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Quantum jumps, geodesics, and the topological phase
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The final state of a quantum jump due to a filtering measurement is obtained by parallel trans-

porting the initial state along a geodesic. It is shown that a topological phase arises in any cyclic
series of measurements. Unitary time evolution is not important for it to appear. The
Aharonov-Anandan phase is derived as a limiting case.

Berry's discovery' that a quantum state acquires an ex-
tra phase when the Hamiltonian of the system is trans-
ported adiabatically along a closed curve in a parameter
space has attracted much interest in the last few years.
Simon expressed Berry's phase as the holonomy of a
canonical connection on the eigenstate bundle of the
Hamiltonian. The non-Abelian extension has also been
studied. Aharonov and Anandan have given a generali-
zation of Berry's phase. They have shown that a topolog-
ical phase emerges in any cyclic evolution which is
governed by the time-dependent Schrodinger equation.
The phase they have discovered is independent of the ac-
tual form of the Hamiltonian or of the assumption of adi-
abatic evolution.

Recently a number of experimental works ' have re-
ported the observation of the topological phase. In some
of these experiments, "' however, the cyclic process is a
series of "quantum jumps. " In those experiments the
measured topological phase has been compared with the
Aharonov-Anandan phase arising from parallel transport
along a geodesic ploygon. The polygon in question is
spanned by points representing the various quantum states
the system has been set in by the experimental apparatus
during the cyclic process. It has been emphasized'2 that
using the geodesic polygon in interpreting the experiments
requires further theoretical justification. It has also been
recently suggested' "' that, in some sense, the Ahar-
onov-Anandan phase is a continuous analogue of the one
discovered by Pancharatnam in the 1950s. '" Moreover,
the experimental observation of Pancharatnam's phase
has brought to light yet another interesting generaliza-
tion, '' namely, that the unitary time evolution is not
essential for the appearance of the Aharonov-Anandan
phase. Our purpose here is to clarify the above-mentioned
questions by reformulating some basic facts of quantum
measurement theory in geometric terms.

It is clear that the phase acquired by the wave function
in a cyclic process consisting of filtering measurements is
obtained by multiplying the appropriate projection opera-
tors. This elementary fact is our starting point in the
present investigation. We will show that the result of the
"quantum jump" due to a filtering measurement is the
same as if the wave function had been parallel transported
along the shortest geodesic connecting the corresponding
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Consider a cyclic evolution of the wave function which
projects to a closed curve C in CP . The topological
phase factor acquired by the wave function is nothing but
the holonomy of connection (2) along C. The projection

S +' ' CP gives rise to an isomorphism between Klg&
and Tlz&&zl(CP ), where ~A&(A

~
is the projection opera-

tor representing the one-dimensional subspace spanned by
~

A& in R. This isomorphism induces a scalar product on
T l~&~~ I

(CP ) . from ( )R. In fact, this construction
yields"' the canonical (Fubini-Study) Riemannian
metricon CP .

Now consider two rays [A)(A
~

and
~
8)(8 ! which are

not orthogonal to each other. Geometrically, this means
that ~A)(A

~
and [8&(8 [ are not antipodal points of the

complex projective line they span in CP . Suppose that
the system's wave function is

~
A& and measure it by the

"polarizer"
~
B)(B!. This filtering will result in the state

vector l&8)(8 ~A). We are going to recover the normal-
ized vector

~
8&(8

~
A)/ ( (8 [ A& ] by parallel transporting

~
A& along the shortest geodesic connecting

~
A)(A! and

~
8)(8

~
. The geodesic in question is the shorter arc of the

two points in the projective Hilbert space. The Aharon-
ov-Anandan phase will be derived as a consequence of our
observation, without any reference to the Schrodinger
equation. We shall also give an explanation of the use of
the geodesics in interpreting the experiments. "'

For simplicity, let us consider a quantum system whose
state space R is of finite dimension, R =-C +'. %' carries
the usual Hermitian scalar product (). As a real vector
space %=IR + and the real part of ( ), ( )~, is a Euclide-
an scalar product on it. The unit sphere

S' +'-[[A&E JY
~

(A~A) lj

is a principal U(1) fiber bundle (the Hopf bundle' ) over
CP, the projective Hilbert space of the system. The
tangent space TI~&(S +') consists of vectors

~
v) E R

which satisfy (v
~ A)R 0. There is a canonical connection

on the bundle S +' ' CP defined by the decomposition
T

I
a&(S +') +Is&H la&
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I A&cos(sp)+ I u&sin(sp) =
I 8&exp(igge) .

First we multiply by (A I and get

cos(sp) (A I 8)exp(ipge) .

(4)

It follows from I (n) = —I (0) that y(n) =y(0). This in
turn implies that any copy of CP'|:CP is of radius
and that for the shorter arc of the great circle passing
through IA)(A I and I8)(8 I we have 0~ s ~sp& x/2.
Thus, cos(sp) )0 and from (5) we obtain

&A I 8)- I &A I 8& I exp( —idge) .

Equation (6) yields the key formula of this paper:

i 8) p(.y„)- i 8&
&8 I~& (7)

This tells us that the result of the "quantum jump" (in
terms of the normalized state vectors)

i~) I )
&8IA& (8)

i&8I~&i
is the same as if the wave function I A) had been parallel
transported along the shortest geodesic connecting

I A)(A I with I 8)(8 I in the projective Hilbert space. (It
seems to be a somewhat philosophical question whether
the wave function actually follows the geodesic during a
quantum jump. )

Now we investigate the change of the phase of the state
vector induced by a cyclic series of filtering measure-
ments. Let IA;)(A; I (i 1, . . . ,n+1) IA~)(A~ I

IA„~~)&A„+~ I be the projection operators (with the
condition (A; I A;+ ~

) e0) associated with the sequence of
measurements. Let us prepare the system to be in a pure
state IA&) G n '(IA&&(A& I) and then subject it to a
series of filterings described by the projection operators

I AI, &(Ak I (k 2, . . . ,n + 1). As a result of this cyclic
process, the state vector will change as

I&)&—I&&&&&& i&n&&&n l&n && &&-zl&r& (9)

In particular, it will pick up the phase factor
. &~, i~, )

I &&i I&.&(&. Iw. -i& &&21&i) I

Let y; be the shortest geodesic in CP between I A;)(A; I

and I A;+ &)(A;+ & I . Applying the previous arguments we
conclude that the total phase change of the wave function

I A ~& due to a cyclic measurement is the same as if I A&&

had been parallel transported along the geodesic polygon

great circle passing through IA)(A I and I8)(8 I on the
copy of CP ' =S they span. On the other hand, this geo-
desic y in CP is the projection of a horizontal geodesic I
lying in S +'. I starts at IA) c n '(IA)(A I) and
ends somewhere on the circle n '(

I 8)(8 I ), say at
I8&exp(ipse). We are interested just in the end point of
I. It is easy to see that all the horizontal geodesics of
S +' starting at I A) are of the form'

I (s) =
I A) cos(s) + I u) sin(s) (3)

for some Iu) satisfying (u IA)-0, (p/p) 1. Therefore
we have to solve, for

I 8)exp(ipse), the equation

y~ U y2U U y, (for n 3, see Fig. 1). Since a measure-
ment is not a unitary process, in general, it is clear that
unitarity is not essential for the topological phase to ap-
pear.

The considerations above immediately explain the use
of geodesics in interpreting the experiment. " To under-
stand why the use of geodesics in Ref. 12 yields the
correct result we can argue as follows. Consider, follow-
ing the authors of Ref. 12, a positive-helicity photon
propagating into direction k. Denote this spin state by

I k, +). It satisfies (s k) I k, +) I k, +), where s;
(i 1,2, 3) are the spin-1 generators of SO(3). For
k (sinPcosa, sinPsina, cosP), in the representation where
s 3 is diagonal, we can choose

~ )
1 ~ cosp —;~ ~ slllp 1 W cosp l~ (11)

2
'

Jp
As a result of applying an ideal mirror whose normal vec-
tor is fi, the spin state of the photon changes as'

ik, +&—e' Ik', —
& (12)

i&f', —ik, +&I
'

where k' k —2(k fi)n. As the mirror flips the spin state
of the photon, a circuit with an odd number of reflections
would give a final-spin state which is opposite to the
initial-spin state. In the symmetric arrangement of the
experiment the effect of the additional phase factor e', as
well as the dynamical phase difference, related to the opti-
cal path length have been compensated. The unit vectors
k, —k', . . . , associated with the pure spin-state density
matrices I k, +&(k, + I, I

k', —&&k', —I, . . . , the photon
goes through during the experiment span a geodesic po-
lygon on the sphere of spin directions. By inserting the
corresponding projectors into Eq. (10), the resulting topo-
logical phase shift (without the dynamical phase, and the
extra e' factors) turns out to be the negative of the solid

angle of this geodesic polygon. In fact, this is the phase
which has been observed. ' It is worth noting that the

CBIA&
ICBIA&I

FIG. 1. Geometry of the quantum jump and the topological
phase.
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projectors ~ k, + &(k, +!, ~
k', —

& &k', —[, . . . , also span a
geodesic polygon lying in CP, the projective space of a
three-component spin. From the general theory, the phase
shift is also equal to the holonomy angle of connection (2)
belonging to this latter geodesic polygon.

Finally, we show that the Aharonov-Anandan phase is
the continuous limit of the phase induced by a cyclic se-
quence of measurements. Indeed, let us suppose that the
history of the system is given by a smooth closed curve
C(r)[0» r» 1, C(0) C(1)] in the projective Hilbert
space. Physically this means that the system passes
through the filtering devices described by the curve
C(r) =

~
A(r)&&A(r) ~. Approximating C(r) by geodesic

polygons, we see at once that the state vector picks up a
phase factor e'~, which is entirely due to the "continuous
measurement. " e'~ is the element of the holonomy group
of the canonical connection (2) corresponding to the
closed curve C. This is just the Aharonov-Anandan phase.
It is clear that the picture given here is valid also for a
quantum system whose state space is of infinite dimension.
The connection (2), the geodesic equation (3), etc. , all
make sense' in that case as well.

The original derivation of the Aharonov-Anandan
phase rests on the following fact: For any solution ! itt(t) &

of the Schrodinger equation t8, ! iit(t)& =H(t)
~

ilt(t)&

[&lit(t) ~
y(t)& = 1], the curve

! y(t) & =exp[i&yr(t)! H(t)
~ ilt(t) &]

~
ilt(t)&

is the horizontal lift of
~

y(t)&&lit(t) !.On the other hand,
we have derived the topological phase from elementary
quantum-measurement theory. It is interesting to observe
that there is a consistency between the measurement pos-
tulate and the time-dependent Schrodinger equation:
They give rise to the same topological phase for any cyclic
evolution.

Note added. After the manuscript had been submitted
there appeared a paper by Samuel and Bhandari' which
treats altering measurements in terms of parallel trans-
port. We have also received a report of the work of Anan-
dan and Aharonov' containing very similar results. We
thank J. Anandan for sending us this work before publica-
tion.
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terest in the topological phase and to P. T. Nagy for a
helpful discussion of the geometry. We would also like to
thank P. Forgacs, Z. Horvath, P. Hrasko, and L. Palla for
several useful discussions and comments. The financial
support of the Hungarian Academy of Science-Soros
Foundation is gratefully acknowledged.
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