
PHYSICAL REVIEW D VOLUME 39, NUMBER 1 1 JANUARY 1989

Resonant pair production in strong electric fields
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We show that strong classical electric fields with certain kinds of space-time variation can create
e+e pairs which are strongly resonant in energy and momentum. These resonance eA'ects are
peculiar to spin —,', and are allowed because of the unconventional structure of a "unitarity" relation

governing the pair-production process. This relation is a physical expression of the Klein paradox.
The general principles are illustrated with exact solutions of idealized examples.

This work was motivated by, but cannot (because of
idealizations) claim to explain the recent experimental re-
sults' on e+e production in heavy-nucleus collisions,
showing multiple resonances in the pairs, which are
characterized by equal scalar momenta (most likely oppo-
sitely directed), total pair energies of 1.6—1.8 MeV, and
rather narrow widths ( (40 keV). Theoretical explana-
tions have focused on (1) the decay of an elementary par-
ticle (e.g., the axion ), (2) a new QCD-like phase of
QED, and (3} interference effects among different ampli-
tudes. The first possibility is ruled out by the multiple-
resonance structure and by the negative results of axion
searches in e+e colliders. It is difficult for us to be-
lieve the second explanatiori because quantum-field-
theoretic effects such as vacuum polarization are
0(a ln(eE/M )} for electric fields E))E,—=M /e, so
these effects are —1 only when E=E,exp(a '). In-
terference eAects are very interesting but difficult to com-
pute. We will study here some special interference
e6'ects which in principle could lead to sharp resonances
in pair production, and illustrate them with soluble ex-
amples. The e6ects in question are closely related to the
Klein paradox.

The exactly soluble examples are highly idealized; in
particular, we can only deal analytically with time-
varying but space-independent electric fields (at the end
of the paper we comment on spatial-variation effects).
We cannot argue from our results that the heavy-nucleus
experiments are understood; nevertheless, the resonance
phenomenon itself is curious and interesting in its own
right, and worthy of discussion quite aside from the ex-
periments which motivated us to begin this work. A ma-
jor feature is that unitarity does not forbid the appear-
ance of a physical-region pole in the connected S-matrix
element for spin —, pair production (unitarity is restored
by disconnected graphs), and it is easy to find soluble ex-
amples with such poles. But we show that such poles, or
in general sharp resonances, are forbidden in spin-0 pair
production. Thus the coupling of the electric field to spin

is essential for resonance.
Another way of describing the efFect of spin is based on

the mathematical analogy between the Dirac equation in
a time-varying electric field and scattering off a potential
which varies in space, not time. There is a "unitarity" re-
lation for this analog scattering problem which relates
reAection and transmission coefficients R ', T' which refer
to reAection and transmission in time, not space; these
describe connected S-matrix elements. (Pair production
from the vacuum can be thought of as reAection of a posi-
tron in time and R' is the pair-production amplitude. )

This relation between R' and T' follows from charge
conservation; because the charge current is free of time
derivatives in the spin- —, case, there is an unexpected
change of sign and we find

instead of the usual unitarity relation

(2)

which holds for the scattering problem in space. The
strange "unitarity" relation (1) does not bound the mag-
nitudes of R ' and T' (which refer to connected ampli-
tudes), as does the normal relation (2), which holds for
spin-0 pair production. This is because the conserved
spin-0 current has one time derivative in its time com-
ponent. In the spin- —, case, physical unitarity is restored
by multiplying the connected S-matrix elements by a fac-
tor, as we now show.

The connected S-matrix element R'(psp's') for pro-
duction of a single e+e pair is simply the Fourier trans-
form of the connected electron propagator S~, :

R'(psp's')=2(coco') '~ f d x d y e't'"+'t' '

X u, (p )(gf —M)S~, (x,y)

X (gf'+M )v, ,(p') .
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The complete S-matrix element R (ps, p's') is defined as
in (3) by another propagator S„,which differs from S„,
by a factor related to connected vacuum graphs. The
connected propagator Sz obeys

(i 8 eA——M)S„,(x,y) =5(x —y)

or equivalently the integral equation

S~.=So+SoeAS„,

while the disconnected propagator S~ is defined by

(4)

(5)

in both of these equations A„(x) is a fixed c-number

gauge potential which we assume approaches a pure
gauge as IxoI ~ co. These propagators are related by

S„=e'~S~, , (7)

where 8'=TrlnS„, is the sum of connected vacuum
graphs; this is important for our case because S' has an
imaginary part, signifying instability of the vacuum.
Similarly, R and R' are related by R =exp(i8')R'. Thus
the probability of producing one pair is

—e
—2imii'y IR eI e 2imw—Pc

iSw, (x,y)= Xg((x)7$(y)8(xo yo)

—g Xk'(x)X t"(y)e(yo —xo),
where g. obeys the Dirac equation

(i8—eA —M)pi=0 . (13)

The label j distinguishes particle from antiparticle (at any
convenient fixed time, since a particle can evolve into an
antiparticle), and the sum in (12) goes over all other labels
(spin, momentum) necessary to identify a complete set of
solutions; when these labels are superAuous we omit
them. We choose the g to form a complete orthonormal
set; in particular,

X (Xi(x)rt(y)+X~(x)Xz(y) ]I. =, =&(x—y ), (14)

where time independence of the left-hand side (I.HS) is
guaranteed by current conservation. One could thus ex-
tract the connected amplitude R ' from solutions to the
homogeneous Dirac equation by using them to form the
propagator, as in (12). A more convenient approach is to
define other homogeneous solutions g of (13) via

f~'(x ) = f~o(x ) + e f d z So(x —z) g (z)Pt"(z) (15)

with the free solutions f~ given by the standard forms

.p — (pc )N
—2imw1

rV ~) 1 (9)

Under the assumption that the number of pairs produced
per unit volume is not large enough to lead to electron-
degeneracy eFects, the probability for producing N pairs
is

Us(p)e
Pfo(x) =

(2'�)

Vs (p)e +'~ '"
0$o(x) =

)
1/2

(16a)

(16b)

(valid also for N =0) and the constraint of unitarity is

1 =g P~ =exp( P; —2 Im W) (10)

so Im8'= —,'P', . An elementary calculation shows that
the average number ( N ) of produced pairs is just

( N &
=g NP~ =P; =g IR 'I' .

Unitarity provides no limit on (N ), and thus no limit on
the size of R'. Even a pole in R' in the physical region is
not forbidden by unitarity. Qf course, other physical
e6ects will prevent such a pole, notably the electromag-
netic current of the produced pairs which will modify 3„
so as to limit (N ). Accounting for this reaction current
is really the same as imposing energy conservation, which
is of course a consequence of MaxweH's equations. By
comparing J to E, with E of order E, =M /e and
E-M /e, we see that such reaction currents are impor-
tant when (N) ~e =10, a number much too large to
matter for the heavy-nucleus experiment, where (N ) ~ l.
Ultimately, applications of our work are directed toward
the case (N ) & 1 so we will ignore the reaction currents
in the idealized examples below. The electromagnetic
fields of the examples are supported by fictitious currents
whose physical interpretation we do not attempt.

The connected propagator Sz, (x,y) can be written in
terms of two solutions of the Dirac equation g, ,y2 whose
free-particle versions are TCP conjugate to each other:

—+ oo0
f$o(x)+i g P$o'(x)T(ps, p's'), (17b)

where the sum is over the primed variables. One sees
that R is the pair production of Eq. (3) and T is the S-
matrix amplitude for scattering of a positron o5' 3„.
Analogous expressions to (17) hold for P„with T re-
placed by R and R by T, the electron-scattering ampli-
tude; R is the pair-annihilation amplitude.

Now R and T are related through a "unitarity" rela-
tion of a curious type. This relation can be derived by
demanding the propagator S„, of (12) become the free
propagator when its time arguments are large enough
that A„=O and using (17), or more simply by invoking
charge conservation:

fd xfg I„„=fdx@.
(j not summed); (18)

for j=2, (17) and (18) imply a sort of optical theorem:

In (16), p is on shell: po =—co=(p +M )'~ . The asymp-
totic behavior as Ixo I

~ ~ of (15) is governed by a pair-
production ("reflection") amphtude R, and a scattering
("transmission") amplitude T, as follows (we drop tern

porarily the superscript c indicating connected amplitudes):

g$'(x) ~ g$~(x)+i g g$o' (x)R (ps, p's')
Q0~ oo
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p s P S

(19)

g (R(ps, p's')( = —2ImT(ps, ps)+g [T(ps, p's'(
eA3(t)=

eA, O~t ~tq,
0 otherwise, (25)

where the LHS of (19) corresponds to the LHS of (18),
and similarly for the RHS. We can put this in the form
of Eq. (1) by introducing operators %, 'T such that

R (psp's) = ( ps i% i
p's' ), (20)

etc. , and then (19) is the matrix element of the operator
equation

I +A% =(I +i V')(I +i 7 ) (21)

involving the total transmission operator I +i'T
A similar calculation can be done for spin-0 pair pro-

duction, but with a result analogous to the familiar one of
Eq. (2). The reason for this difFerence is that the con-
served current from which the charges of (18) are con-
structed contains one time derivative and an extra minus
sign emerges on the LHS of (19) when antiparticles at
t = —~ and particles at t = ~ are compared.

We can illustrate these general principles with some
soluble (but not necessarily realistic) examples. Let the
only nonvanishing component of A„(x}be A3, which is
taken to be a function of xo = t only, vanishing at
~t~= ~. Then the solutions g~ of (15) can be Fourier-
transformed in space

[iBo+a3(p3+ e A3 )
—P'm]y (t) =0

with

(26)

a; =yoy;, P'm =yoM —aj.pi,
m —= (p +M )'~

(27)

This involves only two anticommuting Hermitian ma-
trices, a3 and P', and so can be written in 2 X 2 matrix
form. It is convenient to choose

P'=o„a3= —o. ,

and the free orthonormal g are

cos—,
' 0

(28)

X]o
lMt

Sln
2
0

—sin —,
' 0

(29a)

with all other components of A„vanishing. The Dirac
equation can easily be solved in either first- or second-
order form; we recommend that the reader study the
second-order form (23) with and without the spin term,
which will show that no resonance can occur for spin-0
pair production. As for the Dirac equation (13), it reads
(after multiplying by yo)

(22}

and in this simple case g and g. are related by a multi-
plicative factor. Consider first, instead of (13), the
second-order Dirac equation

where

cos—,
' 0

cosO= m /co, sinO=p3/co

(29b)

(30)

[(8„+ieA„) +M + 2eo"'F„]y=—0 . (23)

For a spinless particle (o."'~0) our choice of A„ leads to

(24)

which is a Schrodinger equation with time as the variable
instead of space, a potential V =p3 —(p3+e33), and en-

ergy eigenvalue ~ . Note that this always exceeds the
maximum value of V by at least pi+M [pi=(p, ,p2)].
Now pair production corresponds to a reAection process,
in which there is no particle present at t = —~, but at
t = ~ there is a particle moving forward in time and an
antiparticle moving backward in time. The reAection
coefficient R for a smooth barrier lying below the particle
energy has an exponentially small factor, in just the same
way that the transmission coefficient has for a barrier
higher than the energy. "

In consequence, one does not expect dramatic reso-
nance e8'ects for spin-0 pair production, consistent with
the limitations imposed by (2). However, for a spin- —,

particle in an electric field the non-Hermitian term
o." F„plays an essential role.

Our first example involves a sum of step functions for
A„ leading to an electric field composed of 5 functions.
It should not be thought that these singularities are what
drive the resonance phenomena; later, we will discuss res-
onance in the presence of smooth potentials. We write

g,(t)=(1+iT)y»(t), t &0 (31)

which is just (17b) under the condition that T and R are
diagonal, with matrix elements T,R respectively (after
factoring out a |i function ). R is identified from the be-
havior of gz for t ) tz, which is a unitary transformation
(i.e., rotation) on (31):

g~(t)=(1+iT}e 'e ' "y»(0) (32)

=+20(t)+IRg&o(t)) 't ) t~ (33)

where

Ho=0. g 3+a3m, (34a)

Hz =o &(p3+eA)+cr3m, (34b)

and (33) is a rewriting of (17a). Let us put (32) in the
form

with 0 lying between 0 and vr/2 Accord. ing to (17), the
solution to the Dirac equation (26) which approaches a
multiple of gzo as t ~—~ contains information on R,
the pair-production amplitude, as t ~+ ~. Specifically,
we require the evolution of the function pz, subject to the
boundary condition
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U(t)y2o(0) =(1+iT) '[yzo(t)+iRg&0(t)], (35)

co„t„=(N+—,')m, N =0, 1,2, . . . ,

co„=[(p3+eA) +m ]'~

p3(p3+eA)+m =0 or p3eA = —t02 .

(37)

(38)

Note that (37) and (38}, for a given A and t„, uniquely
determine p 3 and p. These conditions can only be
satisfied for strong fields; the reality ofp3 implies

leAl &2m

while the reality ofp requires
' 1/2

4m
1 — 1—

2A 2
(2 m(N+ —,')

eAtq
' 1/2

4m

e A

(39)

As one might expect, near threshold (leAl =2m), t„
must be O(m '):

mt„=2 ' a(N+ —,') for leAl =2m .

For example, the N = 1 resonance gives t =3.3m
When the conditions (37) and (38) are not satisfied or the
reality conditions (39) and (40) on p are violated, the
physical-region pole becomes a resonance. We see this
through the explicit form of R:

—since „t „sin( 8„—0 )

cosco„t„+isinco„t„cos(0„—8)

p3+eA
sinO& =

COg

(42)

Here we have reinstated the superscript c to remind the
reader that so far we have only calculated the connected
amplitude. To see what happens for the fu11 amplitude R
of Eq. (4), suppose that R' has a simple Breit-Wigner
form

R'=
co Q)o+ l I (43)

and we form the connected probability P;, as in (8), by in-
tegration over co (for simplicity, ignoring the electron
mass):

where U is a unitary transformation; the orthonormality
of the y.o leads to

1+ lRl'=
l
l+iTl'

as in (21).
Observe that if T (and hence also R) has a pole, then

the y20 term in (35) will be missing. This will in fact be
the case if the rotation exp( iH„—t„) in (32) is a rotation
through an odd multiple of m about an axis, defined in
(34b), which is orthogonal to the axis of (34a). Such a ro-
tation takes y20 into y, o. These conditions amount to

lgl', „, lgf' '

2I 21
(45)

which goes to zero as I ~0, and has a maximum value of
' at Igl'=~/21.

The reader may be concerned at this point that poles in
R', T' come from the singular (5-function} electric fields
associated with the choice of A„ in (25). We will show
that this worry is unfounded by working the problem
back~ards, finding a smooth rotation of antiparticle to
particle and constructing from that rotation the required
smooth vector potential. Before doing that we point out
that there are smooth vector potentials for which the
Dirac equation is exactly soluble. It is not easy, however,
to find the corresponding reAection coeScient R ' except
by detailed numerical work. The resemblance of these
smooth potentials to that found by solving the problem
backwards suggests that the soluble examples also show
sharp resonances for a range of parameters.

In Table I we offer three vector potentials A3(t), each
one corresponding to a diferent way of smoothing a step
function, for which the Dirac equation is soluble. Our
original example in Eq. (25) consists of two step func-
tions, so it is necessary to patch together the solutions
given in Table I in different time domains, with different
parameter values, in order to complete the smoothed
solution. Case 1 of Table I is just a constant electric field;
it can be used to construct a trapezoidal A3(t) by patch-
ing together with the solution for constant A3(t). Cases
2 and 3 approach step functions as I ~DO. Resonance
phenomena are possible when A&m, I )m, that is,
Z) m2e

The essence of the phenomenon of resonance is the ro-
tation of a free particle solution to a free antiparticle
solution (or vice versa), which is always a rotation by an
odd multiple of m. Let g denote any solution of the two-
dimensional Dirac equation (26), normalized to unity,
and define a current J by

J=g og, J =1. (46)

From the Dirac equation it follows that

J=2QX J, Q=(p3+eA3(t), 0, m ) . (47)

In the notation of Eq. (29}, a free particle corresponds to
J=(sin8, 0,cos8) and a free antiparticle to the negative of
this. It is easy to find a smooth interpolation. from —J to
J, and from this we can extract a smooth vector potential.
Define

J, = —sinO cos ++(cos6 s1nf,
1/2

J = —sin —1 —4g cos2 2 2
(48)

where the last equality follows from (10). From (9), the
probability for production of a single pair is

Tlgl', „ lgl'
(~—~ }

p; =I d~lR 'l'=
l
gl'=2 Im w, J3 = —cos6 cos —g sinB sing,
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TABLE I. Potentials for which the Dirac equation is soluble and the solutions themselves. Notation for the special functions is
standard.

{1) AI t

eW, (t)
Solutions to the (second-order)

Dirac equations

P,(z},gr i(z} where

p (zj=e —z /2 ~{++ ) ~ —v —1 —t +2tzdtt e
27Tl

{Hermite)

Parameter
values

z =e ' (AI )' [t +(AI ) 'p, ]—lm

2AI

(2) —'A[1+e(t}(1—e r~'~)] For t) 8: [(p +A) +m']'
p=e rt, s=

I

p
—"e 'ql', F, (a, y;z)

(ConAuent hypergeometric)

@3+A
CX= l S

I
A

z =2lgP
2I '

, y=1+2is,

(3) AtanhI t p a p y z
—a 1 —P —y

[Riemann (essentially

hypergeometric}]

a= [(p3+A}'+m']'~,1

2r
p —[ 1+[1+41 (A +lAr}]'"],
y= [(p3 —I )'+m ],

1

21
z = —'(1—tanhI ~)

where

0&2(&min(l, tanB) . (49)

Here g is a constant and P(t) varies smoothly from 0 at
t = —oc to 2~ at t = ~, which will be seen from (48) to
change the sign of J. Note that J2 is always real if

~ g~ & —,'. By substitution in (47) we find the relations

((}=—4mJ2K ', eA3= —col(. 'sing/2,

where

(50)
7t/2

K =sin8sing/2+2$cosOcostt . (51) 0
0 0.2 0.4 0.6 0.8 I.O 1.2 1.4 1.6 1,8 2.0

Observe that K is always positive, given the inequality in
(49). It is easy to solve the differential equation (50) nu-
merically, and even easier to find E3 = A 3 as a function of

eE = —4$J2K cosP/2 .
fPl

(52)

7

4

In Fig. 1 we plot P and E in units of m e ' for /=0. 25,
cosO= I /v'2; it will be seen that the maximum value of E
is about 5 and the time scale is 0 (m ').

Let us conclude by discussing qualitatively what might
happen for more complicated situations, where E varies
both in space and time. ' The propagator S~, can be
written as a proper-time integral' of a certain kernel the
essential part of which

eE
fIl~ 0

It(x,y;s)=(x~e' '~y &, (53)

where the proper-time Hamiltonian H is displayed in the
second-order Dirac equation (23). We can write I(. as a
path integral and look for dominant paths corresponding
to reliection in time (that is, dx /ds &0) which signify
the act of pair production. ' As we have already men-
tioned, the reAection is by a barrier of height less than the

-7
0

FIG. 1. (a} The function p(t} vs t for /=0. 25, cos9=1/v'2.
(b} The electric field in units of mt/e as a function of P, for the
same parameter values.
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particle energy, and the dominant paths are not classical,
but instantonlike: they make an excursion into the com-
plex plane. For example, in a constant field if we make
the change s~is, x ~ix the usual hyperbolic motion
becomes simple harmonic motion, and reflection occurs
after half a cycle. For spin-0 particles each such
reflection introduces an exponentially damped factor into
K, and resonance efFects will not occur even if the electric
field is constructed so that repeated reAections are possi-
ble (as in our soluble example). But for spin —,

' the spin-
dependent term in 0 yields exponentially growing factors
(such as' coshEs/2 for a constant electric field E) which
can balance the exponential damping of the reAection in-
stantons, allowing for the sum over paths to be resonant.
Further analysis along these lines will be given in a subse-
quent publication.

What do our remarks here have to do with the
nuclear-physics experiments which motivated this work?
Clearly, the spatial dependence of the electric field is
dominant for certain effects, such as the diving of the 1s
level below —2M when Zo. exceeds a critical value some-
what above unity, which was the theoretical stimulus'
for the present experiments, and we have nothing to say
about that. Certain qualitative features of the electric
fields produced by heavy-nucleus collisions do resemble
the field of our idealized example in Fig. 1. Consider a
spherical volume of radius M ' centered on the point
where the two nuclei would meet if there were no
Coulomb forces; the region outside this sphere is relative-
ly unimportant both because the electric field is subcriti-
cal and because the relevant matrix elements involve in-
tegrals of E multiplied by sinpr, and p =M. Inside this
sphere we have ~E~ -Ze/r ~ (Zct)E, (see the figures in
Ref. 7). Just as important as the magnitude of E is its
time variations. At a point at radius r —(2M) along
the initial line of approach of the two nuclei, the radial
electric field is inward when the nuclei just cross the

sphere of radius M ', but is directed outward as the nu-
clei cross r =(2M) ', along the line which the nuclei fol-
low after the collision, the radial field is outward at first,
becoming inward after the collision. In both cases, the
radial electric (up to an overall sign) is similar to that
plotted in Fig. 1, iri both magnitude and time variation,
and it may be reasonable to look for resonance effects
such as we have. If our resonance mechanism is indeed
acting in the heavy-nucleus collisions, it is clear that the
momentum p of the electron or positron will be O(M),
and thus the total pair energy will be around 3M, as ob-
served. A crucial prediction of our scenario is that the
position and width of the resonances will vary (but not
dramatically, i.e., not like Z ) as the nuclear-collision
parameters change. It is not easy to say what governs the
resonance width, but a reasonable lower limit comes from
the inverse of the time it takes the nuclei to enter, then
leave, a sphere of radius M, which is /3M/2 with /3 the
nucleus velocity. Since P=0. 1, this width is about 25
keV, as seen in the experiments. While our speculations
so far are encouraging, we admit that we have no idea
how the e+-e pair manages to come out with equal and
opposite momenta, once one goes beyond the spatially
constant fields we explicitly discussed. We are presently
engaged in computer experiments to see if these very
qualitative remarks stand up to closer scrutiny, results
will be published elsewhere.
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