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SU(3) predictions for nonleptonic B-meson decays
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The smallness of the up-, down-, and strange-quark masses compared with the QCD scale makes
I

SU(3) Aavor an approximate symmetry of the strong interactions. The B,B, and B, mesons form
a 3 representation of SU{3). Using the SU(3) transformation properties of the effective Hamiltonian
for weak nonleptonic B-meson decays, relations are derived between B-meson decay amplitudes.
Some of these relations may provide information on the importance of various competing effects
that can occur in nonleptonic B-meson decays.

I. INTRODUCTION

In the future it is likely that measurements of the
branching ratios for many exclusive B-meson decays will
be made. The B mesons come in three types B,B, and
B, with flavor quantum numbers bu, bd, and bs, respec-
tively. In this paper we shall examine in detail the pre-
dictions of SU(3)-liavor symmetry for nonleptonic B
meson decays to two and three mesons.

In the standard six-quark model the couplings of the
quarks to the charged 8'bosons are of the form

—(u, c, t)y"(I —ys)V s W„++H.c.
2 2 b

Here g2 is the SU(2) gauge coupling and V is a 3 X 3 uni-
tary matrix that is related to the transformations which
diagonalize the quark mass matrices. It is possible to
choose phases for the quark fields so that the Kobayashi-
Maskawa matrix Vis written as'

It is the interaction Lagrangian density in Eq. (1) that
determines the transformation properties of the effective
Hamiltonian for nonleptonic B-meson decays under
flavor SU(3). Noting that the charm quark, bottom
quark, and top quark are SU(3) singlets, it is easy to see
that the hb = —1, Ac= 1 part of the effective Hamiltoni-
an transforms as an 8, the hb = —1, Ac=0 part trans-
forms as 3 6 15, and the Ab = —1, b c = —1 part trans-
forms as 36.

In low-energy physics SU(3) symmetry typically works
at about the 30% level in decay amplitudes. For exam-
ple, fz If which is unity in the limit of SU(3) symmetry,
has the experimental value 1.28. In nonleptonic D-meson
decay, the predictions of SU(3) symmetry do not work
well. A striking example is the SU(3) prediction

I (D K+K )
4a

I (D ~ m).
for Cabibbo-suppressed nonleptonic D-meson decay. Ex-
perimentally,

c) —$]C3 $)$3
i6 i5V = s(c2 c)c2c3 $$$3e c,c2S3+$2c3e (2)

I (D K+K )

I (D ~m.+m). (4b)

i6 i6$ (sp c )$2c3+c2$3e c &$2$3
—c2c3e

s) -0.22 . (3a)

The angles O2 and O3 are also small. Experimental infor-
mation on the B-meson lifetime and semileptonic B-
meson decays implies (to leading order in small angles)
that

where c; =cosO; and s; =sinO;. The angles O„O2, and O3

are chosen to lie in the first quadrant where their sines
and cosines are positive. With this convention the qua-
drant of 6 has physical significance and must be fixed by
experiment.

Experimental information on nuclear f3 decay, semilep-
tonic hyperon decays, and kaon decays gives that

Using, for example, the large-N, limit, ' it is possible to
include some SU(3)-breaking effects into estimates for
nonleptonic D-decay amplitudes. In the large-N, limit,
amplitudes factorize and hence there is an enhancement
of the X+K rate over the m+m rate by roughly the
factor (fzlf ) . This is not quite enough to explain the
experimental value in Eq. (4b).

Despite the failure of SU(3) predictions for nonleptonic
D-meson decay rates, we feel that the absence of rigorous
methods for predicting exclusive nonleptonic B-meson
decay rates makes a tabulation of SU(3) predictions for
B-meson decays worthwhile. In the next section we con-
sider two-body nonleptonic B decays to mesons and in
Sec. III we examine some three-body decays. In Sec. IV
concluding remarks, which contain a discussion of possi-
ble improvements and extensions of our work, are given.

and

($2 +s3 +2s2s3cs )' =5 X 10

s3 ~ 5 &( 10

(3b)

(3c)

II. TWO-BODY DECAYS

We begin by discussing decays with Ab = —1 and
Ac=1. These arise from weak Hamiltonians with flavor
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quantum numbers (bc)(ud ) for the Cabibbo-allowed de-
cays and (bc)(us) for the Cabibbo-suppressed decays.
These two Hamilto'nians are different components of the
same 8 representation. Therefore, there will be SU(3) re-
lations between the Cabibbo-allowed and Cabibbo-
suppressed decays which have Ac=1. Denoting the 8
representation of the Hamiltonian by a 3 X 3 matrix with
components H' (the upper index labels rows and the
lower columns) then for the Cabibbo-allowed decays

0 00

Process

B ~D+m
BO~D0~0
B D q

B ~D,+K
B —+D m
Bo DOKO

B,:-D, --

Rate

Ia+cI'
—,
' Ib —cl'

—,
' Ib+cI'

I
cI'

Ia+bI'

TABLE I. Rates for Cabibbo-allowed decays B~DM in
terms of the three reduced matrix elements a, b, and c.

H= c) 0 0

0 0 0

and for the Cabibbo-suppressed decays

0 0 0
0 0 0

(sa)

(5b)

I
3 (8 ~D vr )I +3

I
2 (8 —+D g)I

=Id(B ~K D,+)I +IX(B,~D K )I (10)

—s&c3 0 0

In Eq. (5b) the relative factor of —s, c3/c, arises because
of the different weak mixing angles which occur in the
two cases. We shall work to leading order in small weak
mixing angles setting c

&

=c2 =c3 = 1.
We first consider Ab = —1, Ac= 1 decays of the type

B~DM, where D denotes one of the D mesons D, D+,
and D,+ with flavor quantum numbers cu, cd, and cs, re-
spectively. M is one of the eight lowest-lying 0 mesons
~,K,K, g. Using the same notation as for the Hamiltoni-
an, the B mesons and D mesons which transform as anti-
triplets under SU(3) are introduced as row vectors with
components B; and D, , respectively. Explicitly,

8 =(B,B,B, )

There are several simple relations between the
Cabibbo-allowed and the Cabibbo-suppressed decay
rates. For example, SU(3) symmetry implies that

A(8 ~D ~ ) = —1/$, .
A(B ~D K )

The large value of the 8-meson mass (compared with
the @CD scale) suggests that relative complex phases be-
tween the reduced matrix elements a, b, and c, which can
be generated by final-state strong interactions, are small.
If this is the case then, up to sign ambiguities, measuring
three of the Cabibbo-allowed decays determines a, b, and
c. At the present time there are measurements of the
branching ratios for two of the decays in Table I. Experi-
mentally, "

and

D =(D,D+,D,+) .

8(B ~D m. )=(3.0+1.4)X10

B(B ~D+vr )=(3.6+1.4)X10

(12a)

(12b)

0 +"
&z

(8)

We are interested in the transition amplitudes
A (8 ~DM) = (DMIH, s IB ). As far as the group theory
is concerned we can imagine these amplitudes arising
from the effective Hamiltonian

H, fr=a (8;D ')(MI"HI', )+b (8;MkHJD 1)

+c(B,H„'M D')

Finally the mesons M are in the octet representation
which as a 3 X 3 matrix has elements

0
+ ~

v'Z v'6

TABLE II. Rates for Cabibbo-suppressed decays B~DM in
terms of the three reduced matrix elements a, b, and c.

Process Rate

Although we have focused on decays of the type
B~DM our results can be trivially taken over for the de-
cays of the form B—+D*M. Also, for decays not involv-
ing the g we can use the results in Tables I and II for the
corresponding decays B—+D V and B—+D *

V, where V is
one of the 1 p or K* vector mesons. [Since in the vector
meson case there is a large mixing between SU(3)-octet
and -singlet states, one cannot straightforwardly general-
ize the results involving the g, which neglect the small
SU(3)-violating g-g' mixing. ] So, for example, generaliza-
tions of Eq. (11) of the type

with Hk given by Eq. (5a) for the Cabibbo-allowed decays
and Eq. (5b) for the Cabibbo-suppressed modes. Expand-
ing out these three terms gives the results for the
Cabibbo-allowed decays shown in Table I and for the
Cabibbo-suppressed decays shown in Table II.

There is one SU(3) relation among the decay ampli-
tudes A (8~DM) for the Cabibbo-allowed decays:

B ~D+K
BO~DOK'
B ~DK

BO DO 0
S

$2 a2
$2 bI2

s', Ia+bI'
$ —C

s', Ia+cI'
S2 C2
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3 (8 ~D~cm )

A(8 ~D* IC )

hold. Experimentally,

A(8 ~D p )

A (8 ~Dog* )

A(B ~D* p )

A(8 ~D* K* )

(13)

B(B ~D*(2010)+sr ) =(3.3+I'o) X 10

B(B ~D*(2010)+p ) =(8+4)X 10

B(B ~D'(2010) n ) =(3+4)X 10

8(B ~D p )=(2.1+1.2)X10

B(B ~D+p )=(2.2+1.5)X10

(14a)

(14b)

(14c)

(14d)

(14e)

Two-body decays of the type B~DD arise from weak
Hamiltonians with flavor quantum numbers (bc)(cs) for
the Cabibbo-allowed decays and (bc )(cd ) for the
Cabibbo-suppressed decays. These Hamiltonians are
different components of the same antitriplet representa-
tion. So, as far as group theory is concerned, the decays
8 ~DD can be thought of as arising from an effective
Hamiltonian

For the Cabibbo-suppressed decays there are no isospin
relations. Table III indicates that there are several SU(3)
relations between the Cabibbo-allowed and the Cabibbo-
suppressed 8~DD decays [e.g., I (8 ~D oD )
=s, I'(8 ~D D, )]. The Cabibbo-suppressed 8~DD
decays also get contributions from terms in the effective
weak Hamiltonian that have no charm quarks. For ex-
ample, the operator (bu )(ud) which transforms under
SU(3) as 36615 contributes to the Cabibbo-suppressed
B—+DD decays and if s3 is near its experimental limit,
this could alter the results in Table III.

The same Hamiltonians which give rise to the decays
8 ~DD also cause the decays 8 +J/g—M. Since there is
only one way to combine the product of a triplet, anti-
triplet, and octet representations (J/P transforms as a
singlet) into a singlet, these decays are characterized by a
single reduced matrix element. SU(3) predictions for
these decays are presented in Table IV. The contribu-
tions of operators without charm quarks [e.g. , (bu )(ud )]
to the Cabibbo-suppressed decays 8~J/gM are negligi-
ble because they violate the Okubo-Zweig-Iizuka (OZI)
rule. For the Cabibbo-allowed decays the relation

r(8' J/qK'') = r(8 J/q K— )-
H, s =a(B;H')(D D J)+f3(B;D ')(HJD/),

where for the Cabibbo-allowed decays

00= 0
.1.

(15)

(16a)

is a consequence of isospin invariance. It has previously
been noted that a comparison of branching ratios for
these modes would determine the ratio of B and B life-
times. At the present time it is known that
0.4& ~ 0/~ &2.1. One of the relevant branching ratios
has been measured: ' '

and for the Cabibbo-suppressed decays

08= si
0

(16b)

8 (8 —+J/Q K ) = ( 8.0+2.g ) X 10

For the Cabibbo-suppressed decays the relation

r(8' J/q ~') = ,'(8-
(19)

(20)

Table III presents results for decays B—+DD which fol-
low from Eq. (15). Some of the relations that follow from
Table III are just consequences of SU(2)-isospin symme-
try. They are, for the Cabibbo-allowed decays'

is also a consequence of isospin invariance.
The results of Table IV generalize trivially to other cc

resonances and also to decays 8~J/g V, where V is a
1 p or K* meson. There is also some experimental in-
formation on these decays: '"

I (8 D D, )=I (8 D+D, ),
r(8,' D'D ')= r(8,' D+D ). -

(17a)

(17b)
8(8 ~$(2S)K ) =(2.2+1.7) X 10

8(8 JINK '(892) )=(3.7+1.3)X10

(21a)

(21b)

TABLE III. Rates for B-meson decays of the type B~DD in

terms of the two reduced matrix elements a and P.

We consider next the SU(3) relations between the decay
amplitudes which can arise from the b —+u 8' weak cou-

Process

B ~D+D,
B D D
B D+D
B ~D,+D,
B ~DD,
B ~DD
B, D D
B, ~D+D

Rate

lpl'
S 0,'

s', la+)33l'
Si 0!

s2
I
pl'

l~+fJI'
s2lpl'

Process Rate

B ~J/gK
B ~J/Q~
B ~J/$7)

B ~J/QK
B ~J/Qsr
B,~J/Ptl
B, ~J/gK

1

S I /2
$1/6

1

$2
l

2
3

s 2

TABLE IV. SU(3) predictions for rates for B~J/PM nor-
malized to the decay rate for B ~J/fK
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pling. For final states without charm, the effective Ham-
iltonian has the flavor quantum numbers of the operator
(bu)(ud) which transforms as 1563. Explicitly, the
decomposition of (bu )(ud ) into operators that are in irre-
ducible SU(3) representations is

(bu )(ud ) =—'0(—
]5)+—'0(6) ——'0(3) + 0(3) 7

where

0(—,5) =3(bu )(ud )+3(bd )(uu )—2(bd )(dd )

(bs )—(sd )
—(bd )(ss ),

(22)

(23a)

0(&) =(bu )(ud )
—(bd )(uu ) (bs—)(sd )+(bd )(ss), (23b)

0(3) = (bd )(uu )+ (bd )(dd )+ (bd )(ss ),
0(3) = (bu )(ud )+(bd )(dd )+ (bs )(sd ) .

(23c)

(23d)

In Eqs. (22) and (23) the subscripts on the operators
denote the irreducible representation of SU(3) to which
they belong. As far as group-theory factors are con-
cerned we can take, as the effective Hamiltonian for B-
meson decays B~MM,

H.,= A(-, )B,H(3)'(M,"Ml )+C(-,)B,M,'MkH(3)J

+ A
(
—
]5)B,H (15)kM'Ml" +C( ]5)B,M'H—(15)J("Mk

+ A(b)B;H(6)kM'M, " .

In Eq. (24) H(3) is a vector with nonzero component

(24)

H(3) =1.

The parameters A(3) C(3) A(]5) C(]5) and A(6) are the
reduced matrix elements in terms of which the B—+MM
decay amplitudes are expressed. Note that since

B,H (6)'kJMJIM!k+B, Ml'H(6)'kJMJk=o, (25)

H(15) is a traceless three-index tensor that is symmetric
on its upper indices and has nonzero components

H(15)12 3 H(15)21 3 H(15)22

H(15)3 = —1, H(15)3 = —1 .

Finally, in Eq. (24), H (6) is a traceless three-index tensor
that is antisymmetric on its upper indices and has
nonzero components

H(6)1 =1, H(6)1'= —1, H(6)3 = —1,
H(6) =1

TABLE V. SU(3) predictions for decays B—+MM that do not
change strangeness.

Process

8 ++m.

8 ~mm
8
80 0~

8 KK
8 ~K+K
8 mm

8 ~pm.
B —+K K
8, K++
80~K0~0

S

B, K q

Rate

l 2 A (3) +C(3) + A (]5) +3C( —,5)
—A (6) l

2 l (3) (3) (15) (15) (6)l
—, I

2 A (3) 3 (3) (]5) (]5)+ A (.)l

l2A(3)+ C(3) 3A(]5)+ A(6) l'

l2A(3) +2A
32l C(—„)I'

—' l2C(3)+6A( —„)+6C(—„)+2A(6) l

C(3)+ 3 A( —„)—C(—„)+A(6)l2

C(3) + A (]5)+5C(„)+ A (6) l

C(3)+A(]5)+5C(]5)+A(6)

sis3 3 — e sis2 3
i5C(3)S]S3M(3)es&S2(3)

(27a)

(27b)

it is A (3) and C'(3) that characterize these contributions,
since the penguin-type diagrams only give rise to terms
that transform as a 3 in the effective Hamiltonian of Eq.
(24). The contribution of penguin-type Feynman dia-
grams is probably suppressed by [a,(mb)/2r], so unless
($3 /$2 ) is very small (a prospect that is unlikely if the
standard six-quark model is to describe the CP violation
observed in kaon decays)' A (3) and C'(3) are unimpor-

B—+MM decay rates in Table V. The effective Hamil-
tonian has both I =

—,
' and I =

—,
' pieces. The I =

—,
' piece

arises solely from the operator 0(—,5). In the decays
B~em. the two-pion final state is a linear combination of
I=O and I=2 states. The I=2 state can only be reached
through the I =—', part of the effective Hamiltonian while
the I=O state gets contributions from both the I =

—,
' and

I =
—,
' parts. Since the ~ m. state is charged it is pure

I=2, consequently the rate for B ~m. m originates
only from the matrix element of 0(»).

There are contributions to the decays B—+MM listed
in Table V, which survive in the limit s3~0 (where the
b ~u W coupling is absent). They come from penguin-
type Feynman diagrams with a charm or top quark in the
loop (see Fig. 1). Writing

there is only one reduced matrix element, A (6)
parametrizing the contribution of the part of the Harnil-
tonian that transforms as a 6.

Table V summarizes the SU(3) predictions that follow
from expanding the effective Hamiltonian in Eq. (24).
There is only one simple relation

c,t

JEAN

A(B, K ~)
A (B, ~I(: 2(1)

3. (26)

There are no simple isospin relations between the
FIG. 1. Penguin-type Feynman diagram contributing to

8~MM decays.
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tant for the 8~MM decays in Table V. However, if we
examine B~MM decays that change strangeness by one
unit, the situation is quite different. Here the penguin-
type diagrams are again suppressed by a, (mb)lnb. ut
they are enhanced [over operators such as (bu)(us)] by
the ratio of weak mixing angles

(s 2 +s 3 +2s2szcs )
(28)

S]$3

These decays may be dominated by the penguin-type dia-
grams with a charm or top quark in the loop. Assuming
this is the case we can use, as far as group-theory factors
are concerned, the following effective Hamiltonian to de-
scribe the As = —1 B—+MM decays:

(bu )(cs ) =O(3) +0—

where

(32)

are also consequences of isospin symmetry. The (bu )(us )

operator has both I=O and I=1 pieces. Verifying some
of the above isospin relations would provide strong evi-
dence that penguin-type diagrams dominate the As = —1

B~MM decays.
The b ~u 8 coupling also causes hb = —1, Ac = —1

decays B~DM. To leading order in weak mixing angles
the effective Hamiltonian for such decays has the Aavor

quantum numbers of (bu)(cs). Under SU(3) this opera-
tor transforms as 3+6. Explicitly, the decomposition in
terms of operators in irreducible representations is

H, tr= (s2—e' +ss)[A
( 3)(B, H( 3)')(M("M/)

+C'(3)B;MkM "H(3)~]., (29)

O(3) =
—,
' [(bu )(cs )

—(bs )(cu )],
0(&)

=
—,([(bu )(cs)+(bs)(cu )] .

(33a)

(33b)

where now the nonzero component of H (3) is

H(3) =1 . (30)

As far as group-theory factors are concerned we can take
as the effective Hamiltonian for the hb = —1, Ac = —1,
decays B~DM:

Table VI gives the SU(3) predictions that follow from
Eqs. (29) and (30). Note that since A I3) only effects the

B, decays, the ratios of the various hs = —1 B ~MM
and B ~MM decay rates are determined by SU(3).

Our assumption that penguin-type diagrams dominate
the b,s = —1 B~MM decays implies that the effective
Hamiltonian is I=O. Since there is only one way to com-
bine two I =

—,
' states into an I=1 state, all the relations

between B—+Em decays in Table VI are consequences of
isospin. Similar isospin relations hold for decays of the
type B—+Kp, B—+K m, and B—+K*p. The relations

H(6)' =1, H(6) '=1 (35)

and H(3) is a two-index antisymmetric tensor with
nonzero components:

H(3)' =1 H(3) '= —1 (36)

H, (r= a —D;H(6)'JBkM" +p —B,H. (6)'JDkM"

+a(3)D;H(3) JBkM"+p(3)B;H(3)'JDkM" . (34)

Here H(6) is a two-index symmetric tensor with nonzero
components,

I (B K 3))=I (B K 3)),
I (B, K+K )=I (B K K )

I (B, n n )= ,'I (B, vr+m —)

(31a)

(31b)

(31c) I (B, D 3r+)=21 (B, D 3r ),
I (Bo D, n+)=2I (B .D, m )

(37a)

(37b)

Table VII shows the results which follow from the
effective Hamiltonian in Eq. (34). There are two simple
relations

TABLE VI. SU(3) predictions for B~MM decays that
change strangeness. Here it is assumed that penguin-type dia-
grams with a charm quark or top quark in the loop dominate.
Entries in the second column should be multiplied by
lsze' +s,

I
if compared with Table V using Eq. (27).

and they are a consequence of isospin invariance.
There is a small dynamical enhancement of the Wilson

coefficient of O(3) over that of 0~6~ coming from pertur-

Process Rate (divided by ls3e' +s, l )
TABLE VII. SU(3) predictions for decays B~DM.

B ~a+K
BO OK 0

B K g
B K
B —+E
B —+K m

B,~K+K
B,0~K0K'
B, me

B, n.

12~ (3)+ (3)l

Process

B ~DE
B ~D, g

B D K
B ~D, ~
B0~D'E '
B ~D, m+

BO D0 0
S

B D K+

B,~D

Rate

I a(-,)+a(3)+P(6)+P(3) I

—,
' la(-, )

—a(3) 2P(6) 2P(3)l

IP(6) +P(3) I

I a(;)+a(3) I'

I a(;)—a(3)l'

3 IP(6) P(3)l

la(,-)—a(3)+P(-, )

—P(3) I'

&a(6) &a—(3) P(6—) P(3) I'

IP(6) P(3) I
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f
A (8 D K )

f

=
f
A (8 D, ~+)f . (38)

Of course, generalizations of the results of Table VII to
decays B—+D *M, B~D V, and B—+D *V hold.

III. THREE-BODY DECAYS

The three-body decays, 8 —+J/g MM, can have the rel-
ative orbital angular momentum L of the two M mesons
be either even or odd. For the case L even we can take,
as far as group-theory factors are concerned,

bative QCD corrections. In the effective Hamiltonian for
Ab = —1, Ac = —1 decays the ratio of Wilson coefficients
for O(3) and 0~6~ is' [a, (mz)/a, (m~)]" '=1.5. If ei-
ther the matrix elements of O(3) or 0~6~ dominate the
B—+DM decays, then Table VII indicates that there
would be some SU(3) relations. For example, either 3 or
6 dominances implies that

change of the SU(3) quantum numbers of the two M
me sons. Only the second term in Eq. (39) can be
antisymmetrized and so the rates for 8 —+J/
f(MM)L —

$ 3 are determined in terms of a single re-
duced matrix element. Table IX presents the relative
8~J/P MM decay rates for odd L. With L odd the am-
plitudes for 8 ~J/gm rj and 8 ~J/gm. rj vanish by
SU(3) symmetry and therefore these processes do not ap-
pear in Table IX.

The Cabibbo-allowed 8 ~J/gMM decays arise from
an effective Hamiltonian that is an isosinglet. There are
several isospin relations among the Cabibbo-allowed de-
cays that hold independent of L. They are

1 (8 ~J/P rr+K ) = I (8 —+J/gm K )

=2I (8 ~J/Qrr K )

=2I (8 J/Qm K ), (41a)

H,fr=[F(B;H')(MJMk)+6(B;MI'MkH")](J/Q), (39)

as the effective Hamiltonian [Lorentz indices are
suppressed in Eq. (39)]. In Eq. (39),

r

0
H= s) (40)

and

I (Bo J/y qK'o) = r(8 J/g—
qK ), -

I'(8, J/PK K ) =I (8, J//K+K ),

,' I (8, J—/g~+m ) = I (8, J/g no~o) . .

(41b)

(41c)

(41d)

Table VIII presents the results that follow from the
effective Hamiltonian in Eq. (39). For the case L odd, the
effective Hamiltonian must change sign under inter-

In the case 8, +J/gm. m [Eq—. (4ld)] isospin invariance
forces the two pions to be in an even L state. The
effective Hamiltonian for Cabibbo-suppressed B~J/
PMM decays is I =

—,'. Again, there are isospin relations
which are L independent. They are

TABLE VIII. SU(3) predictions for decays 8 ~J/gMM,
when the relative angular momentum of the two pseudoscalar
mesons is even.

I (8 +J/gm. g—)=—,'I (8 ~J/Pm rj),
I (8, ~J/gK n )= ,'I (8, ~J/P—K+n ) .

Some isospin relations that hold only for L even are

(42a)

(42b)

Process

8 ~J//A+K
8 ~J/Qm K
8 ~J/QgK
8 +J/gm+vr—
8 ~J/Qn vr

8 ~J/rPt)g
8 —+J/Qm. g

8 ~J//K+K
8o J/g KoK 0

8 ~J/Q n~K

8 ~J/Q qK
8 ~J/Qrr K
8 ~J/tb rr

8 +J/Q K K—
8, J/Qm m'

Bo~J/g pre

8, J/fK K
Bo~J//K+K
8, ~J/f m+m

Bo~J/Q K+m

8, ~J/QK m

8, ~J/QK rl

Rate

", I2F+ GI'
—'s' f2F+Gf'

—,'s', f2F+ —,'Gf'
1s2 fgf2
s' f2Ff

s', 12F+Gl'

—s fgf
s' fgl'
—,
' f2Ff'

—,
' I2F+ —,

' GI'
2F+ GI'
2F+gf'

12FI'
s' fgf'
1s2fgf2
—'s fgf'

Process

80-J/y ~+K—
8'-J/y ~'K '
8 ~J/fgK
8 ~J/Qm+m'
8 ~J/QK K
8 ~J/P nK.
8 ~J/Qn K
8 —+J/Q gK
8 ~J/Q vr m'

8 ~J/QK K
8, ~J//K+K
8, J/QK K
80~J/Q K+vr
B,~J/fK q
B,o~J/QK vr

Rate

1
1

2
3
2

$2

$2
1

2

1
3
2

2$
$2

1

1
$2

1

3 2
2S1
1 2
2S1

TABLE IX. SU(3) predictions for decays 8~J/g MM,
when the relative orbital angular momentum of the two pseu-
doscalar mesons is odd. Rates are normalized to th, at for
8 ~J/Q a+ K
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I (8 J/g(m n )L pz )=0 . (43b)

There are also SU(3) relations between the Cabibbo-
allowed and Cabibbo-suppressed decay amplitudes that
are I. independent. For example, two such relations are

s[IA (8 J/$7r K )I =I A (8 J/I/JK K )I

(44a)

s) I
A (8 J/@rrK )I =

I
A (8, J/PK+n )I

(44b)

All the L-odd B~J/gMM decays are related by
SU(3)-fiavor symmetry. However, there is an important
source of SU(3) violation for resonant MM pairs. There
is significant mixing between the lowest-lying SU(3)-
singlet and -octet 1 mesons resulting in the P and w

mass eigenstates with Savor quantum numbers ss and
(1/&2)(uu+dd), respectively. This occurs not because
of an anomalously large SU(3)-violating mass mixing ele-
ment, but rather because of the near degeneracy of the
SU(3)-singlet and -octet states. Nonetheless, because the
decay of the w to KE is kinematically forbidden, this
mass mixing can result in large violations of our SU(3)
predictions for decays 8~Jlf(MM)I, when the MM
pair is resonant.

Next we consider the implications of SU(3) symmetry
for decays B~DMM. As was noted in Sec. II, the
effective Hamiltonian for these decays transforms as an
octet under fiavor SU(3). Again, we shall separately treat
the cases where the relative orbital angular momentum I.
of the MM pair is even and odd. As far as group-theory
factors are concerned, when I. is even we can take, as our
effective Hamiltonian,

aB MiMkIIJD 3+gB MiMJ~kD I

+CB;H'M M"D '+d(B;M'D J)(M"H')

+e(B;HJD ~)(M)"Mk)+f (8;D ')(MI, MI"H,') .

(45)

In Eq. (45) H' are elements of the 3 X 3 matrix (upper in-

dex labeling rows and lower index labeling columns)

0 0 0
H= 1 0 0 (46)

—s) 0 0

Table X presents the results that follow from this
effective Hamiltonian for the Cabibbo-allowed decays.
Under isospin the efFective Hamiltonian for the Cabibbo-
allowed decays is I=1. When two pions possessing a net
charge are in an even partial wave they form an I=2
state. This implies the isospin relation

,'r(8
- D+~-~-) = I (8 - DP(~-~P), „

=I (8 ~D +(7T7T )I —p p'

r(BP J/q~'~') = ,'I -(8' J/y(~+~ ),-„),
(43a)

The first process that appears in Eq. (47) has been ob-
served. Experimentally,

8(8 ~D+rr n).=(2.5+q ~) X10 (48)

Since the amplitudes with I. odd do not interfere with
those with L, even, we conclude that

4I (8 D ~ rr )&I (8 D+m rr ),
4I(B' D m ~ )&I(8 D m m. ).

(49a)

(49b)

Of course, the results in Table X generalize to decays
involving a D* instead of a D. Experimentally, *

B(B ~D'(2010)+n m )=(2.5+,'3) X 10

B(B ~D*(2010)+m m )=(1.5+1.1)X10

(50a)

(50b)

I
2 (8 ~D&+(7T K )I —p 2 )

=-,'la(8 D+~ —~ )I', -
(51b)

TABLE X. Implications of SU(3) symmetry for Cabibbo-
allowed decays B~DMM, where the relative angular momen-
tum of the M mesons is even.

Process

BO~ DO~OS

B D gr]
B ~D gm.

B ~D m. +m

B DKE
B' D'E+E-
B ~D+qm
B —+D+m m

B ~D+K E
B ~D+K m

B ~D,+K

B ~D,+K
B Dm~
B ~D gm

B ~DE E
B ~D+a m'

B ~D,+m K
Bo DoE +~-
B,~D K 7T

B,~DKg
B, ~D+K m

B,—+D,+ger

B, ~D,+K K

Rate

—' I2e +c +b —al

2 I 2e + —,
' c + ,

' b + —,
' aI—

1lc b2

12e+d+c+bl'
I2e+bl'
I2e +cl'

6 I2f +d +2c +al'
—,
' ld +al'
If+el'
Id+el'

—,
' lc —al'

—,
' lc —al'

—,
' ld+al'

—,
' l2f +d +2b+al'

if+bi'
—,'12d +2a I'

Id +al'
Id+bi'

ld+al'

If +al'

which is consistent with the generalization of Eq. (49b)
and indicates that the B ~D *+m. ~ rate is dominated
by I.odd.

There are also some SU(3) relations between the
Cabibbo-allowed amplitudes with I. even. They are

I
A (8 D+(K W )I —p 2 )I

=3I(8' D,'(K g)g=p, ~)l',
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IA(Bp~D+(I:p~ ), =p, 2, . .).I'

=-,'IA(B- D+~ ~ )I', (51c)

TABLE XII. Implications of SU(3) symmetry for Cabibbo-
suppressed 8 ~DMM decays when the relative angular momen-
tum of the M mesons is even.

I A(B ~D (E g)L —p2 )I

=
—,
'

I
A (B, ~D (K 77 )I, =p, 2, . . . ) I (51d)

For the case L odd, the effective Hamiltonian must be
antisymmetric under interchange of the Aavor quantum
numbers of the M mesons. For example, an antisym-
metric version the term proportional to a in Eq. (45) is

(t)"B,)[(t)„M')M,"—M'(B„M,")]D '0„. (52)

Only the term proportional to the reduced matrix ele-
ment e has no antisymmetric analog. So the B~DMM
decay amplitudes with L odd are parametrized by five re-
duced matrix elements which we denote by a', b', c', d',
and f'. Table XI presents the implications of the SU(3)-
Aavor symmetry of the strong interactions for the
Cabibbo-allowed decays B +D (MM—)L, 3 . There are
several SU(3) relations. For example,

IA(B ~D'(g~ )g=J 3, )I'

=-,'IA(B ~D, (m K )g=), 3, )I'. (53)

Tables XII and XIII present the, predictions of SU(3)-
flavor symmetry for the Cabibbo-suppressed 8 —+DMM
decays with L even and L odd, respectively. Since the
Harniltonian for the Cabibbo-suppressed decays is part of
the same octet as the Hamiltonian for the Cabibbo-

Process

Bo~a+~oK-
BO~D+~-K'
8 —+D+qK
BO~DO~+K—
8 ~D,+K K
80 DO 0K 0

BO-DORK 0

8 ~D mK
8 ~am K
8 ~D qK

8 ~a+ n K
8 ~D,+K K
80 a+ 0K—

80 DO 0 0
S

B, ~D gq
B,O~DO~+~-
8 DKK
8, —+D K+K
8,''-D K'K-

8, ~D qm.

Rate (divided by s& )

—,
' lf —dl'

If +a['
1[ f+d[2

Id+bi'
Id +al'

—,
'

I

—b+ a['
b+—al'

—,
'

If +d +b+a['
If+bi'

f +d —b+a—
l

f1+a['
2ld +a['
,' If +cl'—
If +cl'

—,'[f +2d +c+2al'
—,
' [2e+c['

—,
' l2e+c/3+4b/3 —Za/3I'

I2e+cl'
[2e+bl'

[2e +d +c +bl
ld +cl'

—,
'

I

—a+el'
—', lc —al'

TABLE XI. Implications of SU(3) symmetry for Cabibbo-
allowed decays B~DMM, where the relative orbital angular
momentum of the M mesons is odd. Rates are expressed in
terms of five reduced matrix elements a', b', c', d', and f'.

TABLE XIII. Implications of SU(3) symmetry for Cabibbo-
suppressed decays 8 ~DMM, where the relative orbital angular
momentum of the M mesons is odd. Rates are expressed in
terms of the same five reduced matrix elements (a', b', c', d',
and f') as the Cabibbo-allowed case.

Process

8 Dpm
8 ~D m. +n.
BO~DOKOK '
8 ~a K+K
8 D+gm
B ~D+m
BO~D+K-K'

8 ~D,+K m

8 ~D,+K
8 Dam
8 ~D gm

8 ~DK K
8 —+D,+~ K
8,'-D'K--
8, DK~
8~DKq

B, ~D+K n
8, D,+pm

8, —+D,+K K
8, ~D+m m.

Rate

1 a&2
3

ld' c'+b'I'—
Ic'I'

-'ld'+ a'I'
6

2f'+ d' 2c'+ a' I'— —
If'+c'I'
ld' —c'I'

—,
'

[
—c'+a'I'

—,
' [3c'+a'I'

—'[2f'+d'+2b' —a'
f

lf +b'I'
la' —a'I'
ld'+ b'I'

b'+ a'f'—
—,
' [3b'+ a'I'
fd'+a'I'

If' a'I'—
2[f'I'

Process

8 ~D+m K
80~a+~-K'
8 ~D+qK
BO~DO~+K—
8 ~D,+K K
BO~DO~OK '
8 D r)K

8 ~D vrK
8 ~D m. K
8 —+D gK

8, D,+n K

8, ~D m. +m.

8, DKK
B,~D K+K
BO~D+KOK—

8, Dpm
8 ~D
8, D+qm

Rate (divided by s& )

—,
' lf' —d'I'
lf' —a'I'

—[3f'+d I'

ld'+b'I'
fd'+a'I'

—' lb'+a'I
2

—,
' [3b' —a'I'

& If +d +b a I'—
lf+b I'

613f'+ d'+3b' —a'I'

,' lf'+c'I'—
If'+c'I'

6 [3f'—2d'+3c' —2a'I'
I
c' I'

Ib'I'
I

d' c'+ O'
I

ld' —c'I'
—'a''
2[c'I'
' fa'[2
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allowed decays, we can express the Cabibbo-suppressed
decay rates in terms of the same reduced matrix elements
as were used for the Cabibbo-allowed decays. An inspec-
tion of Tables X—XIII reveals that there are simple SU(3)
relations between the Cabibbo-allowed decays and the
Cabibbo-suppressed decays which hold independent of
the value of L. They are

tion of operators such as (bu )(ud ), which arise from the
beau@' coupling and transform as 3615. Since the
15 representation contains an I=—,

' piece, isospin rela-
tions for the Cabibbo-suppressed modes which follow
from the I =

—,
' Hamiltonian in Eq. (55) are useful for test-

ing the dominance of the operators with charm quarks.
Table XV contains two isospin relations,

Iw(Bo~D+~ K')I'=s'Iw(Bo~D+K Ko)I', (s4a)

I
w (8'~D,+K 'K )I-'=s',

I w (8,'~D+K'~-) I', (54b)

I (8 D, D,+n. )=21 (8 D, D,+m ),
r(B, ~D,+D n. )=2r(B, ~D,+D ~ ) .

(56a)

(56b)

IA(B ~D,+K K )I =s IA(8 ~D n m )I

(54c)

Iw(8-~D'~-K')I'=s'Iw(8-~D'K K')I' (54d)

Figure 2 shows quark-line diagrams which illustrate how
the two operators (bc)(cd) and (bu )(ud) can contribute
to the decay 8, ~D,+D m

For the Cabibbo-allowed decays, the effective Hamil-
tonian transforms as an isosinglet. The following rela-
tions in Table XIV follow from isospin symmetry:

21 ~ (B,o-D,+~'K )I'=s' -I ~ (8'-D+K K') I'-
(54e)

Ig(8 ~D K~K )I =s IA(B ~D K K )I (54g)

I
A (8, D K+K )I =s,

I
A (8 D 7T 7T )I, (54h)

r(8 —+D D K )=I(8 D+D K )

r(8' DoD'K')=r(8- D+D-K -),
2r(8 ~D, D m )=I (8 ~D D, n. +)

=I (8 ~D, D+m )

2r(Bo D+D o)—
r(8 ~D,+D, K )=I (Bo~D,+D, K'),

(57a)

(57b)

(57c)

(57d)

I&(8,'~D'K'K )I'=s)
I
&(8' D,'K'~ )I' (s4)

where

0
H= si

1

(55b)

Tables XIV and XV present the predictions that follow
from the Hamiltonian for Cabibbo-allowed and Cabibbo-
suppressed decays, respectively. Cautionary remarks,
similar to those given in the case of B~DMM decays,
concerning possible large SU(3) violations induced from
resonance efFects also apply here.

Recall that for the Cabibbo-suppressed decays the
effective Hamiltonian in Eq. (55) neglects the contribu-

There are important sources of SU(3) violation in the
decays B—+DMM which can occur when two of the
Anal-state particles arise from the decay of a resonance.
In addition to the consequences of the mixing of the
SU(3)-singlet and SU(3)-octet I vector mesons men-
tioned earlier, large SU(3) violations can arise because the
D* can decay to D~ while the D,* is kinematically for-
bidden from decaying to D, m. or DK.

Finally, we consider the three-body decays B~DDM.
As far as group-theory factors are concerned we can take
as the efFective Hamiltonian for these processes

H,tr=q, (B;H')(DgM("D ')+g2(B;D ')(DkM("H')

+g~(B;Mt'D ')(DkH")+g4(B;M/H')(D "Dk ),
(55a)

Process Rate

B ~DDK
B —+D+D K
B —+DD K
B ~DD, g
B-~DOD, ~o

B ~D,+D, K
B ~D, D+m
B —+D D+K
B ~D+D K
B ~D+D, g
B ~DD, m+

B ~D+D m'

BO—+D,+D, K
B~DDK
BO DOD 0 0

B DDg
B, D D+m

B, —+D D,+K
B,O~D -DO~+

B,—+D+D
B, D+D

B, ~D D,+K
B, ~D, D K+

In2+n41'

—,
'

I

—2g +g&l'

lg~+g41'

I n&+ @41'

—,
'

I

—2gz+ qp I'

I gg+n41'

—,
'

lni —~n41'

Ini+n21'

—,
'

lni —&n41'

lni+n21'
lni+ n~l'
lni+ ngl'

-',
I ni+ n2+ n~+ n41'

TABLE XIV. Implications of Aavor SU(3) for Cabibbo-
allowed decays B~DDM assuming the effective Hamiltonian
transforms as a 3.
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TABLE XV. Implications of flavor SU(3) for Cabibbo-
suppressed decays B~DDM. The effective Hamiltonian is as-
sumed to transform as a 3. Entries in the second column should
be multiplied by s

&
when comparing with the results of Table

XIV.

Process

8 ~DDa
B ~DD
8 —+D+D
8 ~DD
8 ~DD, K
8 ~D,+D K
8 —+D,+D, m

80~D0D o~o

BO~DDD0

B —&D D ~+
B~DD, K
8 ~D+D m.

8 ~D+D
8 —+D+D

80~D-D,+K '
8 ~D, DK+
8 ~D, D+K
8 ~D,+D, vr

8 ~D,+D, g
80~D,+D o~-

8, ~D,+D

8, ~D,+D, K
8 —+D D K+
8, ~D+D K
8, —+DD K

Rate (divided by s&)

In~+a. l'
—,
'

I

—nz+ n31'

I n3+n41'
—,
'

Iq, +q, l'

+n4I'-
ivi+~31'

lni+nzl'
,' I n&+ n—2+93+ 941'

—, I q, +g2+ 93+ 941

lni+n31'

lni+g21'
,' I
n4I'—

—,
'

I

—zg +g.l'

I
n2+n41'

1~3+741'

Bo)

D

ADO

'C

( D+
S

Flax. 2. Quark-line diagrams illustrating how the two opera-
tors (bc )(cd ) and (bu )(ud ) (denoted by shaded squares) contrib-
ute to the decay 8, ~D,+D m

r(B,' D'D+~ )-= r(B,' D D-'~+)

=2r(B,'~D'D '~')

=2r(B,' D+D -~'),
r(B D, D K+)=I (B, D, D+K ),
r(B, D D,+K )=I (B, D D,+K ),
r(Bo D+D rj)=I (B, D D t)) .

(57e)

(57f)

(57g)

Comparison of Tables XIV and XV reveals that there
are many simple SU(3) relations between the Cabibbo-
allowed and the Cabibbo-suppressed B~DDM decays.
Some of them are

I
A (B ~D D, K )I =s]

I
A (B ~D D K )I (58a)

I
~ (B D+D K )I'=-s'-I ~ (B

- D;D+~- ) I'

(58b)

I~(B--D,+D, ~ )I'=",1~(B'-D'D'Ko)1', (58.)

la(B ~D+D ~ )I'=s'IW-(B D+D -K )I'--
(58d)

IV. CONCLUSIONS

The smallness of the up-, down-, and strange-quark
masses compared with the QCD scale implies that the
strong-interaction Lagrangian possesses an approximate
SU(3 )L X SU(3 )z symmetry. This chiral symmetry is
spontaneously broken to a vectorlike SU(3)-liavor sym-
metry by the vacuum expectation value of quark bilin-
ears. The smallness of the pion mass, compared with the
kaon mass, indicates that the up- and down-quark masses
are much smaller than the strange-quark mass. This is
why the SU(2) isospin subgroup is a much better symme-
try than the full SU(3)-flavor group. In this paper we
have used the transformation properties of the weak
Hamiltonian for nonleptonic B-meson decays to derive
SU(3) relations among many of the possible two- and
three-body B-meson decays. Since the SU(2)-isospin sym-
metry works much better than the full SU(3) we have em-
phasized which of our predictions follow from isospin.
The isospin relations provide useful tools for discerning
the importance of various competing effects that can
occur in nonleptonic B-meson decays.

It is possible to include, in a phenomenological fashion,
some SU(3)-breaking effects and hence improve upon the
results of this paper. For example, in Sec. II it was noted
that generalizing the predictions for B~DM to B~DV,
where Vis one of the low-lying 1 mesons is not straight-
forward because of mixing of the SU(3)-octet state
I V8 ) =( I/&6)( luu ) + ldd ) —2lss ) ) with the SU(3) sing-
let

I V, ) =(1/&3)(
I
uu ) + ldd ) + lss ) ). The mass eigen-

states 1$) = lss ) and Iw ) =(1/&2)(luu ) + ldd ) ) are
linear combinations of I V8 ) and

I V, ). Explicitly,
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—(l~ &
—&21(t &),s (59a)

decays factorize. This provides a pattern of SU(3) break-
ing that might be used to improve some of our results.
For example, factorization suggests that

lv, &= -(&2l~&+l(()&) .1 (59b)

As far as group theory is concerned we can take as our
effective Hamiltonian for the decays B~DV:

H, tt= a '(8;D ')( Vt Hk ) + b '(8; Vk HJ D 1 )

+c'(8;Hk V D J)+e'(8;H'D J)V, , (6&)

where V" are elements of the 3 X 3 matrix (the upper in-
dex labels rows and the lower index columns)

0

v'2 v'6
—+

0
P + 8

&z
—&2/3 Vs

(61)

and Hk given by Eq. (5a) for the Cabibbo-allowed decays
and Eq. (Sb) for the Cabibbo-suppressed decays. The am-
plitude A (8 +D P) is exp—ected to be very small since
the decay 8 +D P i—s forbidden by the Okubo-Zweig-
Iizuka (OZI) rule. Setting this amplitude to zero implies
the relation

b'+c'e'=
v'3 (62)

between reduced matrix elements. So the B~DV decay
amplitudes are expressible in terms of the three reduced
matrix elements: a', b', and c'. Using these expressions
we find that the generalization of Eq. (10) is

l
A (8' D')")l'+

l
A (8' D'w) l'

=lA(8 D+K* )l +lA(B, ~D K* )l

(63)

In the large-X, limit matrix elements for nonleptonic B

A(B ~D K )

A(8 ~D rr )
S) (64)
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would be an improvement over Eq. (11).
In this paper we have focused on SU(3) predictions for

nonleptonic B-meson decays to final states with mesons.
It is also possible to consider SU(3) predictions for 8
meson decays to final states involving baryons. For ex-
ample, there may be SU(3) relations between the
Cabibbo-allowed and the Cabibbo-suppressed decays
B—+DNN, where N denotes a member of the lowest-lying
baryon octet (consisting of the nucleons and hyperons).
It is also possible to consider the consequences of SU(3)-
Aavor symmetry for semileptonic B-meson decays. For
example, since the e6'ective Hamiltonian for Ac = 1

8 +Dev, —decays is an SU(3) singlet, it follows that

f'(8 ~D+ev, )=I'(8 D eV, )=l (8, ~D,+ev, ) .

(65)
The first equality in Eq. (65) follows from isospin. For
semileptonic decays B~Me v, that do not change
charm, the effective Hamiltonian transforms as an anti-
triplet. Since there is only one way to combine the prod-
uct of a triplet, an antitriplet, and an octet into a singlet,
these decays are also related by SU(3)-flavor symmetry.
In this case,

I (8 ~m. +ev, )=2I (8 -+m. ev, )=1(8,~K+ev, )

=6I (8 ~r)ev, ) .

(66)
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