlike generations can be obtained by simply
imposing that the hypercharges of the leptons and quarks
satisfy Y&+3Y =0. The representation Eq. (2.10) with
%=3 is the largest such representation which has as
many independent Yukawa coupling constants as there
are Dirac fermions, so that all the fermion masses are un-
related. When N) 3, there will necessarily be relations
among the masses of a generation having the structure of
Eq. (2.10), which would represent a striking manifesta-
tion of SU(2)L symmetry if discovered. It is also amus-
ing to note that Eq. (2.9) may be obtained from the ad-
joint representation of SU(3) (which of course is
anomaly-free) by taking its decomposition under the
SU(2 ) U( 1 ) subgroup.

The simplest quark-leptonlike generation consistent
with our assumptions is essentially just a standard gen-
eration together with a right-handed neutrino:

[(2~( Yi)e 1L( Yi —1)e 1L ( Yi+ I)]
e [3X[2~( Y, )e 1L( Y, —1)e 1L( Y, +1)]J . (2.11)

Y& and Y are the hypercharges of the lepton and quark
doublet, respectively. The SU(2) triangle anomaly is pro-
portional to Y&+ 3 Yq so we must demand that

3g ( Yi )e 2L ( Yi —1)e 2L ( Yi + 1 )e 1g ( Y )e 3iX [3g ( —
—,
' Yi )e 2r (

—
—,
' Yi —1 )e 2L ( —

—,
'

Yi + 1 )e 1~ ( ——,
' Yi )], (2.13)

where Y& is arbitrary. In later sections we will choose to study the case where Y&
= —2.

The structure used in Eq. (2.13) is of fundamental interest because it is the simplest nontrivial generalization of the
standard family. It is instructive to consider the next most complicated triplet generation. In Eqs. (2.9) and (2.13) we
demanded that n 2

' =n 2+' = 1. If we instead require them to equal 2 we get three types of generations consistent with
Eq. (2.6) and equal numbers of left- and right-handed states:
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3~(y)2X2L (y —1)e2X2L (y+1)e5X lii(y),
3ii(y)e2XZL (y —1)e2X2L (y+1)3 X lt, (y)e1ti(y —2)e ls(y+2),
3i, (y )e 2 X 2t (y —1 )6 2 X 2L (y + 1 )6 1R (y )6 2 X 1R (y —2)6 2 X 1 ii (y + 2 ) .

(2.14a)

(2.14b)

(2.14c)

However, it is only Eq. (2.14b) that has equal numbers of left- and right-handed states for each electric charge quantum
number; Eqs. (2.14a) and (2.14c) necessarily have massless charged particles.

The representation Eq. (2.14b) proves to be, on closer inspection, an amalgamation of structures we have already met.
It can be decomposed into a (2.9) multiplet (with yAO) plus a mirror pair:

[(2.9)]e[2L(y —1)e 1R(y —2)e lii(y)]$[2L(y+1)el+(y+2)$1~(y)] .

This illustrates that Eqs. (2.9) and (2.13) are the fundamentally most interesting triplet generations.
It is amusing to consider the N =4 case (take a leptonlike scenario for concreteness). We begin with

(2.15)

4s(0)en3[3L (+ l)$3L ( —1)]nz[2 ii(+2)Ep2 ii(
—2)]enz2ii(0)en, [1L (+3)$1L(—3)]Hen,'[lL (+1)EB1L(

—1)] .

(2.16)

We equate the number of left- and right-handed states by
requiring

4g (0)+3L, (+ 1)EB3L ( —1)e2i, (+2)@2~( —2)

4+4n 2+2n 2
=6n 3+2(n, +n,' } . (2.17) e 1L (+3)e lL ( —3) . (2.19)

The simplest cases have n 3
= 1 and

nz =0,

n2= 1,

n =1, n'=0,

n =n,' =0,
1

n] =1,
n', =0

n) =0,
(2.18a)

(2.18b)

(2.18c)

and so on. Equation (2.18a) is just the quartet member of
the (2.10) series. Equation (2.18c) necessarily has mass-
less charged particles, while Eq. (2.18b) satisfies all our
requirements. Let us rewrite it:

The most interesting thing about this rather large exotic
generation is that it is not a member of the (2.10) series.
Thus in contrast to the doublet and triplet generations,
there are two fundamentally interesting structures for the
quartet case. Equation (2.19) therefore represents anoth-
er type of generalization of the standard family.

Having said this, it should be noted that in another
sense (2.10)-like multiplets may be regarded as building
blocks for Eq. (2.19). If we add a N=2 (2.10) generation
unit (with y =2) to Eq. (2.19) we get

[4~(0)@3~(+1)@3~(—l)@2s(0)]@[2ii(+2)$1L(+3)e1L(+ l)]e[2ti( —2)e 1L (
—3)@1~(—1)], (2.20)

which is just the sum of three (2.10)-like structures. Put
in another way, the new structure Eq. (2.19) is obtained
by taking three (2.10)-like generations, excising a particu-
lar anomaly-free piece, and pasting what is left together.

One could, of course, push this analysis further as a
study in algebra by trying to prove general theorems.
There seems to be no immediate need to do this, however,
so we will be content with the above exposition. %'e hope
that this section has been of interest in elucidating the
way exotic weak isospin multiplets can be incorporated
into the standard model.

III. THE TRIPI,KT-DQUBI.ET I KPTDN
GENERATION (TDLG)

In this section the simplest leptonlike generation is ex-
amined. This generation is given in Eq. (2.9), and will be
denoted as the triplet-doublet lepton generation (TDLCx).

In this section we focus on the TDLG without the neutri-
no singlet, so that the multiplet contains a massless neu-
trino.

Consider then the lepton assignments

p/
0L ~R

L

Pl

R

I
V2

(3.1)

where (P', v', N') form a F=O left-handed SU(2) triplet,
and (P', v', ) and (v2, N') form F= 1, —1 right-handed
SU(2) doublets, respectively. The primes indicate that
the fields are in the weak-eigenstate basis. The TDLG
represents the simplest example of fermions in a higher-
dimensional representation of SU(2} which retains only
the usual Higgs doublet. The leptons are given mass via
spontaneous symmetry breaking, through the Lagrangian
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Pz + A, ~P gL J z +H. c. , (3.2) %=A, ')PtivL /+A, ~A'tt vLP+H. c. (3.8)

where P represents the Y= 1 Higgs doublet defined in Eq.
(2.1), with vacuum expectation value (VEV) given by

(3.3)

M~ =au, M„=au,
M. =[(Xf+&,')/Z]'"u, M. =0, (3.4)

where v, , vz are the mass-eigenstate fields, with their left-
handed components defined by viz = vL ( vent

=0), and
their right-handed components given by

Note that we are considering here the exotic leptons in
isolation from the leptons of the erst three generations of
the SM. An examination of the SU(2)L U(1)z quantum
numbers of the exotic generation indicate that ordinary
mixing (Higgs-boson fermion-fermion terms) as well as
vectorlike mixing (fermion-fermion terms) are in general
allowed. The theoretical lack of knowledge regarding the
origin of the Yukawa couplings makes predictions
dificult. Moreover, since the vectorlike couplings do not
appear to have a natural scale (i.e., the mass terms are in-
dependent of the Higgs-boson VEV), we will, wherever
they are possible exclude them by assuming that the La-
grangian possesses the extra U(1) symmetries associated
with conserved lepton numbers. In any case, if lepton-
number symmetry is not exact, but holds only approxi-
mately, then the mixing of the exotic leptons with the SM
leptons will induce small Aavor-changing neutral currents
(FCNC's). The effects of these FCNC's can easily be
made phenomenologically acceptable, with the most ob-
servable effect being an increase in the ~ lepton lifetime'
[we will examine the effects of small mixings when we ex-
amine the quark sector of the multiplet Eq. (2.13) in Sec.
V]. In this regard it is perhaps significant to note that a
small increase in the ~ lifetime is not in disagreement
with experiment. " If it is confirmed that the ~ lifetime is
longer than the SM prediction, then this can be regarded
as evidence for. an exotic generation of some sort. '

Evaluating the mass matrix of the leptons we find

The addition of the singlet fermion vl allows all of the
neutrinolike particles to gain mass.

The coupling of the TDLG to the gauge bosons is ob-
tained from the fermion kinetic term:

&=t Trft. &OL, +i&ti &&tt +&~~&~g (3.9)

where D" is the covariant derivative,

D"=8"+ig W" t+ig'B" Y/2, (3.10)

and the SU(2) generators for the doublets and triplets are
such that

t JV= ,'rA; t—P= ,'rP, —

tg= ,'rP+- (3.11)

where ~ are the 2X2 Pauli matrices. The couplings of
the gauge bosons are found to be

J", =Py"P —1Vy~N, (3.13a)

J)v =
—,'cos2av, y "(1+y, )v, —

4 cos2a very "(I+y s )vi

+ —,
' [sin2aviy" (1+ys )vz+ H. c.]

+ ,'Py"(4 cos Oii, —1—ys)P-
,'Ny"(4 cos Oii,——1 —ys)X, (3.13b)

J" = —v y"[&2+cosa+(cosa —v'2ly ]N+ 2~2 1 5

eJ",—A „—(g /cos0 ii, )JgZ„(gJ+ 8'—„+ +H. c. ),
(3.12)

v)~ =cosav~~ +sincxv', ~,
I

vga =slnczvpg coscxv)g

(3.5a)

(3.5b)
+ —Py"[&2+sina+ (sina —&2)y s]v,2&2

The mixing angle is given by

tana=A, , /A. z,
or

(3.6a)

+ —very"( I+ys)tV —Py"(1+ys)vz .
2 2' 2 2

(3.13c)

tana=Mp/M~ . (3.6b)

Equation (3.4) can also be expressed as the mass con-
straint

2M =M +M (3.7)
1

If one adds the SU(2)L @U(1)i,-singlet fermion vL (which
was previously omitted) then it couples to the new dou-
blet fermions via

A phenomenologically interesting possibility would be
to consider charged leptons light enough to be produced
via F- and Z-boson decay. An important parameter in
this context is the ratio I z/I ii, (Refs. 13—15). This pa-
rameter cari be determined through the measurement of
R =N( W~ev)/N(Z~e+e ). We consider two
scenarios: namely, Mz )&M& and M&=M~. The ratio
I z/I ~ is given in Figs. 1 and 2. We have used the nu-
merical results of Ref. 1S for the SM value, which is also
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FIG. I. (a) The ratio F'z/I ~ for the SM with M, =50 GeV,
and for the SM with an additional ordinary doublet or an addi-
tional exotic TDLG. In this figure, the fermion mass ordinate is
either the charged doublet lepton or the charged X lepton mass,
where the mass relation M& «Mp has been assumed. The bro-
ken lines indicate the UA1/UA2 upper limits. (b) Same as (a)
except M, & M~ —Mb.

FIG. 3. (a) The cross section rr(e+e ~ff) for the produc-
tion of the exotic charged X lepton of the TDLG, compared
with ordinary doublet charged leptons at an e+e collider at
&s =Mz (note that the mass relation M~ &&M~ has been as-
sumed). (b) Same as (a) except &s =200 GeV.

1.50
Degenerate fermion triplet masses

1.4Q—

1.30—

1.20—

1.10—

1.00—

M ) M — M

Mt = 50 GeV

0.9Q—
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I I
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Mass of fermion triplet (GeV)
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FIG. 2. Same as Fig. 1, except the mass relation M&=Mp
has been assumed.

shown. Note that if the left- and right-handed represen-
tations are interchanged, that is if we start with a right-
handed triplet, and two left-handed doublets, then for the
scenario Mp))M~ the X, v2 leptons will behave in a
similar way to an ordinary doublet of leptons at low ener-
gies. Their charged current and the neutrino neutral
current reduce to the Y= 1 doublet case. A measurement
of the Z-boson coupling to the N lepton should provide a
means of distinguishing the two cases. The Z-boson cou-
pling can be determined through the measurement of the
total e +e cross section, or through the forward-
backward asymmetry. The cross section is given in Fig.
3, and the forward-backward asymmetry parameter 3„B,
defined by 2 FB

= ( o z —o z ) /( o z + cr z ), is given in Fig. 4.
To conclude this section, we have investigated an ex-

tension of the fermion sector involving a triplet of lep-
tons, without any necessary extension to the Higgs sec-
tor. %'e will now investigate the simplest exotic genera-
tion which necessarily contains quarks and leptons —the
triplet-doublet quark-lepton generation.
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(4.2)
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(4.5)

fL —A 'fq, f~ =B 'f'
R

whereere the unprimed fields on the 1

(4.6)

t- d i ( )o
e mass-eigenstate fields. Then A, B satisf

MB=A 'MM (4.7)A D

where D is the diaiagonal mass matrix. Th
can be expressed as

rix. he 2 X 2 matrices,

mFEIiEI +m—vzv + f ' M fL+H. c. , (44)

where mz —k u,u, I = 2u, andM'
df represents the 2X1

by
column vector given
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cosA slncx 8=
sino. cosa

where a,P are defined by

cosp —sinp

sin/3 cosP (4.8)

X 1+ 4(m, m, —m~mR)

(m +m +m +m~)2

A+ = ~(mE+m +m i +m22)
'i 1/2

(4.10)

2(m, mz+m mz)
tanzo. = —

2 2 2fPlE+I?l I P?l 2 m ~

(2m2m +mimR)
tan2P=

(4.9a)

(4.9b)

The interaction Lagrangian of the lepton sector of the
TDQLG can be obtained from the fermion kinetic term

L =i Tr(i7/L@gL)+if LBfL+ieRBeR+ii)R PER, (4.11)

where D" is the covariant derivative defined in Eq. (3.10).
The couplings of the gauge bosons are of the form Eq.
(3.12), with the currents given by

The mass eigenvalues are mf =A, , mf =k+, where2= 2= J". =2Ey"E+fy'f+f y"f (4.12)

J~+ = Eyi'[V'2 sina+sinP+(sinP —3/2 sina)y5]f + —Ey"[3/2 cosa+cosP+(cosP —3/2 cosa)y~]f
23/2 23/2

1 1+ —fy"[3/2 cosa —sinp+( —sin/3 —3/2 cosa)y5]v+ —fy"[3/2 sina+cosp+(cosp —3/2 sina)y5]v,
23/2 23/2

(4.13)

Jg =Ey"(—,
' —2 sin Oii y5 /4)E f—y"( —c—os2P/4+ sin 0ii, —y5cos2P/4) f

—fy"(cos2P/4+ sin 8 ii, +y &cos2/3/4) f [fy "sin2P/4( —1+y & )f+H. c. ]—vy "(—' —y & /4) v . (4.14)

Observe that in the limit tana=tanp=O, the coupling of
the charged + 1f lepton reduces to that of a familiar
left-handed SU(2) doublet F= —1 charged lepton. Con-
sider for instance the possibility that the ~ lepton is a
member of this TDQLG, in which case we identify r'
(where the superscript indicates charge-conjugate field)
with f. In this interpretation, the (unmeasured) gauge
coupling of the ~ neutrino to the Z boson is different to
the usual doublet case. Also the masses of the other
members of the lepton sector of the TDQLG may gain a
large value in a self-consistent way. For example, the
constraint tana=tanp=O may be implemented by assum-
ing mz))(m„mz)))m, in which case the physical
masses satisfy mE=mf-/3/2))m, ))m . However this
interpretation appears unlikely to be realized for two
reasons. First, note that in this interpretation of the w

and its neutrino, the Z-boson coupling to the neutrino is
significantly larger than in the SM (and implies that the
partial width of the Z-boson decay to the ~ neutrino
should be a factor of 5 times larger than in the SM). This
provides a significant increase to the Z-boson width I z,
while the 8'-boson width I"~ does not get any significant
compensating increase. Indirect determinations of the
ratio I z/I ii, through the measurements of N( 8'—+e v) I
N(Z +e+e ) (Refs. 13——15) certainly do not seem to
favor this. Second, if the small values of the first three
generation neutrino masses are due to the nonexistence of
the right-handed singlet fields (in which case the Dirac
mass vanishes), then it seems natural that the neutral

(~li(( 0L iL+~2ik eR iR +~3i4 /R iR

+A,4;p L;LfL'+H. c. ) (4.15)

would be added to the Lagrangian Eq. (4.2) and to the
SM Lagrangian. [Note that here L;L denotes the three
(i =1, . . . , 3) SM lepton left-handed doublets and R,R
denotes the three (i =1, . . . , 3) SM right-handed SU(2)
singlets. ] This mixing will give a Majorana mass to the r
neutrino (while the other two neutrinos remain massless),
via a seesaw-type mechanism. "' FCNC's will also be in-
duced at the tree level because the singly charged leptons
and neutrino associated with the lepton sector of the
TDQLG will have a different Z-boson coupling to the SM

member of the lepton triplet should not have a small
mass as both its right- and left-handed components neces-
sarily exist, as neither of them form singlets. However, if
there exists a TDQLG in addition to the three genera-
tions of the SM, then the preceding argument indicates
that it is natural that the triplet-doublet neutrino should
be heavy (i.e., as heavy as the other particles in the multi-
plet). Therefore the constraints which apply to the usual
fourth-generation sequential doublet from the measure-
ments of the ratio I z/I ii (Refs. 13—15) will not apply.
Furthermore, if lepton-number conservation is not as-
sumed, then the triplet may mix with the usual doublets
(note that there is no vectorlike mixing). Thus the mixing
term



39 STRUCTURE OF EXOTIC GENERATIONS 3419

singly charged leptons and neutrinos. However, these
FCNC's will naturally be small enough to be within exist-
ing experimental constraints. '

The quark sector of the TDQLG will now be exam-
ined. The left-handed quark fields are given by a Y=

3

SU(2) triplet, and Y= ——', singlet, while the right-handed
fields are given by a E'=

—,
' doublet, and Y= ——', doublet:

b ', /&Z
'

b i/&2 L
(4.16)

R

+H. c. (4.17)

Substituting the VEV's (P), (P) for P, P in Eq. (4.17)
yields the mass terms

These fields gain mass via the Yukawa interaction La-
grangian:

~14 4+R +~24 PL~R +~3~R Nb 1L +~4~R Nb 1L

bL —3 'bl. , bR —B 'bR, (4.20)

where the unprimed fields on the LHS of Eq. (4.20) are
the mass eigenstate fields. Then A, B satisfy Eq. (4.7),
and the 2X2 matrices, A, B can be expressed as in Eq.
(4.8) where a, /3 are defined by

2(m, m~+m~m, )

(4.21)tan2a =

2(m, m, +mzm )

tan2P=

The mass eigenvalues are mI, =A, , mb =A, + where
I

(4.22)

A+= —,'(mz+m, +m, +m2)

where mi =&2k,3u, m2=v'2A, 4u. The t', and y' are
mass-eigenstate fields (so that the prime may be dropped
as the mass eigenstates are the weak eigenstates for these
fields). For the charged —

—,
' sector, the mass-eigenstate

fields can be introduced by defining unitary matrices A, B
by

™i)t 1R t 1L ™yXgXL +b g MbL +H. C. (4.18)

mi m2 b'
M= b'=

2 mt my b
(4.19)

where m, =11u, m
&
=X2u, and M is the charge —

—,
' mass

matrix and b' represents to the 2 X 1 column vector, given
by

4(m, mz —
mmmm, )

X 1+ 1— 1, fsA8 j
(m +m +m +m )

(4.23)

The interaction Lagrangian of the triplet-doublet
quarks can be obtained from the fermion kinetic term (as
in the case of the leptons). The couplings of the gauge
bosons have the form given in Eq. (3.12), with the
currents given by

em 3 1T" 1 3 13'" 1 3
1'V"

1 3+3'"+

J+ = —tiy [&2sina+cosp+(cosp —&2sina)y ]b + —t y"[&2cosa —sinp+( —sin/3 —V'2cosa)y ]b
p 1 p 1

2&2 5 i 2~2 i 5 1

1 1+ —b y"[&2cosa+ cosP+ (cosP —&2 cosa )y ]y+ —b y"[&2sina+ sin/3+ (sin/3 —&2 sina )y ]y,2~x ' 2~& '

Jg =b, y"[sin 0ii, /3 —cos2P/4+ ( cos2/3/4)y 5—]b, +b, y"[sin 0ii, /3+ cos2P/4+ (cos2P/4)y 5]b,

+ [biy"[(1+yz)sin2p/4]bi+H. c. I +tiy~( —' —2 sin 0~/3 y&/4)t i +yy"( ———'+4 sin 0'/3+y&/4)g . (4.24)

Hitherto, for simplicity, the quark sector of the TDQLG
has been considered in isolation from the quark fields of
the SM. Notice, however, that this restriction involves
no loss of generality as the quantum numbers of the
TDQLG quark sector are such that they allow no ordi-
nary mixing (Higgs-quark-quark terms) with the usual
doublet generations anyway. However they do allow for
vectorlike (fermion-fermion terms) which we exclude by
the imposition of an extra U(1) symmetry [cf. discussion
following Eq. (3.3)]. Thus while in general there will be

ordinary mixing in the lepton sector there will not be or-
dinary mixing in the quark sector. If, however, we con-
sider a mirror TDQLG (i.e., a TDQLG which has left-
and right-handed fields interchanged), then there will be
no mixing in the lepton sector, but there will be mixing in
the quark sector. This will be illustrated in the next sec-
tion, where we consider a particularly interesting possi-
bility, namely, that the bottom quark is a member of a
mirror TDQLG.
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V. IS THE BOTTOM QUARK A
MEMBER OF A TRIPI.ET-DOUBLET

QUARK-LEPTON GENERATION?

Consider again the gauge interactions of the quark sec-
tor of the TDQLG given by Eq. (4.24). Note that in the
limit tana=O and tanP=O, the gauge couplings of the b,
quark reduce to the gauge coupling s of an ordinary
sequential SU(2)-doublet charge-( —

—,') quark, provided
the L and R chiralities are fiipped (i.e., we start with a
mirror TDQLG). The t, quark coupling does not howev-
er reduce to that of an ordinary SU(2)-doublet charge —',

quark. Thus since the gauge couplings of the top quark
have not been measured there is a possibility that the ex-
isting bottom quark may be one member of this triplet-
doublet multiplet of quarks. The interpretation that the
observed bottom quark is a member of a triplet-doublet
multiplet of quarks is self-consistent because the limits
tana=O and tan/3=0 [as required for the b, quark cou-
pling to reduce to that of an ordinary sequential SU(2)-
doublet charge —

—,
' quark] may be realized by assuming

the existence of the following mass relations:

where

+A;,L;/DR +A,'kL; URkp+H c. (5.2)

u
i=1, . . . , 3, Li — d,

L

C
L2= )

L

3 +L& J ~& ' » DRI dR& DR2 sR& R3 b IR&

k =1,2, U~, =u~, U~2=c~, and A, );,A,2;, X2, A;~, A,'g are
Yukawa couplings. Define weak-eigenstate fields U' and
D' as

U =(14,c, t I ) D'=(d', s', b'l, b ', ) (5.3)

city, we make the third doublet of quarks very heavy and
degenerate (so that their contribution to bp is zero). Note
that we are invoking "mass level mixing" as discussed un-
der assumption (ii) in Sec. II.

In the quark sector, if the triplet-doublet quark multi-
plet is added to the first two SU(2) doublets of quarks
then there will be mixing allowed. The most general Yu-
kawa interaction Lagrangian is given by

+Yuk ~li( 0R i+~2j ~L Rj 0+~20 0R~L

lf m ))m„m, m,
1

then mb (&m, «m~ =mr/&2,
I 1

(5.1a)

The mass-eigenstate fields can be defined by introducing
the 3X3 matrices AU, BU and the 4X4 matrices AD, BL,

(2) If m, ))m„m2, mr,
1

then mb «m& &(mb =m, /v 2 .
1

(5.1b)

UL —A U UL, DL —A D DL

Uz BU Uz, Dz =BDD
(5.4)

Both of these possibilities lead to the b, quark being the
lightest of the four quarks in the triplet-doublet multiplet.
Of course, these limits need only be approximate, as the
measured values of the gauge coupling of the bottom
quark have rather large uncertainties. ' '' In case (1), the
charge —,

' quark is expected to be the lightest triplet-
doublet quark after the b& quark. As can be seen from
Eq. (4.24), this quark can be distinguished from a SU(2)-
doublet charge —', quark, by the Z-boson gauge coupling.
The second case defines a rather clear signature as the
charge ——', quark is then the lightest triplet-doublet
quark after the b, quark.

The lepton sector will be given by the fields in Eq. (4.1),
with left- and right-handed fields interchanged. The
gauge-boson interaction Lagrangian and currents are
given by Eqs. (3.12) and (4.12)—(4.14) but with y5 re-
placed by —y~. This interchange of chiralities (which is
necessary for the interpretation of the bottom quark as a
member of the TDQLG) ensures that it is now no longer
possible to interpret the r lepton and the r neutrino as
members of the lepton sector, unless a TDQLG and its
mirror generation is considered. In any case, it was ar-
gued in Sec. IV [see the discussion following Eq. (4.14)]
that the possible interpretation of the r lepton and the r-

neutrino as members of a lepton sector of the TDQLG is
unlikely. Thus we consider the possibility that the bot-
tom quark is a member of the quark sector of a TDQLG,
and, presumably, ' the actual quark doublet partner of
the third doublet of leptons required for anomaly cancel-
lation is too heavy to be observed at present. For simpli-

J+ =
UL, y" AU 'SADDL+ U~y"BU 'TBDD

+D~y~AD 'CyL +D~y"BD 'Ey~, (5.5)

Jg= ULy~XUL+ URy"B~ 'YBUUR+DLy "AD 'NADDL

+DR y"QDR +X@"(——,'+4 sin gll, /3 —y~/4)X,

where the matrices S, T, C, E,X, Y,N, Q are defined by

1

S= — 01

0

0

0 0 0 0 0 0 0
1 0 0
0 1 0

0

T= 0 0 0 0
0 0 0 1

0 0
p &

E p

1

. v'2

X=(—,
' —

—,'sin gll )I3,
Y=Diag( —sin gll, —2sin 8~, 1 ——sin g ),
N=Dlag( —l + l sln28~, —l +

(5.6)

Q =(—,'sin 8~)I4,

—
—,'+ —,'sin 8II„—,'+ —,'sin28~),

The form of the gauge interactions is given by Eq. (3.12)
with the gauge currents defined by

Jv = 2 U&f U 1D&vD 4&&v&
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Xzz =(g/cos8~)dz(C&, +Cz, y~)s+H. c. (5.7)

where I3 and I4 represent the 3 X 3 and 4 X 4 identity ma-
trix, respectively. Note that small right-handed charged
currents have been induced at the tree level. These in-
duced currents are expected to be small, with the largest
induced right-handed charged current arising for b

&

quark decay. However, the gauge couplings of the bot-
tom quark are only loosely measured, and while they are
consistent with the usual doublet interpretation of the t, b
quarks, they allow for the possibility of a considerable de-
viation from the sequential doublet couplings. ' '
Perhaps a more important consequence of the mixing is
that FCNC's have been induced at the tree level. This is
basically due to the additional quarks which do not have
the sequential SU(2) neutral-current couplings (the t&

quark and the b, quark). However these neutral currents
are expected to be small because there is a partial
Glashow-Iliopoulos-Maiani (GIM) mechanism at work. '

For instance, consider the induced Zds coupling:

GFf1, mk(Cq", ) 51.4X10 ' GeV, (5.11)

where fk and mk are the kaon decay constant and mass,
respectively. The constant Cd", is the axial Zds coupling
defined by Eq. (5.7). This mass difference gives a bound
on the axial Zds coupling

for the left- and right-handed fields, respectively. Of
course it should be emphasized that the above ansatz (for
A and B ) may be completely wrong. However the limit-
ed information obtainable from the Kobayashi-Maskawa
matrix makes the ansatz at least reasonable. We can now
check whether the model, within the above assumptions,
is consistent with the experimental constraints on the
FCNC's. The interaction Lagrangian is given by Eq.
(3.12) and the currents are defined in Eqs. (5.5), (5.6), and
(5.9). Limits can be placed on the FCNC couplings by
using experimental bounds from rare processes. For ex-
ample, the mass difference from K -K mixing (see Fig.
5) is given by

Using Eqs. (5.5) and (5.6) the couplings Cz, and Cz", are
found to be

C„, & 5X10 (5.12)

C'= —C'=-'W* ~ds ds 2 D4& D42

The couplings Cz, and Cz, (and FCNC couplings in gen-
eral) are expected to be very small since they are products
of far off-diagonal matrix elements which also form the
KM matrix VUD= AU 'SAD. From experiment the off-
diagonal KM matrix elements are known to be small.

The form of the matrices A and B are a priori arbitrary
(without any knowledge of the Yukawa couplings); how-
ever, the form of the Kobayashi-Maskawa matrix sug-
gests the following ansatz for A and B (which we adopt
for definiteness):

1 A. /2 3X /8

AU-BU — A/2 1 A, /2

3X/8 A /2 1

Other rare processes such as K —+p p, K+~m. +vv,
etc. , can also be used. Bounds on the other Aavor-
changing neutral gauge couplings can be calculated in a
similar manner. It has been found that the best con-

1 A. /2 3A, /g

A, /2 1 A, /2
3A, /8 A, /2 1

(5.9)

X4

1

A2 1

1

with A, -0.2 (and only magnitudes shown). The form of
these matrices lead to Kobayashi-Maskawa matrices

X' 7S4/8

V = A, 1 A, 3A /2

1 A
5.10

3A, /8 3A, /8 3k /8 3A, /8
g /2 g /2 g /2 g /2

S4

(b)
FIG. 5. Examples of rare processes induced by the tree level

FCNC's: (a) Neutral meson mixing (T channel not shown). (b)
Rare decays.
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straints come from neutral meson mixing. The results are
summarized below: ig5 (c"„+c, &

Process

K ~K (Ref. 20)
D + D (Ref. 21)
B ~B (Ref. 22)
B +e+e—X (Ref.

From ansatzUpper bound

Cd", ( 5 X 10 A, /2 —1.3 X 10
C,"„(3 X 10 3A, /32-3 X 10
Ci,d

~ 4 X 10 k /2- 3 X 10
23) Ci,", 5 9 X 10 1, /2- 8 X 10

The last column indicates the expected value for the cou-
plings C" obtained from the ansatz for A and B [see Eq.
(5.9)].

(C v+ CiAcos 8
W

VI. CONSTRAINTS FROM 5p

M~
p ~zcos Og

(6.1)

The calculation of 6p due to heavy fermions (or bosons)
can be used to place constraints on their masses. The

In general, fermions which couple to the 8' and Z
gauge bosons will contribute to their self-energies and
hence contribute to 5p, w'here p is defined by

FIG. 6. The form of the fermion-gauge boson couplings used
in the calculation of 5p.

contribution of heavy fermions with arbitrary couplings
to M~ and Mz is obtained by evaluating the fermion-
loop contribution to the F and Z gauge-boson propaga-
tor. For a pair of fermions with general gauge couplings
given in Fig. 6, we obtain

gmc m

2 2
6—ln

2
27T cos 0~ p

I'

QM~~= —b.[(m,~+m )(C; v+C; „) 2m, m~(C—,J.pC,~j„)]-—
8

(6.2)

m.—ln
p

2 2 2 2

m. m +m
+(C, ~

—C,~)~ )m;m~ 2 —ln
p m, —m.

m.
l

m J

m;
ln

m~.

—
—,'(m; +m~ )

(6.3)

6=2/e —y+ ln4e, (6.4)

where e~O (D=4 —e), and y is the Euler constant. To
explain Eqs. (6.2) and (6.3) a few comments are in order.
The integrals have been regularized using dimensional
regularization (p is the arbitrary parameter with dimen-
sions of mass), the indices i and j are summed over all the
particles in the multiplet and m;, and mj are the masses
of the ith and jth particle, respectively.

To apply Eqs. (6.2) and (6.3) to a general TDQLG to
obtain 6p would not be very helpful, because of the un-
known parameters a, /3. Qualitatively, we can say that in
general, the masses of the particles in the triplet-doublet
multiplet should be in the electroweak scale ( (1 TeV).
However, for the model discussed in Sec. V, we can be
more definite, as the model assumes that tano. =0 and
tanP=O, for the quark sector. Recall, that the limits

tana=O and tanP=O, can be implemented by assuming
the mass hierarchy given in Eq. (5.1). For case (1) [see
Eq. (5.1)], we only need to consider the loops which con-
tain either or both the y and b quarks. Neglecting the
mixing angle A, , we obtain

3g m
5p = ( 6 ln2 —

—,
'

) .
64m. m~

(6.5)

3g
6p=

64m m~2
(6.6)

Imposing the constraint 5p &0.02 implies that m& &200
GeV. This scenario suggests that the mass of the new
toplike quark should be less than about 100 GeV. For
case (2) [see Eq. (5.1)], we obtain the same constraint as in
the usual doublet interpretation of the t and b quarks:
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The constraint 5p &0.02 implies that I, & 260 GeV. Of
1

course, it should be emphasized that these constraints
only exist because of the large mass splitting (which is
necessary for the model discussed in Sec. V). If a com-
pletely degenerate TDQLG is considered, then the con-
tribution to 5p is zero (to one loop), as is also the case for
a degenerate fermion doublet.

VII. PHKNOMENOLOGICAL COMMENTS
AND CONCLUDING REMARKS

In summary, we have examined the structure of exotic
generations which are specified from the constraints of
anomaly cancellation, and that the members of an exotic
generation be able to gain mass, assuming the existence of
Y=1 Higgs doublets. The simplest extension involving
leptons only, the TDLG, was investigated in Sec. III. We
then investigated the simplest generation containing both
quarks and leptons —the TDQLG. Models incorporat-
ing these exotic generations into the SM may feature
FCNC's at the tree level. However, these FCNC's are
typically within the experimental constraints. A particu-
larly interesting possibility considered is that the bottom
quark may actually be a member of a TDQLG. The phe-
nomenological prospects for this interpretation are rather
interesting. First, for the b quark to have the sequential
doublet couplings implies the existence of certain mass
relations. In the first case, [Eq. (5.1a)] there exists the
mass relation mb «m «m- =I /&2. The con-

bl X

straints from the p parameter for this case indicate that
mz &200 GeV. In the second case mb &&mz &&mb

1 1

=m, /&2, the toplike quark is expected to be heavy and

is limited by about 260 GeV. In this scenario the y quark
is the lightest of the exotic particles. In this case note
that the UA1 lower bound of 44 GeV on the mass of the
top quark will not apply for g, as its production at the
CERN SppS collider is significantly smaller than a top
quark of the same mass, because the gb&8' coupling is
small. Thus, the only constraint on the y quark mass ap-
pears to be from e+e colliders which implies a lower
limit of about 30 GeV for y (Ref. 26). The existence of
such a light y quark would give a spectacular jump to the
e+e R ratio:

R =cr(e+e ~hadrons)/tr(e+e ~p+p ) . (7.1)

The ratio would rise by about a factor of 4 compared
with that due to a toplike quark.

In conclusion then, we believe that some very interest-
ing physics is associated with the incorporation of exotic
generations into the SM. The quantum numbers of ele-
mentary particles is clearly a fundamental concern; it is
wise to know what sort of physical signatures various
types of exotic particles may have, and how they fit in
with standard-model physics. There are, of course, many
questions arising from this study. For example, the
discovery of an exotic generation would represent a
dramatic increase in the number of supposedly funda-
mental fields. In this regard, there has already been
much speculation that quarks and leptons may be com-
posite particles, and the discovery of unusual fermions
may strengthen such suspicions. Such fermions will alter
the renormalization-group evolution of gauge couplings.
Can these particles be incorporated into a grand-unified-
theory (GUT) scenario, or would their discovery be in-
direct evidence against at least simple GUT models? Can
superstring models yield fundamental low-mass fermions
in higher-dimensional representations? Perhaps the
discovery of a triplet would be indicative of a direct prod-
uct structure SU(2), SU(2)2Ig SU(2)3 underlying the

SU(2)L gauge group. For example, if each SU(2) factor
corresponded to a generation, then the so-called "inter-
generational fermions" of Ma and Tuan which trans-
form as (2,2, 1), (2, 1,2), and (1,2,2) would yield triplets un-
der the diagonal SU(2)L subgroup. Though it is impor-
tant to know the immediate experimental consequences
of exotic particles, it is perhaps premature to speculate
too deeply about what their existence might imply; we
will be content with the present analysis. We await with
interest new experimental data, to see whether the
minimal SM will survive as a successful theory to even
higher-energy scales.

Tote added. After the completion of this paper we be-
came aware of the work of Fishbane et al. These au-
thors considered similar questions to those addressed in
Sec. II of the present paper. The two analyses are com-
plementary, though they differ a little in emphasis.
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