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Angular correlations in the decay 8 = VV and CP violation
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We study the exclusive decays of B mesons into a pair of spin-1 mesons. We look at the occurring
asymmetries that could signal CP violation and estimate their relative size. We find that angular
asymmetries are not significantly smaller than partial-rate asymmetries, and that their study can
help disentangle the complicated dynamics of these decays.

I. INTRODUCTION

The topic of CP violation in the B-meson system has
been the subject of extensive studies. ' Most authors have
been concerned with the study of partial-rate asym-
metries occurring in different exclusive channels. Bigi
and Sanda have classified and estimated the different
possibilities in the decay of a B meson into two pseudos-
calars. In particular they have shown which are the
channels where we expect largest and cleanest signals.
These CP-odd observables can originate either through
mixing or via interference of at least two amplitudes con-
tributing to the same process. In the latter one requires,
in addition to CP violation, the presence of unitarity
phases which depend on hadron dynamics and are very
difficult to estimate reliably.

In this paper we intend to look at the asymmetries that
occur in the decay of a pseudoscalar B into two vector
mesons. What can be gained from this study is access to
information on the unitarity phases, or alternatively one
can obtain signals that do not depend on such phases,
similar to the ones appearing in hyperon decays. In Sec.
II we will look at the kinematics of the reaction, and thus
find which are the possible asymmetries. In Sec. III we
will consider these asymmetries in the standard model to
see how they can arise, and finally in Sec. IV we will at-
tempt to estimate their relative sizes for specific exam-
ples.

The new type of signal that will emerge corresponds to
triple-product correlations involving the momentum of
one of the vector mesons and the two polarizations. They
thus require reconstruction of the decays of both spin-1
mesons, and in practice one would then be looking at
correlations between momenta of the final particles.

It was realized a long time ago that under time-reversal
invariance both a particle's momentum and spin are re-
versed and hence that any triple scalar product of them is
odd under the naive time-reversal operation. It was also
noted that when one considers the full antilinear nature
of the quantum-mechanical T operator, such correlations
could appear even when all interactions conserved T.
The are thus not very good indicators of T violation un-
less one can calculate and subtract the induced terms that
mimic T nonconservation. This is very difficult to do.
However, as was realized in the study of hyperon decays,
this can be circumvented by comparing a pair of CP-
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where we denote the masses of particles V, and Vz by m
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and m2, respectively. In general the scalars a, b, and c
are complex, and can receive contributions from several
amplitudes with different phases. Occasionally we shall
loosely refer to them as isospin amplitudes. We separate
the phases explicitly by writing
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and identify them as one of two kinds. The P, are CP
violating phases in the weak Hamiltonian, and the factor
of i in front of the p amplitude defines our convention in
such a way that if all the P; are zero CP is conserved.
The phases 6; are the so-called "unitarity phases" which
can arise since we have to consider all orders in the
strong interaction. The sums extend over all amplitudes
that can contribute to the decay, and may refer to, for ex-
ample, different isospin configurations. One can then use
CPT invariance to show that the corresponding
matrix element for the antiparticle decay B(p)~ V&(k, e, )Vz(q, ez) is given in terms of the quantities
defined so far by

(2.2)
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conjugate processes to obtain a correlation that is truly
CP odd.

II. KINEMATICS

Consider the weak decay of a B meson (containing a b )

into a pair of vector mesons, and let us define our nota-
tion as B(p)~V, (k, e, )Vz(q, e2). We can write the most
general invariant matrix element for this decay as a sum
of three terms that we will call s, d, and p amplitudes in
the form M—:as+bd +icp:

bM = ae, e2+ (p.e, )(p e2)
m imp

39 3339 1989 The American Physical Society



3340 GERMAN VALENCIA 39

where
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Note that CPT transforms each vector meson into its an-
tiparticle with the same momentum and changes the sign
of the polarization so that the three Lorentz scalars
remain the same. Our task now is to find physical ob-
servables that are sensitive to the phases P;. To do so we
first square the matrix elements to obtain

2 2
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Summing over the polarization yields I:—g& & IMI:
1 2
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(2.5)
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where the parameters x for a specific reaction is
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m i 7712
2 2 2

2m 1m 2
(2.7)

All the terms in Eq. (2.6) contain the CP-violating phases. The first three terms correspond to absolute squares of s, d,
and p amplitudes and are sensitive to interference between the difFerent terms that can contribute to each partial wave.
They give rise to partial-rate asymmetries similar to the ones occurring in the exclusive decays of B mesons into two
pseudoscalars. The last term is an interference of s and d amplitudes and gives rise to partial-rate asymmetries from
relative s-d phases.

These partial-rate asymmetries have a very complicated dependence on all the phases, and in general it will be very
difticult to compare any result with a theoretical prediction. One obtains

g [a,a sin(5„—5, )sin(P„—P, )(2+x )+b, bjsin(5d; .5dj )sin(Pd; —
Pdj )(x —1—)

i)j
+c;cjsin(5~; —5 j )sin(P; —

P~ )2(x —1)]+—g a;bjsin(5„. —5d. )sin(P„—Pdj )x (x —1) .
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(2.8)
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and then to add the corresponding quantity for the an-
tiparticles A~. In this case one is looking at

It appears that in general such a signal will be virtually
impossible to analyze. There are, however, simple cases
in which it might prove useful. In particular, if there is
only one amplitude contributing to each partial wave
then the only term that appears is that of s-d interference.
To study isospin interference, the corresponding pseudo-
scalar channel is clearly better.

When one sums over polarizations there are not
enough independent four-vectors left to form triple-
product correlations. That is why interference terms
with the p amplitude are not present in Eq. (2.6). The
same would be true if we summed over only one of the
polarizations. One can, however, define quantities sensi-
tive to such interference terms. For that, one looks at
configurations with a definite sign for the triple product.

One way to do so is to define the asymmetry:

A~ —Imac *—
I
ac

I
sin(5+ P ),

A~ + A~ —
I
ac

I
cos(5)sin((t) ),

Az —A~ —laclsin(5)cos(p) .

(2.10)

Note that Az can be generated by either CP violation or
unitarity phases, but that A~+ A~ is a clean signal of CP
nonconservation. It could also happen that one wants to
determine experimentally what the unitarity phases are;
in that case one looks at Az —Az. We can now evaluate
the kinematics of this asymmetry in the rest frame of the
decaying B. A convenient way to do so is to parametrize
the polarizations of the decay particles with angles
defined in their rest frames as

e, =sin0, cosg, eI"+sin0, sing, eI '+cos8, eI ',
(2.11)

e2=sin82cos$2e2 +sin82sing~eq +cos82e~(&) (2) (3)

in terms of transverse and longitudinal polarization vec-
tors that can be easily boosted to the B rest frame. With
the momentum of V, defining the quantization axis they
become
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Summation over polarizations is now equivalent to in-
tegration over the solid angles dO&dQ2 up to a normali-
zation factor:

, fd&,d&, IMI'.
16m

(2.13)

We proceed to find Az by integrating over the regions
where the triple product has a definite sign and normaliz-
ing both A~, A~ to the total number of B~V] V2 events
we obtain ( A =—A~+ A~ )

+x —1 g a;cocos(5„—5~ )sin(P„P~j )—
Ij

(2+x )~a~ +(x —1) ~b~2+2(x2 —1)~c~ +2x(x —1)Reab*
(2.14)

When a full reconstruction is done one would have, for example, that V, Vz decay, respectively, into two pseudoscalars
@,N2 and 4344. In this case the correlation becomes k-p, X p3.

More complicated correlations may turn out to be kinematically favored, in particular the following quantity will
prove to be better:

N„,„„(k62q'6)k'6) X E2& 0)—N', „,„„(k.e2q. e&k.e& X e2 & 0)
A~= (2.15)

and in this case the result is ( A = As+ A~ )

&x' —1 .
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parameter x, two more quantities. Let us denote by y a
typical ratio of d or p to s amplitudes. Using the form-
factor parametrization of Altomari and Wolfenstein or
Bauer, Stech, and Wirbel "one finds

X sin(Pd; —
P~~ )

(2.16)

It is interesting to compare this system with others
studied in the literature. The triple-product correlation is
the equivalent of observing a net circular polarization in
the case of the decay of a neutral kaon into two pho-
tons (except that in this case our initial state does not
have the CP properties of KL so we have to add in-
coherently equal amounts of particle and antiparticle de-
cays). In the study of hyperon decays there are both
triple-product asymmetries (P-type terms), and partial-
rate asymmetries; one also finds a-type scalar-product
correlations. These last ones have no counterpart here,
where observation of just one polarization does not lead
to new signals. They are also absent in the case where B
decays into a vector and a pseudoscalar. This occurs be-
cause factors such as (k.e) are present in every term of
the amplitude, and thus they always appear squared in
the decay distributions. This seems to be a general
feature of vector particles. One would find such correla-
tions in B decays into hyperon. A particular example
corresponds to the A polarization recently studied by
Eilam and Soni.

We can finish this section by comparing the relative
sizes of all the signals as expected from purely kinemati-
cal considerations. For this we need, in addition to the

1 +(x —1)
A —— [xy cos(5, —5 )sin(P, —P )

(2.18)

+ (x —1)y cos(5, —5 )

Xsin(P, —P ) ] .

We have at present no way to estimate the possible uni-
tarity phases. It is known that in kaon physics those
phases are generally small, and it has been argued in the
literature that they are not necessarily small in B decays.
We should, therefore, keep in mind that partial-rate
asymmetries are proportional to such phases and that
they are suppressed if the phases are small. On the con-
trary, the angular correlations defined above do not van-
ish with vanishing unitarity phases. Moreover, and
perhaps most important, we saw before that one can use
these asymmetries to gain experimental access to either
the CP-odd phases or the unitarity phases.

Finally one needs to know the relative sizes of interfering
isospin amplitudes. Since we shall not. attempt to calcu-
late these let us just call such a ratio r. The pattern for
the different signals is then

bI . . x(x —1)-r sin(5;)sin(P;)+ y sin(5&)sin(P&),2+5
1 +(x —1)

A —— y cos(5, —5 )sin(P, —P ),2+x s p s p
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Term
Relative

size
x -20

y -0.04
x 2

y -0.2

TABLE I. Relative sizes of amplitudes. The relative sizes of
the diFerent terms as they appear from purely kinematical con-
siderations.

interested in the effective weak Hamiltonian with
~bB~ =

~
ES~ =1, which is given by' '

—GF
A, (c+0,++c 0, )+ A, g c;0,

2 2 i =1,6

0, (sb)L(uu)I, 02=(s b&)L(u&u )L,
(3.1)
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x(x —1)
2+x 3'

1 +(x —1)
2+x

1 xi (x~—1)
3'2+x

1 (x —1)
2+x

0.5

0.003

0.7

0.0005~0.002

0.01~0.05

0.01~0.05

0.04

0.03

0.15

0.02

0.03—+0.06

0.01~0.05 c+ =0.77, c =1.67, c, = —0.44, c2 =2.32,

c3 0.04, c4 = —0.08, c5 —0.05, c6 = —0.01 ~

(3.3)

03 =(sb)L g (qq)L, Oc=(s bp)L g (qpq )L
q

05 =(sA;b)L g (q A, 'q)z, 06 =(sb )I g (qq )~,
q q

with A„A, standing for

A~ —(c)c3 $2 )c3$3+c]cps2cg(c3 s3 )+lc]c2$2ss2 2 2 2 2

(3.2)
At —(c )$2 c3 )c3$3+c]c2$2cf($3 c3 ) Lc~c2$2ss2 2 2 2 2

We shall use the coefficients including leading-log correc-
tions with the numbers of Ponce

There are two different regimes that we can look at.
When the decay products have masses between one-third
and one-half of the 8 mass, x has a value around 2 and y
a value around 0.2. It has also been argued in the litera-
ture that it is in this case when one can expect large
Anal-state strong-interaction effects. In the second re-
gime the decay masses are small, the values of x are large,
say around 20 and y is of order a few percent. One might
expect final-state interactions to be less important, but we
do not know much about possible real intermediate
states. The expected kinematical factors are shown in
Table I.

When we estimate the different asymmetries it is irn-
portant to bear in mind that s-d interference can be very
important for low-mass decay products, since it can sub-
stantially reduce the branching ratio. There is no agree-
ment in the literature' as to whether or not this interfer-
ence is destructive. This point, as we11 as the general
form of the amplitudes is under further study. In any
case if the interference is indeed destructive there will be
an enhancement of the asymmetries relative to the total
decay rate. From the numbers in Table I we can also see
that A is favored over A and thus we will adopt A as the
relevant observable. In both regimes we expect the sig-
nals to be around a few percent if there are no additional
dynamical suppression factors. One can also see that for
some channels the s-d contribution to the partial-rate
asymmetry could be of order 1, such as the contribution
from interference of amplitudes in the same partial wave
(which should be analogous to the pseudoscalar case).

2
C

~ C2C3$ )$2$3$g
5p=

(S3 +$2cs )
(3.4)

It is interesting to see the rephasing-invariant combina-
tion of angles' appearing explicitly in Eq. (3.4). We can
estimate from bounds on the KM angles 5P ~ 0.01. This
means that we can expect asyrnmetries as large as a few
percent within the standard model. Also the penguin
coefficients are only about 0.05 times the ones coming
from internal 8' emission; an interference will, therefore,
be further suppressed unless we look at b-u transitions. It
is well known that one then pays the price of potentially
1arge signals with srna11 branching ratios.

A second way to obtain a relative phase is to look at

As is well known, a CP-odd asymmetry will arise only
when there is a relative phase between two amplitudes.
In our effective Hamiltonian there are only two complex
constants: A, and A, . This means that one way to ob-
tain an asymmetry is to look at a. process that receives
contributions from both types of diagrams, internal 8'
emission and penguins, as sketched in Figs. 1 and 2. This
already tells us something about the magnitude of the sig-
nal. To first order in Kobayashi-Maskawa (KM) angles
A, = —A, and there is no CP-violating phase. To find
one we go to next order in KM angles, and write
A, = —A, e' ~, with the result

III. OBTAINING THE ASYMMETRY

We now turn to the question of how to generate the
CP-odd phases within the standard model. For that we
shall select decays in which the b quark turns into an s
quark rather than a d quark, although the analysis for
that case proceeds in an analogous manner. We are then FIG. 1. Internal 8'emission.
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W pseudoscalar channels:

[la fa2llm(p)(2+x )

FIG. 2. Penguin contribution.

+Im(pb*, b2 )(x —1)

+Im(pc *, c~ )2(x —1)

+Imp(a2b] +a]bp)x(x —I)]
(3.9)

IB'(t) &=g+(t)IB'&+ ~g (t)IB'&,
p

IB '(t) & =g+(t)IB '&+ +g (t)IB '&,
q

™1(1+ Al t/2 i—hmt)
(3.5)

decays in which a quark-decay amplitude interferes with
a weak annihilation. The latter is generally expected to
be much smaller than the former thus giving rise to very
small asymmetries (we will briefiy return to this point
when discussing the vacuum-saturation estimate). It has
been argued that in special cases this need not be true.
We shall not consider this case here.

Also, when one considers neutral B mesons, it is possi-
ble to obtain interference via mixing, by looking at final
states that are common to B to B decays. The time evo-
lution of the B mesons is generally written in the follow-
ing way:

As in the latter, these asymmetries can be substantially
large for specific channels. The analysis proceeds in very
similar fashion and we shall not pursue it further. I.et us
instead turn our attention to the angular correlations. If,
as usual one ignores the small Re@:

Im(ac*) —Im(a c *)= 2 Im(a, c*, )

+ —,'sin (b mt) lp l Im(a~c~ ),
(3.10)

Im(bc*) —Im(b c *)=2Im(b, c
&

)

+ —,'sin (bmt)lpl Im(b2cz ) .

This means that up to small terms proportional to Res
mixing does not generate CP-odd triple-product correla-
tions. If these are generated otherwise, say by 8'-
exchange-penguin interference, mixing does modify the
analysis as specified by Eq. (3.10). It is interesting to note
that if one looks at the expression for lMl there are
triple-product correlations induced by the mixing that
look like

p
For simplicity we will assume that the neutral B or B is
produced along with a charged B that decays semilepton-
ically, so that we know which one decayed into the pair
of vector mesons by tagging the charged B. Writing

A (B~VV) =a,s+b, d +ic,p,
A (B~ VV) = (a 2s +b2d +ic2p)e'~,

(3 6)

where P is chosen so that a„az are relatively real. To be
general we will allow a, , b;, c; to have phases, noting that
these will be there only if there are at least two ampli-
tudes contributing to the decay. It is then standard pro-
cedure to write

M(t) —= A (B (t) +VV) =g+ (t) A ————sin(bmt) A
2 p

—=g+(t)(as +bd +icp) . (3.7)

Defining p=(q/p)e'~ we can directly apply our previous
results by simply identifying

l la =a, ——sin(bmt)pa2, b =b& ——sin(bmt)pb2,
(3.8)

lc =c, ——sin(b, mt)pc2 .

The resulting expression for the time-dependent asym-
metry induced by mixing looks like the familiar result for

-sin(bmt)Rep(a fc2 —a2c ) )(e) e2)e " e(~e2pkqp~ .

(3.11)

They are not CP violating and cancel out when one sub-
tracts the CP-conjugate reaction in the same manner as
the terms induced by unitarity phases do.

A last way to obtain interference is to consider cascade
processes. ' This method is useful in channels with more
than two particles in the final state which we will not
consider.

IV. SOME EXAMPLES

There are many channels that can proceed via both
internal 8' emission and penguin diagrams. These in-
clude neutral and charged modes such as

e+g e —
D e+D e —

y~ e

B,~K,*+K*,PP, D,'+D,*

B ~pE*,D*D,*,QK"

B, -+D*K*,QD,*,pD,*

(4.1)

To estimate the size of the asymmetries we use the
vacuum-saturation approximation; we shall regard this
method as an order-of-magnitude estimate to compare
the different asymmetries, stressing that its predictions
for a given observable are not very reliable. Within this
scheme the amplitude for the decay will be a linear com-
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bination of the factors

F, =
& V, i J„iB) & V~ i

J"io),
F2 =

& V2 [J„i
B ) & V, i

J4'i 0),
F, =& v, V, IJ„IO)&OIJ&iB &,

F,= & v, v, (s[0&&0(F[B&,

(4.2)

where the last factor involving scalar and pseudoscalar
densities can appear when one Fierz rearranges 05 or 06.
One can argue (see, for example, Ref. 16) that the
momentum dependence of the form factors suppresses
terms F3 and F4 because they are dominated by a pole of
mass smaller than the B meson and the form factors are
evaluated at q =mz. A typical factor is, with m

p f 1

GeV.
—1

1—
2

m~
=0.05 (4.3)

although one can find decays where the suppression is
milder. Note that these terms correspond to the weak
annihilation process. We will use as examples two
charged B decays that illustrate the different regimes:
B ~coE* and B, ~PD,* . The first one should give
large asymmetries since the internal 8' emission is
suppressed by small KM angles but should have a small
branching ratio. The second one is expected to have a
larger branching ratio and smaller asymmetries. We use
the notation of Eq. (4.2) with V2 being the charged
meson. A vacuum-saturation estimate of the matrix ele-
ments yields

—6
) =

I [(—', c +—,'c )A, +(—,'c, +c + —,'c +c )A, ]F,

+ [(—', c+—
—,'c ) A, +(c, + —,'c2+c3+ c4+c6)A, ]F2

+[(—', c++—', c ) 3,+( —,'c, +c2+ —,'c3+cg) A, ]F3+(—",c5+ —,'c6) A, F4 I,
(4.4)

&gD,' ~H ~B, ) = —I [( ——', c+——', c )A, +(—,'c3+c~)A, ]F,+[(——', c++—,'c )A, +(c3+—,'c~+c6)A, ]F2
2 2

+[(——', c+ —
—,'c )A, +( ,'c 3+—c~)A,]F 3+( —",c5+—', c6)A,F4I .

+222(m 2 ) (p e)(ipE2).
mg+m)

+i V(m z )e ~r e, ez&k~Ps,mg+m )

F2 = —g(mii+m2) A, (m i )6i'e'2
(4.5)

We parametrize the different form factors following
Bauer, Stech, and Wirbel, '" obtaining

F, = —t(mii+m, )A, (mz)e, e2

tors is found by assuming vector dominance of a pole
with the relevant quantum numbers, and mass found in
Refs. 9 and 11. At this point we do not know how to cal-
culate F3 and F4, but in line with our previous arguments
we will treat them as a 5 —10 Wo correction to the numbers
in F„Fz. For B, ~gD, naive use of this pole domi-
nance model for the form factors as in Eq. (4.3)
suppresses the weak annihilation process by about a fac-
tor of 10. With all this we write our numerical results for
the asymmetries:

+222(m, ) (p e, )(p e2)
my+m2

+l 2R 2 Copy/V(m, )E e, e2iikrps,
mg +m2

A =a, cos(5, —
5~ ),

A =azcos(5, —
5~ )+a3cos(5d —

5~ ),
I —I =a 4sin(5d —5, ) .
I +I

(4.6)

where the tilded quantities refer to V2. We use the values
of Ref. 9 for the form factors at zero-momentum transfer
for the 6rst decay and take them to be of order 1 for the
second one. The momentum dependence of the form fac-

The constants a, for the two decays considered are given
in Table II. The numbers follow from using 5/=0. 01,
and scale linearly with 5$ for smaller values. The asym-
metries depend strongly on the values of the form factors,

TABLE II. Vacuum-saturation estimate of some asymmetries. The second row corresponds to the
maximum values we could find by changing the form factors by 10% or less.

Channel

8 ~co@*

B, ~QD,*

19.2

1.96

0.037

0.16

0.0001
0.002

1.2X10-'

0.003
0.04

2.4X 10

—0.001
—0.03

0.0

O.OS

0.23
1.3X10
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changing the latter by a few percent changes the former
by factors of 2. It is clear that these numbers cannot be
taken too seriously. What we can say from this analysis
is that the relative sizes of the angular and partial-rate
asymmetries are consistent with the kinematical con-
siderations of Sec. II. We can also see that 3 is indeed
suppressed, and that this suppression is much larger for
large values of x.

A detailed analysis remains to be done but it requires a
better understanding of the hadronic matrix elements.

V. CONCLUSIONS

We have studied in some detail a type of CP asym-
metry that has been overlooked in the past. We find that
CP-odd observables can arise from interference among
different isospin amplitudes, in a way comparable to the
simpler case of pseudoscalar mesons. The large number
of amplitudes present when we deal with vector particles
makes it much more difficult to extract the CP phases.
We also find asymmetries that originate in the interfer-
ence of partial-wave amplitudes. In all cases the signals
look reasonably large only in specific channels.

Angular correlations appear to be not much smaller
than partial-rate asymmetries. They offer a way to study
separately CP-odd and unitarity phases. These asym-

metrics are not generated via mixing, and a reliable esti-
mate is not possible at present. A complete calculation
would have to consider the decay of the spin-1 mesons
and find the corresponding correlations involving only
final-state momenta. We have discussed one case of an-
gular correlations, but certainly not the only one. Other
possibilities include the study of baryonic channels and of
three or more decay products.

The B system seems to have a wide variety of places
where searches for CP violation can be done. It is impor-
tant to look at these signals with the understanding that
it is not enough to see CP violation. It is equally impor-
tant to be able to extract quantitative and precise infor-
mation that can really give us some insight into the origin
of the phenomenon. In this spirit it is, therefore, impor-
tant to study a11 the possible signals that occur in
different channels, with the aim of separating the infor-
mation we want from the complicated and poorly under-
stood hadron dynamics.
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