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Long-distance contributions to the decay K+ = ++vv
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We calculate two distinct long-distance contributions to the decay K+~~+vv: (i) that arising
from the intermediate states ml and Dl and (ii) that associated with hadronic contributions to the
K~Z vertex. A combined branching ratio of 0.7X 10 ' is obtained (for three neutrino species), to
be compared with the short-distance estimate (1—8) X 10 '

~ A remark is made on the energy spec-
trum of the pion.

According to modern wisdom, ' the rare decays of the
K meson such as K ~IM+p, K~me+e, and E ~mvV
are determined by two types of interaction: (a) a short-
distance (SD) interaction between free quarks and lep-
tons, producing an effective local four-fermion coupling
(sI „d)(ll „'l); and (b) a long-distance (LD) interaction in-
volving hadronic (rather than quark) degrees of freedom
in intermediate states. The SD contribution is sensitive
to the existence of heavy quarks occurring as virtual par-
ticles in the transition sd~l/. By contrast, the LD
effects are largely governed by low-mass hadronic states,
virtual heavy systems being damped by energy denomina-
tors and form factors. (For a recent review of rare K de-
cays, see Ref. 2.)

It turns out that of the processes mentioned above, the
decay EL ~p+p has an experimental rate that is
consistent with expectations based on the measured
rate of EL ~2y. Likewise, the experimental rate of
K+ ~m+e+e is equally compatible with the short-
distance estimate (based on the electromagnetic penguin
diagram) and the long-distance estimate based on hadron-
ic models of the E+~+y vertex. These channels there-
fore offer no direct evidence of a specific SD mechanism
and do not place a significant constraint on the parame-
ters of heavy quarks that might mediate these transitions.

A more interesting situation seems to be offered by the
decay K+ ~~+vV. Calculations based on the quark dia-
grams shown i.n Fig. 1 yield an effective Lagrangian
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where V," are elements of the quark mixing matrix and
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This is a sizable rate, amenable to detection by ongoing
experiments, and would be important evidence for the SD
mechanisms depicted in Fig. 1, provided the LD effects
can be shown to be negligible. The authors of Ref. 6
remarked that the LD contributions in the present case
are very small. In this paper, we carry out an explicit cal-
culation in order to quantify this statement.

We first consider a contribution to K+~~+vv that is
an LD analog of the process shown in Fig. 1(a), i.e., a
transition involving two virtual W bosons and hence two
semileptonic charged-current interactions. The process is
shown in Fig. 2, where we have taken the intermediate
states to be m e and D e. The resulting amplitude is
determined by the amplitudes for the transitions
K+ —+m e+v„m.+ ~m e+v„D ~K e+v„and
D ~m e+v, and possesses Glashow-Iliopoulos-Maiani
(GIM) symmetry in the sense of vanishing when
mD =m . [A model of this type was used by one of the
authors (L.M.S.) in the precharm era to estimate the

(2)

with x; =m; /m~. [Charged-lepton masses are neglected
in Eq. (1).] Using empirical information on the quark
mixing parameters, and a range of top-quark masses 50
GeV & m, & 200 GeV, Ellis et al. obtained for the
branching ratio of X+~n.+vv (summed over three neu-
trino species):

8 (K+ vr+vv) =(1—8) X 10
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FIG. 1. Feynman diagrams for the transition sd ~vv.
FIG. 2. Long-distance contribution to K+ —+m+vv involving

two semileptonic charged-current interactions.

39 3325 1989 The American Physical Society



3326 D. REIN AND L. M. SEHGAL 39

second-order weak amplitude of K2~a. e+e (Ref. 7).]
The invariant matrix element corresponding to the

transition in Fig. 2 may be written as

M =F(w, h)ug(1+y&)U(k'), (4)

where the momenta are defined by K(Q)~sr(p)+v(k)
+v(k') and the form factor F(w, b, ) is a function of the
two independent invariants

w =t'+t, A=t' —t

1 IrnF(w', b, )dw'

w w
(10)

(remembering that t =w —6). The differential decay rate
1s

and have neglected all renormalization effects at Q =0.
The functions I (t) and Ir (t) are then expressible as in-
tegrals which are given in the Appendix. The real part of
F(w, b, ) is obtained by means of a dispersion relation in
w, holding 5 fixed: i.e.,

with

t =(Q —k)', t'=(Q —k')' .

(5) dI
dw dh (w —4mxm —5 )

2 K mJt-

In particular, w is related to s, the invariant mass of the
vv pair by

w=m +m —s (6a)

and to the pion energy in the rest frame of the E meson
by

w =2m' E~ (6b)

Here mz and m„denote the masses of the K and ~
rnesons. The physical domain of the Dalitz plot is
defined by

2m' m~ w m~+m ~

—(w —4 m )' ~b, ~(w —4m m )'
(7)

Following the procedure in Ref. 7, we evaluate F(w, b, )

using a dispersion relation. The imaginary part of F
(neglecting the electron mass) is given by

G2
ImF( w, b. ) = — cos8 sin8

Sm

(t —m )
X e(t —m )I (t)

(t —m~) e(t —m')I, (t)

where we have denoted the mass of the D meson by mJ .
The two terms in this expression are the contribugjgns of
the m e and D e intermediate states, which appear with
opposite signs. Note that the absorptive part associated
with m e occurs for t )m which overlaps with the phys-
ical domain m &t &mz of the decay K+~~+vv. On
the other hand, the absorptive part due to the D e state
occurs only for values t )mz which are outside the phys-
ical region. The functions I (t) and Iz(t) depend on the
form factors describing the matrix elements & vr

~
V~K

&~'II'I~+&, &K+II'ID'&, and &~+II'ID'&. In the case
that these form factors are taken to be constant,
I (t) =I~(t)=1. For our calculation, we have represent-
ed the form factors by pole terms, i.e.,

f (m+ ~a. ) =(1+m
p IQ )

f (K+~7r )=(1+m~a IQ )

(9)f (Do~m. )=(1+m g IQ )

f(D ~K )=(1+m e/Q )

X [~ReF(w, b, )
~

+ ~imF(w, b, ) ] .

We now summarize our results. Writing the total de-
cay width of K+~m+v, v, as

(12)

where I,b, is the absorptive contribution of the n. e
graph, I ~;,~ (I ~;,~) the dispersive contributions of the m e
(D e) intermediate states, and Ig', the interference term
arising from the GIM cancellation of the m e and D e
amplitudes, we find

I,b, =0.02 X 10 s

r gjgp 3 75 X 10 s

r„„=0.27 X 10-' s-',
I'" =2.00X 10 s

I (K+ n+v, v, )=2.02X10 s

(13)

Assuming the three neutrino flavors to be equally prob-
able (i.e. , neglecting the effects of the charged-lepton
mass in the intermediate state) we obtain the long-
distance contribution to the branching ratio of
E+~m+vv to be

B (K+ ~n.+vv) iLo=0. 25 X 10 (14)

This is distinctly smaller than the short-distance estimate
given in Eq. (3).

It should be stressed that in the absence of form fac-
tors, the diagrams in Fig. 2 are each quadratically diver-
gent. The GIM cancellation removes the quadratic
divergence, but a logarithmic divergence persists. With
the inclusion of the pole-type form factors, both diagrams
converge separately, with the noncharmed intermediate
state n e giving the dominant contribution. (It may
be remarked that in the analogous calculation of E2
—+~ e e described in Ref. 7, a significantly more con-
vergent amplitude is obtained because of CP invariance,
which dictates a cancellation between m+v and m v in-
terrnediate states occurring in the t and t' channels, the
resulting rate for K2 —+m v, v, being 2 orders of magni-
tude lower than for K+ ~n.+v, v, .)

We turn now to a second LD contribution, depicted in
Fig. 3, which is the hadronic analogue of the quark dia-
gram in Fig. 1(b). The amplitude of K+~n+vv in this.
case may be written as
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currents only), the commutator term reduces to

&~'l[H. (0»Q '(o)]IK+ & =2& ~+I[H.(0),Fg]IK' &

= —&~ IH„(0)IK &

FIG. 3. Long-distance contribution to K+~~+vv involving
a nonleptonic ES = 1 interaction together with a virtual Z.

2 2
(~+~- IH. IK, ),

(23)

M= —M„u(k')y&(1+y, )U(k),G
P

where

(15)

where the last step follows from chiral-symmetry argu-
ments. ' The second term in Eq. (20) can be converted
into a matrix element for K+ —+a++soft m using PCAC
(partial conservation of axial-vector current):

f d~x (~'I T(H. (0)~„J„'(x)}IK

M„=f (~+(p)IT(H (0)J„(x))IK+(Q))e"'d x —(~+~'(soft) IH. IK+ & .v'2 (24)

M„=g+(q')(Q+p)„+g (q')(Q —p)„, (17)

where q =Q —p. The form factor g makes no contribu-
tion to the amplitude M (for massless neutrinos) and so
our task is reduced to determining g+ (q ).

We first attempt to determine g+ at q =0 using
current-algebra arguments. From Eq. (16), we have (after
an integration by parts)

iq&M„= —f d x e' "(n+IB T(H (0)J„(x))IK+) .

(18)

Using the identity

B„T(H (0)J„(x))=T(H (0)B„J„(x))
—[H (0),J (x,0)]

and taking the limit q ~0, we obtain

»m iq„M„= &
~+

I [H.(0) Q (0)]IK+ &

q~O

(19)

—f d x (m+
I T(H„(0)B„J (x))IK' & .

(20)

The first term involves an equal-time commutator of H„
with the weak-neutral-current charge

QNc F +F5 2sin2g Q™ (21)

where F3 and F3 are the charges associated with the
currents V„and A „. Using the fact that

[H~(0),Fq]=[H (0),Fq] (22)

(which is a consequence of H containing left-handed

with

JNc V3 + g 3 2 sin2 Vem
P P P 8' p (16)

V„and A „being the third components of the vector and
axial-vector isospin currents and V' the electromagnetic

9current. The operator H is the nonleptonic charged-
current Hamiltonian, which we assume to be a product of
left-handed currents. The matrix element M„can be
parametrized as

While the physical amplitude of K+ ~m. +m is
suppressed by the hI =

—,
' rule, a model is required to esti-

mate the off-shell amplitude K+ —++++soft m . As an
example, the ansatz of Sakurai, " based on an exact
AI =

—,
' Hamiltonian, yields

IH. IK,'&-

2m
l

2(m~ —m'. )
' (25)

Alternatively, a model in which the weak Hamiltonian
contains both AI =

—,
' and —,

' pieces, but is built from left-
handed currents only, yields'

(~ ~ (soft) IH. IK+ &

(~+~'IH„IK+ ) I,„„„...
m 1 C=1—— 1+—

3m —m 2C4

(26)

2 2
—&~+~ IH. IKs& (27)

Numerically,
' (a+a IH IKs ) =7.85 X 10 mz, F

=135 MeV, so that

g+ (0)=8. 1 X 10 (28)

To relate the decay K+~~+vv to K+~+ e+v„we
define the amplitude for the latter as

M(K+~m e+v, )= —[f+(Q+p)„+f (Q —p)„]
G

v'2

Xey"(1+y5)v, .

The relevant form factor f+ is given by

(29)

where C =C&+2C2+2C3 and C4 are coefficients defined
in Ref. 13 and estimated to be C=2.82, C4=0.4. In this
case, the off-shell amplitude difFers from the mass-shell
value only by an amount of order m /mz. In either of
the above models, the term in Eq. (24) is small compared
to the commutator term in Eq. (23), and will be neglected
below.

With these arguments, we have, finally,

I limiq„M I =(m~ —m'„)g+(0)
q~O
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(0)— sln~c
1

+ v'z (30)

1.6—

4t ~+~ + gp+c8)
4T.

Q I (K+—&m+v;v;)

0 +I (K+~m. e v, )

2

=3 =8.1X10
f+ (0)

(31)
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APPENDIX

(m) (L)))ImM = Im(M +M (A 1)

wheret eh first term reads

t) and ID(t) ofdetermine the integrals I„'"'""""'"'"'
fR f7 fEq. (8) we follow the lines o e .

( —k —
q

—l)' u(k)I' '(I+y, )U(k )5 g-f ' '((Q —q)')f ' '((p —
q1lvf = cosOc slnOc I

'n '
m. D intermediate'ndex i refers to ~,

(A2)

given by

—m D +(t —m„D)(g+p)

m + =m, .) The form factorscf. Eq. (9)]. e' by p, D* pole terms c . q.rm factors f' ',f' by p,and the form
-de endent termsgive

(A3)

rise
'

e to momentum p

)
' (mv=m, m(1—2kl/m v ) '(1 —2k'I jm v

states) areThe functions (the iex ression holds for Imland an analogous p

dyIj ) '(1 —2k'l jmv2) —1—
l

(1—2kl jmv

by choosing

d into in ed
' ' t rais according town1c a dh' h re transformed
'

+ 1/2
(A4)

[k' —k —2y(k'+k)] .Z=
2my

e rate terms such as
'

htforward to integraIt is then straig
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Jdqd/ I
qo lo (1+zl)

in a frame, where P =Q —k has vanishing spatial components and consequently Po=')/(Q k—) =&t. As a result we
obtain, in the case of the pion in the intermediate state,

d d I 4f dy I [gE(p+g) —EjfI( —mg+(t —m„)(p+g)]

where

and

t —m 2Pz —tz +2Pz t Ib 't —2Pz tI,' 't
=2@ dy—1/2 (Pz )' tz'—

2t + I Pz„+[(Pz )' tz']'—"](t m' )—

[(Pz )' tz'„]'—" 2t+ IPz [(Pz —)' tz']' —'I(t —m')

2~(t —m )

z2
t+Pz„(t —m' )+ (t —m')'

(A6)

(Aja)

(A7b)

with

z„=[k' —k —2y(k'+ k)]/m (A7c)

The corresponding expressions I,' '(t), Ib '(t), and zD are obtained changing m, m into mD, m, in (A7). If the
square root in (A7a) turns out to be imaginary the logarithm should be replaced by an arctan function according to the
usual rules of analytic continuation.

Inserting (A6) and (A7) into (Al) and (A2) and making use of definitions (4) and (g) we may easily extract the desired
functions I ( t) and ID( t) thus finding

I D(t)= f dy(I(t —m D)[2(Pz D) —tz D]+2Pz Dt IIb ' '(t)
2~(t —m' D)'

2Pz DtI,' ' '—(t))/[(Pz D) tz D] . — (AS)

This result corrects Eq. (14) of Ref. 7 which neglected the logarithmic term I, (t) As stated . in the text the functions
I D(t) approach unity, if form-factor masses m, m, are shifted towards infinity. This can be verified expanding (A8)
in terms of Pz and tz which are of order m z and m ~, respectively.
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