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Chiral-symmetry constraints on the critical temperature in QCD
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We study the restoration of chiral symmetry at finite temperatures in QCD. We focus on the role
light particles play in disordering the system and compute the critical temperature in the linear o.

model, the Nambu —Jona-Lasinio model, and in the nonperturbative one-gluon-exchange approxi-
mation in QCD. In all three cases we obtain T, =2f =180 MeV, which might be a model-
independent result.

I. INTRODUCTION

It has been known for some time that field theories
with spontaneously broken symmetries exhibit symmetry
restoration at high temperatures. ' The reason for this is
very simple. At finite temperatures, vacuum expectation
values are replaced by thermal averages. Thermal fiuc-
tuations tend to disorder the system and, at the point
where order-parameter fluctuations become comparable
to the order parameter itself, its value averages to zero
and the symmetry is restored. At zero temperature the
energy (density) of the vacuum is lowered by spontaneous
symmetry breakdown. Increase of the temperature gives
rise to an increasing tunneling rate between two vacua
(symmetric and broken). When this tunneling rate is
such that the system is in either vacuum with the same
probability, the two vacua become degenerate and there
is no advantage breaking the symmetry.

Considerable effort has been made in understanding
the behavior of a variety of field-theoretical models, as
well as that of the global symmetries at finite tempera-
tures. In recent years there has been an increasing ac-
tivity to determine the phase diagram of QCD because of
its relevence for the high-energy heavy-ion collisions and
the physics of the early Universe. Recent Iiumerical
studies suggests the existence of two phase transitions:
deconfinement and chiral-symmetry restoration.

It ig believed that deconfinement comes from the gluon
sector of the theory involving heavy quarks. On the oth-
er hand, chiral symmetry is the symmetry of the light-
quark (u, d) sector where the action does not possess a
scale; instead the scale is generated dynamically. At zero
temperature, chiral symmetry is broken spontaneously:
quarks acquire dynamical mass and gttt develops a non-
vanishing vacuum expectation value. The mechanism of
chiral-symmetry breakdown is modeled ' after BCS
theory of superconductivity, where the three scales of
the theory (coD, b, , T, ) are related by two BCS equations.
Analogy between the two phenomena suggests that a
similar connection between the fundamental scales of
QCD might exist as well. '

Recently we have seen a major breakthrough in numer-
ical simulations of QCD on the lattice. " Computer cal-
culations of various physical quantities such as quark
masses and the bound-state spectrum' have led to (nu-

metical) results that are in rather good agreement with
experiment. On the other hand, our analytical tools have
been rendered inadequate by the complicated nonlinear
structure of low-energy QCD. Therefore, understanding
of these numerical results is still incomplete. Most of our
analytical knowledge about the finite-temperature phase
transitions in QCD comes from studying simple models
and from making various approximations of QCD (Refs.
10, 13, and 14).

In this paper we study the constraints that chiral sym-
metry places on possible values of the critical tempera-
ture. In Sec. II we discuss the low-temperature expan-
sion and the role of the degeneracy factor for light parti-
cles. We shall apply these ideas to particular models
starting with the finite-temperature treatment of the
linear o. model in Sec. III. Then the restoration tempera-
ture in the Nambu —Jona-Lasinio (NJL) model is calculat-
ed in Sec. IV. Finally, the Schwinger-Dyson equation
calculation for QCD in the operator-product-expansion-
(OP+-) improved one-gluon-exchange approximation is
treated in Sec. V. For all three models, we obtain the re-
sult for the crttical temperature T, =2f =180 MeV (for
N, =3,Nf ——2) as first found in Ref. 10. In Sec. VI we
draw the relevant conclusions and suggest that such a re-
lation between the chiral-symmetry-restoration tempera-
ture and the pion-decay constant has model-independent
significance.

II. ROLE OF LIGHT PARTICLES
FOR CHIRAL-SYMMETRY RESTORATION

In a recent paper, ' it was shown that chiral symmetry
constrains the low-temperature structure of QCD. At
low energies the pion-decay constant sets the scale, and
the low-temperature expansion of the (chiral-symmetry-
breaking) quark condensate is

r

T2

N 12f2

where the pion-decay constant is f =90 MeV in the
chiral limit. The degeneracy factor Xf —1 counts the
number of (massless) Nambu-Goldstone bosons in the
theory which give the leading contribution to the thermal
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average in (1). The contribution of massive excitations
(e.g. , baryons and massive mesons) in (1) is exponentially
suppressed. As long as the number of light particles does
not change, the expansion (1) remains unaltered even at
higher temperatures.

It is then reasonable to invoke such an expansion gs the
first estimate of the critical temperature T, . Setting
( Pg) z. ——0 due only to the first two terms in (1) gives

C

3Nf
T, =2f

Nf —1

1/2

(2)

d3
n =(N —1)

(N2 1)
T g(3)

(3a)

For Nf ——2, Eq. (2) leads to T, =2&2f =255 MeV. This
estimate should be thought of as an upper bound to the
critical temperature; as the number of light degrees of
freedom increases, the degeneracy factor Nf —1 will be
replaced by a larger number, thus lowering T, in (2).
This is the case for a second-order phase transition.
Also, the fiavor dependence of T, in (2) gives the correct
large-Nf limit; ' as the number of light particles in-
creases, the system becomes disordered and the critical
temperature is lowered.

Regardless of the accuracy of the low-temperature ex-
pansion estimates of T„Eq. (1) also suggests the role that
the degeneracy factor for light particles plays in obtain-
ing the precise value of the critical temperature. Howev-
er, counting the contribution of these light degrees of
freedom in an interacting theory is model dependent.
Nevertheless, in the sections to follow, we shall demon-
strate that T, is model independent and its value is deter-
mined by chiral symmetry.

It is interesting that one can obtain an approximate
critical temperature of the same magnitude as found from
(2) along with a similar qualitative dependence on Nf by
assuming that the transition occurs at a point where the
light particles (pions) "touch" each other. The number
density of pions as a function of temperature is

hadrons (predominantly o) and nucleons. Nevertheless,
this geometrical model of the transition gives the right
scale and approximate degeneracy factor dependence for
T„it even predicts that T, —f because' r —1 if .

III. LINEAR u MODEL

In this section we shall apply the general ideas of Sec.
II to the concrete example of an interacting theory —the
linear u model. ' At T =0 the theory breaks chiral
SU(Nf)XSU(Nf) symmetry spontaneously: quarks ac-
quire dynamical mass, pions are massless Goldstone bo-
sons, and the o. mass is proportional to the order parame-
ter. As the system is heated, the splitting between the o.

and m's narrows. At T, the theory undergoes a second-
order phase transition: the quarks and o. meson, in addi-
tion to the pions, become massless. The thermal averages
are then no longer dominated by pions; the cr meson and
quarks contribute with equal weight to the degeneracy
factor.

The o.-model Lagrangian density is'

X= I/f( l 8+g o' + lg 1'5' ' T )1/J

+-, (a,~)'+-, (a„~)'—,&'(~'+ ~') ——(~'+~')' .

When p &0, the o. field develops a vacuum expectation
value and the chiral symmetry is spontaneously broken.
In the tree approximation, the particles have masses

m „=0, m = —2p, md„„f„g, ——

where f = —p IA, and md „ is the dynamically generat-
ed quark mass.

As the temperature is increased, the typical contribu-
tion to the scalar mass will be positive and proportional
to the temperature. On the grounds of dimensional
analysis, this contribution from the scalar sector gives

p (T)=p +C AT

When T reaches the critical value, space becomes filled
with pions, and at that close-packing point, the pion-
number density can be alternatively expressed as

pg
1T 4 7

~
7TP'~

(3b)

where r =0.67 fm is the experimental pion charge ra-
dius. Equating the two results for n, we arrive at

3'
4g( 3 )(Nf —1 )

1/3

For Xf——2, the above equation gives T, =25S MeV.
Again, it is clear that an increase of the degeneracy factor
reduces T, below 255 MeV. In particular, contributions
to the degeneracy factor will come from other bosonic

where C is a real numerical constant. At the point where
p2( T) vanishes, symmetry is restored and we have

2
/l n

A, C C

The only problem, therefore, is to establish the value of
C which is essentially a degeneracy factor. For that pur-

. pose we calculate m (T) and look for the temperature at
which it vanishes. At the critical point, there are only
three graphs that contribute to the 0. self-energy (Fig. 1).
Diagrams that are induced by spontaneous symmetry
breaking (not explicitly displayed in Fig. 1), such as trilin-
ear o. and o.mm terms, are all proportional to the order
parameter and, thus, vanish at the critical point.

Detailed calculations of the first diagram of Fig. 1 were
given in Ref. 10 and we will not repeat them here. The
other two terms are easy to calculate (the first and second



39 CHIRAL-SYMMETRY CONSTRAINTS ON THE CRITICAL. . . 325

FIG. 1. Self-energy of a meson in linear cr model. Wavy
lines represent o., dashed lines m's, and solid lines quarks.

graphs differ only by a combinatorial factor). In the limit
m (T)~0, the equation for T, becomes

T2
[A(3+N/ —1) 2g N—, ], (9a)

where T, /6 is the thermal distribution factor, the first
and second terms are due to the o. and m loops, respec-
tively, and the third term ( —2g N, ) comes from the fer-
mion loop (thus the "minus" sign). In order to display
the combinatorial factor and compare T, with f, as we
did using the dimensional arguments in (8), we use
A, =m /2f and g =m /4f . The former relation is
merely a definition of f from (6) and the latter is a
modified version of the Goldberger- Trieman relation
(m d„„fg ) supp——lemented with the QCD result'
m =2md „. Combining the above equations with (9a),
we arrive at

T2
m = m (3+N/ —1 —N) .

12j' (9b)

Factorization of m &0 in (9b) then results in

12

3+ (N/ —1) N, — (10a)

and correspondingly, the combinatorial factor of (8) is
C =(3+N& —1 N, )/12. W—hen N&

——2 and N, =3, the
chiral-symmetry-restoration temperature becomes

T, =2f (lob)

Here, an interesting cancellation has occurred in (10a):
X, from the quark loop has been balanced by the degen-
eracy factor for the o loop, leaving the (light) pion degen-
eracy factor (N& —1) to control the critical temperature
as we anticipated from the low-temperature expansion in
Sec. II. Also, for large N& we find from (10a) that
T, —f /N& which is the correct behavior of the critical
temperature in this limit. '

IV. N JL FOUR-FKRMION MODEL

Like the linear o. model, the Nambu —Jona-Lasinio
(NJL) model satisfies basic relations of current algebra
that are determined by chiral symmetry. Perhaps the
biggest difference between the two models is the way they
describe scalar mesons. In the NJL model, o. and ~
mesons are realized as quark-antiquark composites,
whereas in the cr model they are elementary. The two
models are thought to correspond to low-energy (o mod-
el) and intermediate-energy (NJL) effective theories of

QCD. The NJL model is a four-fermion (nonrenormaliz-
able) theory defined by the Lagrangian density

X=t/i(iP+go+igy5m"w)g —,—'(cr +n ),
where 0. and m are auxiliary fields that need to be in-
tegrated out in the Hamiltonian. Fermion fields trans-
form according to the fundamental representation of the
color-SU(N, ) and fiavor-SU(N&) groups; ~ are the genera-
tors of the Aavor group and color indices have been
suppressed. The NJL coupling constant g has dimension
of inverse mass. An ultraviolet cutoff A will be used in
order to regulate short-distance singularities.

A finite-temperature treatment of the NJL model is ex-
pected to be an adequate alternative to the much more
complex low-energy QCD. The model has been treated
from different points of view by several authors. ' ' Al-
most uniformly, the general strategy was to fit the values
of the cutoff A and coupling constant g so that the model
reproduces phenomenological values of ( gitj) and f„or
some other choice of measurable parameters, and thereaf-
ter T, was determined. However, as we shall demon-
strate in this section, an important identity'" between T„f, and the gap mass b. has not been emphasized. This
relation fixes the value of T, in terms off (or b, ), regard-
less of the choice of A and g:

2~T
v'3

(12)2m

N
~'-+

2
C

In order to derive (12), we start with the Schwinger-
Dyson (SD) equation for fermion dynamical mass b, at
finite temperature:

b(T)=G j d ~ ~(+)
1 — 2

(2~)'
(13)

G —G,"
GG,

In Ref. 14 it was argued that for (G —G, )G, '&& I,
chiral-symmetry breakdown occurs in the infrared regime
of the theory, and the way one regularizes the ultraviolet
singularities becomes unimportant. It is therefore possi-
ble to establish the relationship between the physical
quantities relevant for chiral symmetry without reference
to the cutoff. The expression for the pion decay constant
at T=ois]4

J d g
(2ir) co~

(15)

where G:g[2N&N, +—(N/ —2)/2] and ~~ =[&
+b, (T)]' is the energy of massive quarks. The first
term (2N&N, ) in G comes from the Hartree (cr tadpole)
contribution to the self-energy, while the second term
(N& —2) is composed of two parts: m exchange (N& 1)—
and a exchange (1 with opposite sign).

At zero temperature the critical coupling, below which
quarks remain massless, is G, =4' /A . On the other
hand, the restoration temperature, which is obtained
from the gap equation (13) in the limit b.( T, )~0+, is'

2
&T.

(14)
3
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Solving the integral in (16) is straightforward, but not
necessary. At an intermediate stage, Eq. (16) can be writ-
ten as

d qf~ =gnqqNc
(27r ) co

(17)

Comparing (15) and (17), we arrive at the Goldberger-
Treiman relation

~=g.„f.
Thus, in terms off, the relation (12) for T, becomes

Using the gap equation (13), this relation (15) leads
directly to the important identity (12).

Connection between f and 6 can be obtained from
the definition of quark-pion coupling (g ):

if k„=g N, Tr[y„y5S(q)y~S(q+k)] .
d

(2' )

(16)

4
iX(p) =( ig) C—Ff D, (p q)y"S—(q)y', (20)

quark mass and coupling as a function of momenta. '

This crude approximation required an (artificial) ultravio-
let (Debye) cutoff in the spirit of the nonrelativistic BCS
theory of superconductivity. Demanding a, =m. /4,
where one expects the running QCD coupling to freeze-
out, the implied ka cutoff in turn led to a BCS-type
equation for T„which was numerically determined to
be' T, = 176 MeV.

Here we improve this approach by introducing a
momentum-dependent dynamical quark mass in the spirit
of the operator-product expansion (OPE) in QCD (Ref.
23), which then provides a natural cutoff in the gap equa-
tion. Such a dynamical quark mass md„„(p ) is thought
to run like 1/p for2 p ~ md „(neglecting logarithms)
but freezes out when p & mdyn Translating this time-
like result to the spacelike region, we introduce a damp-
ing factor —md„„/p for the self-energy.

At finite temperatures, the gap equation has the form

2 2T, 1 N, g
N, =— 1+' 12f' 2 4'' (19)

To simplify this expression further, we adopt a recent
QCD result g qq =2'/+N . Substituting this in
(19) leads to T, =2+3/N, f and specializing to N, =3,
we obtain the desired relation T, =2f, the same value of
T, that we have derived in the o model Eq. (10).

where D„and S(q) are the finite-temperature gluon and
quark propagators and CF ———', . We do calculations in the
real-time formalism' in Landau gauge, where wave-
function renormalization is absent [therefore, we have
X(p =md„„)=md„„].

In this case, we will use the following generalization of
the asymptotic form of the dynamical mass at finite tem-
peratures:

V. QCD CALCULATION OF QUARK SELF-ENERGY

Finally, we turn to the calculation of the Schwinger-
Dyson (SD) equation for the fermion self-energy in QCD
at finite temperatures. Such an approach has been at-
ternpted with the simplified assumption of a constant

&(p') =+md'„(T) (21)
p

for p & m d „. Constant integration in the qo plane' for
the SD equation (20), incorporating the natural cutoff
(21), gives the gap equation for the critical temperature in
terms of the zero-temperature dynamical mass and cou-
pling constant:

md„„(T)=
2(x

dk mdyn+
md'. EI, (T) 2

~

k
~

—md „

dk Ek(T) - dk mdyn Ek(»
md&„(T) f '"

tanh + f "tanh
o Ei, T 2T md' Ek T k 2T

m dyn
(22)

Tc =0.52rndyn . (23)

For md„„——320 MeV, Eq. (23) gives T, = 170 MeV.
Possible improvements of the above result could be

achieved by implementing the renormalization-group

where we have denoted El, (T)=[k +md„„(T)]' . The
value of the coupling constant a, in (22) is fixed by the
zero-temperature gap equation, which numerically turns
out to be o., =~/3. Substituting the latter value back
into (22), and factorizing md„„(T), the value of T, at
which md„„( T, ) =0 is found numerically to be

l

corrections into the running coupling constant. We have
repeated the calculation of the critical temperature with
such a (T independent) QCD running coupling constant
and found that these improvements lead to an
insignificant correction to the previous result. As for the
T dependence of a„ the fact that our quark mode1 pre-
dicts T, =170 MeV implies that vari'. tion of a, with T
can be neglected in the broken phase. (For NI ——2 and

N, =3, AOc0=270 MeV& T, .) It is also possible to cal-
culate f in this OPE-improved quark-model scheme, '

with the result f =87 MeV. Therefore, the conclusion
that T, —170 MeV in this model reinforces, with a high
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degree of accuracy, our belief once again that T, =2f .
In these approximate calculations of the gap equa-

tion, we have neglected some very important aspects of
finite-temperature QCD. Whereas the relevance of
conAnement on chiral-symmetry breaking at zero temper-
ature is arguable, it is clear that at finite temperatures,
the two issues have to be addressed together. There are
clear indications that both deconfinement and chiral tran-
sitions occur at the same point or, at least, very close to
each other. ' Also, it has been known for some time that
deconfinement is driven by Debye screening and, there-
fore, one expects that this eft'ect should have some bear-
ing on the chiral-symmetry-restoration transition. Calcu-
lations of the lower-dimensional (confining) gauge
theories indicate that both transitions are driven by the
screening.

In light of the above remarks, it is rather surprising
that our simple approximation leads to a consistent pre-
diction for T, . %'e believe that one of the reasons for this
is due to the phenomenological inequality: TD (T,(AQCD (pl dy where TD is the deconfinement tempera-
ture. Thus, the crude approximations of this section,
neglecting the conAnement, Dcbye screening, and T
dependence of the coupling constant, are justiAed.

Similar calculations of the SD equation in Coulomb-
gauge QCD (in the instantaneous approximation) were
performed in Ref. 27. It is interesting to note that despite
the dift'erent nature of the approximation the authors
used, their results led to the conclusion that T, =2f (nu-
merically), regardless of the choice of the parameters they
used to At the experimental data.

VI. CONCLUSIONS

We have calculated the chiral-symmetry-restoration
temperature in three different models related to QCD.
Regardless of the model, and the di6'erences between the
degrees of freedom each of them describes, the result
T, =2f seems to prevail. We demonstrate how chiral
symmetry constrains the value of T, in a similar manner
as it constrains the low-temperature expansion. Contri-
butions from the light excitations with masses M ((T,
dominate the thermodynamic averages and drive the res-
toration transition. A simple explanation of the relation-
ship between T, and f is given in terms of the counting
factors for light particles that are determined by the
chiral symmetry and the mechanism of its breaking. The
value of T, =180 MeV is consistent with the latest lattice
predictions. This increases our hope that T, =2f
might be a result of some importance beyond the simple
models we used in this paper.
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