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Gauge-invariant correlation functions
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A formalism is discussed that gives correlation functions, the poles of which define the physical
excitation spectrum in gauge theories. Fermionic excitations in QED are used as an example.
The fermion spectrum in a high-temperature plasma is studied as an illustrative application of the
formalism. The connection to kinetic theory is made.

y A(x) =0 Vx (2)

For sake of simplicity assume for a while that the dis-
placement y is in the three-direction, y =(0,0,0,y3). The
independent gauge fields can be chosen to be A) and A2.
Ap is not a dynamical field but it can be expressed by A)
and A2 and their conjugate momenta. There is a residual
gauge freedom; we are still allowed to perform gauge
transformations which are independent of x3. To fix the
gauge completely, we have to specify the value of Ao and
its derivative with respect to x3 at an arbitrarily chosen
reference point x 3t

) (see, for example, Refs. 3 and 4):

Ap(xp, x ~, X2,X3 ) =P(xp, x),X2),

83Ap(xp, xi, x2, X3 ) =Q(xp, x),X2) .
(3)

In nongauge theories the poles of propagators give the
spectrum of the elementary excitations. In gauge theories
this is generally not true due to the appearance of non-
physical (ghost) states. However, suppose that we choose
a gauge condition that both fixes the gauge completely
and admits a time-independent Hamiltonian. Because of
complete gauge fixing there are no unphysical states in the
Hilbert space spanned by the field operators. By using a
complete set of eigenstates of the Hamiltonian, the propa-
gator can then be cast in the spectral representation as in
nongauge theories. ' We show, however, that the re-
quirement of complete gauge fixing can be relaxed, so that
it is enough if we have a gauge condition which leads to a
propagator that is invariant under the residual gauge free-
dom. This is because then the "physical" propagator,
which we can obtain by deleting the nonphysical states by
complete gauge fixing, must have this same invariant ex-
pression.

To be specific, consider fermionic excitations in a vacu-
um or in a homogeneous medium with the interactions de-
scribed by QED. If we study the correlation of the fer-
mion fields at an arbitrary point x and a point shifted by a
displacement y, the corresponding propagator

S(y) -i&)tt(x+y) y(x) &,

which depends only on y, is manifestly gauge dependent in
the sense that different incomplete gauge fixings give
different results. Now let us choose a gauge condition so
that the photon field vanishes in the direction of the dis
placement:

C(y) -i&)lt(x+y))tt(x)& l y. g =p

=i&[e"V(x)]y(x)& ly A =P (s)

in a manifestly gauge-invariant form. This can be done
obviously by replacing the partial derivative by the covari-
ant one. So, we have the correlation function

C(y) -i&le' y(x)l ttt(x)&,

which is gauge invariant and reduces to the fermion prop-
agator, if we fix the gauge completely by the conditions
(2) and (3). Consequently, the physical excitation spec-
trum can be obtained from the poles of this correlation
function.

It should be noted that the procedure applied here is
very similar to the calculation of the partition function in

gauge theories. The physical, gauge-invariant, partition
function '

Z —„[dA]AF[A]b(F[A])exp d x %[A], (7)

agrees with the naive definition Tre ~ in a completely
fixed gauge. In an arbitrary gauge, Tre ~ has no physi-
cal meaning due to the appearance of the unphysical
states. As a matter of fact, the analogy is even closer.

Within the gauge condition (2) the fermion propagator
does not depend on this residual freedom. To see that,
perform a gauge transformation a(x). The propagator
changes then to

ib(x+y) —a(x)1 —
(

(4)
But the allowed residual transformations were those that
do not depend on the coordinate in the displacement direc-
tion (three-direction) and hence a(x+y) =a(x) estab-
lishing the invariance of S(y) under the residual gauge
transformations. We can imagine that we had fixed the
gauge completely (by specifying the functions P and Q).
The physical propagator obtained in that way is then
necessarily this residually invariant propagator. Hence,
we find that the unphysical states decouple in the fermion
propagator when the gauge is chosen so that the photon
field vanishes in the direction of propagation.

However, the gauge condition (2) is not the best choice
for practical calculations. We would like to write the
physical correlation function
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~„(r) " =0. (9)

This propagator then has the same form as Eq. (8) except
that the integration contour is now the curve r(r). Thus
we have obtained another correlation function which does
not necessarily coincide with the original one having the
straight-line integration path. However, this new correla-
tion function with arbitrary integration path C~(y) is re-
lated to the gauge condition (9), and this gauge does not
generally provide space time tran-slationally invariant
states. These are an essential ingredient in the derivation
of the Kallen-Lehmann representation. ' Hence, the re-
lation of C„(y) to the physical excitation spectrum is not
known. Consequently, the correlation function defined by
the straight-line integration path remains the only one

I

Tre ~ in the axial gauge 43=0 is independent of the re-
sidual gauge freedom, and hence the unphysical states do
not contribute to it.

Using the trick of Ref. 6 we can rewrite Eq. (6) in the
form

C(y) =((p(x)exp —(e dw" A„(w) p(x)), (8)

where z =x+y and the integration is along a straight line
from z to x. Note that the correlation function given by
Eq. (8) has been known for a long time to be gauge invari-
ant (see, for example, Refs. 7-9). However, the point
that we would like to make here is that its relation to the
fermion propagator in gauge (2) together with the invari-
ance of the fermion propagator under the residual gauge
freedom in this gauge is the fact which gives the physical
meaning.

It is known that for any completely fixed axial gauge
on the lattice there is a unique path r(r) joining the end
points x and z in Eq. (8) which gives the propagator in
that gauge. Along this path

whose physical meaning is established.
The integral in the exponent in Eq. (8) can be evaluated

if the photon field is expressed in terms of its Fourier com-
ponents:

ie— dw" A„()v) e y p (e '" ~ —e "~).~()
alp y ~ p (10)

Using the Schwinger-Dyson equation the propagator can
be written in terms of the proper self-energy. This is also
true for the correlation function (6). Recall that it coin-
cides with the fermion propagator in a particular gauge.
However, when the fields are expressed in terms of their
Fourier components, the self-energy still depends on the
direction of propagation:

—iq y
C(y) "~g—z(q, q, ()

'

where q)( (q y/y )y. Thus, Fourier transforming C(y)
to momentum space is not a trivial operation. In certain
physical situations, though, this is not necessary. For ex-
ample, if we consider screening of static charges in a
medium, y is the spatial separation of the charges. Then
q~I is the component of q along this spatial direction. If we
study fermionic oscillation modes in a medium, we can do
that physicall~ by probing the medium with a plane-wave
hit: -h(t)e' '". Then we study the system after a long
time (in order to remove the contributions of transient
modes). This means that we let yo))!y( and hence

go
Let us now consider the self-energy in one-loop order.

It has two contributions: first, the ordinary fermion self-
energy and, second, the terms arising when the exponen-
tial in Eq. (8) is expanded up to order e . Both of these
are gauge dependent. However, the gauge dependence
disappears in the sum already before the integrations.
The result is

ie2 + y'(p'+m)(g —m)+(g m)(p'+m)y'—
"& (p' —m')(q —p)'

2

, Np' —m ') (y' —m) —(g —m)(g+m)(g —m)]
ly (p —q)]'

This result can also, of course, be obtained directly in the
axial gaugey A 0.

Let us study more closely fermionic collective modes at
finite temperature. This is indeed an interesting case, be-
cause in a vacuum (by direct calculation to two-loop or-
der) the poles of the propagator are gauge invariant, ' but
at finite temperature this is not so. Because of the appear-
ance of the heat bath, the self-energy in Eq. (11)depends
separately on qo and ( q (. Moreover, as discussed above,
we let yo~ and hence the gauge becomes formally the
temporal axial gauge, so that q~~ qo. Furthermore, we
have to consider the retarded correlation function, which
is the analytic continuation of the corresponding thermal
function. [Strictly speaking the thermal propagator in the
axial gauge is not an analytic function but the real part of

an analytic function. The correct way to obtain the re-
tarded function in that case is to use the prescription by
Leibbrandt" and let the axial-gauge poles y (p —q) + ie
approach the real axis after all the integrations have been
completed. ] For sake of simplicity consider only the
massless case. To find the collective modes, we have to
find the poles of the propagator, i.e., solve the equation

(qo —~o)'-(q —~)'
We seek the solution in the form

qo -co(q) —i y(q), (14)

where m is the real frequency and y is the damping con-
stant. We expand the self-energy in the limit qo, !q! « T
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up to order T. Assuming that the damping is small,
y« to, the leading term —T /qo gives the frequency of
the oscillations. ' Note that this term in the ordinary
self-energy is gauge invariant and the terms arising from
the expansion of the exponential factor in Eq. (8) do not
contribute here. The term -T (which turned out to be
purely imaginary) then gives the damping constant y.

Let us concentrate here on the long-wavelength limit
(q 0). The equation giving the pole then reduces to

e2T2 e2T e2T2
co —iy —i +i@ +8' 8z 8~2

(is)

It should be noted, however, that higher-loop corrections
may change the damping constant in the way explained in
Ref. 13. Anyway, Eq. (8) provides a gauge-invariant way
to calculate those corrections.

Two remarks are in order. First, if we calculate the (re-
tarded) self-energy using the covariant gauge, the imagi-
nary part is

2

ImZ(q 0) (7 —9g)
16m

' (i7)

where g is the gauge parameter. Then if we naively calcu-
late the damping constant from Eq. (13) in the covariant
gauge, we get a result which depends on the gauge param-
eter and is even negative in some gauges. However, that is
not an indication of an instability, but merely arises from
an incorrect treatment of the unphysical degrees of free-
dom in a gauge theory.

Second, consider the statistical density matrix of kinetic
theory

p(x), x2) ly(x/) y(x2) . (i8)

where the last term arises when the real part of Zo(qo) is
expanded in powers of y/to. The smallest frequency and
the damping constant at this frequency are then

too-, y(0)-e'T e T
2 2 16m

It has a physical meaning, and should then have the same
value in any gauge. However, if the gauge is not com-
pletely fixed we get diff'erent results due to the unphysical
states. Analogous to Eq. (2) we can choose the gauge so
that the photon field vanishes in the direction of the rela-
tive coordinate:

(x2 —x)) A(x) -0 (i9)
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Then the density matrix is invariant under the residual
gauge freedom. Analogously with Eq. (S) we can write
the density matrix in a manifestly covariant form

p(x,y) -[e ' ' 'tlr(x)']e~ 'tir(x), (20)

where. x and y are the center and relative coordinates, re-
spectively. The Wigner function of kinetic theory can be
obtained by Fourier transforming the density matrix with
respect to the relative coordinate. The "physical" gauge
condition (19) explains why in the Wigner function the
ordinary derivative must be replaced by the covariant
one, s or equivalently why a phase factor containing the
line integral from x ~ to x2 appears in the correct
definition. ' This is in addition to the observation that
the correct classical limit of the Wigner function is ob-
tained if and only if the integration path in Eq. (8) is a
straight line.

In summary, we have elaborated on a formalism that
leads to gauge-invariant correlation functions, the poles of
which correspond to the physical excitation spectrum. An
essential ingredient of this formalism is the fact that the
unphysical states decouple in the fermion propagator if
the photon field in the direction of propagation is gauged
away. The details of the calculation of the fermionic spec-
trum at finite temperature with the full momentum depen-
dence of the damping constant will be published else-
where.
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