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Preconditioning the Kogut-Susskind fermion matrix
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Preconditioning has been successfully used to accelerate the conjugate-gradient algorithm for in-
verting the lattice Dirac operator in the Wilson formulation. However, techpicql problems have
arisen when trying to apply it in the Kogut-Susskind formulation. We discuss attempts to circum-
vent the technical problems and to find a successful way to precondition the Kogut-Susskind fer-
mion matrig.

I. INTRODUCTION

The most time-consuming part of numerical simula-
tions of lattice gauge theory involves solving systems of
equations of the form

where M is the Dirac operator for x, and b is a source
vector. This is usually done using the conjugate-gradient
(CG) algorithm. Recently, attempts have been made to
accelerate the basic CG algorithm by means of "precon-
ditioning. "' The idea is to find a matrix M which is a
reasonable approximation to M but which is easy to in-
vert and then to solve the system of equations

(M M) 'M Mx =(MtM) 'Mtb .

If M really is a good approximation to M then
(M M) 'M M will be nearly diagonal and its condition
will be much better than that of M M so the CG algo-
rithm will converge in far fewer iterations.

One way to find a good preconditioning matrix for M is
by a method called incomplete Cholesky decomposition.
An incomplete Cholesky decomposition of a sparse ma-
trix M is a decomposition into lower and upper triangular
matrices, L and U, which are themselves sparse but
whose product is only an approximation to M. A simple
choice for L is to let it have the same sparsity pattern as
the lower part of M; indeed, to give it the same elements
as M below the diagonal and just to change the diagonal
elements in such a way that the product LU will have the
desired diagonal. It is this form of I. which has so far
been used in preconditioning the Wilson fermion matrix.
A problem arises when p reconditioning the Kogut-
Susskind matrix because it is not diagonally dominated.
Its diagonal elements are equal to 2m, where m is the fer-
mion mass, while its off-diagonal elements are SU(3) ma-
trices. This leads to the incomplete Cholesky method
becoming unstable.

Now, consider the matrix 6—=M M. Its diagonal ele-
meots are equal to 8+4m and its off-diagonal elements
are products of two SU(3) matrices, so it is diagonally
dominated and we can try to precondition it directly.

This Brief Report describes various attempts to find a
good preconditioning matrix for 6. As in the Wilson fer-
mion case, it proved to be possible to find a precondition-
ing matrix 6, which would reduce the number of itera-
tions required in a typical implementation of the
conjugate-gradient algorithm by a factor of about 3.
However, the computational overhead per iteration was
such as to reduce the advantage gained to a factor of
about 10%.

II. PRECONDITIONING

To define M and 6 more precisely we must first assign
an ordering to the sites of the lattice. For example, if we
let the site i have components i =(i„,i,l„i, ) then we can
adopt the usual convention of writing

i =I[(i,—1)n, +i, —1]n +i —1In +i

where n, n, n„and n, are the linear extensions of the
lattice in the x, y, z, and t directions. M can be defined in
terms of 3X3 matrices connecting sites i and j of the lat-
tice:

M; =2mI if j =i,
M; =+(—1) '"U) if j=i+v,
M;. =0 otherwise,

where m is the fermion mass, I is the 3 X 3 unit matrix,
U," is an SU(3) matrix, and g,. gives the usual Kogut-
Susskind phase at the site i in the v direction.

Clearly M has 8 off-diagonal nonzero elements per row.
6, on the other hand, has 32 off-diagonal nonzero ele-
ments per row. These can be graphically represented as

(i) tt
1

( —1)"'"(—1)"'U, U,. +
if p, v=++ or ——
if p, v=+ —or —,
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III. COMPUTATIONAL PROCEDURE

~ ~

(n)

D; =(I.;; )

i —1

k=0
(4)

But consider the product 6;k6ki in the expression for
computing the diagonal elements. There are two cases: (i)
if 6;k is of the form - --. then

The diagonal elements of 8 are (8+4m )I.

Unlike M, 6 contains next-nearest-neighbor terms.
Among other things, this means that if we adopt the usu-
al procedure for computing the lower triangular matrix L
of the incomplete Cholesky decomposition then the re-
sulting preconditioning matrix, call it 6, will no longer
have the same elements as 6 in the positions where
6, WO. Also, 6 will have more fill-in in places where

6ij =0. However, since the correction terms and the fill-

in are small, we will still obtain a reasonably good ap-
proximation to 6 and more sophisticated preconditioning
procedures can be tried to see what effect they have.

Let 6=LDU be an incomplete Cholesky decomposi-
tion of 6, where D is a diagonal matrix introduced for
convenience. Since 6 is Hermitian, we have 6;1, =6k;
and U =L f. As a first approximation for L we could try

L; =6; fori)j,

We used lattices of size 6 X 8 and 8 X 12. The external
gauge field configurations were generated using the
hybrid-molecular-dynamic algorithm with four Kogut-
Susskind flavors, periodic boundary conditions for the
gauge field and periodic in space and antiperiodic in Eu-
clidean time for the fermions. The mass of the dynamical
fermions, for all the configurations on which we tried our
inverter, was always I =0.1.

For every iteration we computed the residual
R„=b —6x„, where x„ is the nth iterate of the
conjugate-gradient algorithm and b is the source vector.
For b we used a delta function in Dirac and color space.
Our condition for convergence was

e„=(RtR„)'~ (0.00005 .

We present our results as graphs of e„vs n. This way to
compare different algorithms is as good or bad as any
other one. One would think that the bottom line is the
amount of computer time, but such a number is strictly
hardware dependent and very much a function of the de-
t;ails of the program. Since in this respect we did not at-
tempt any optimization, CPU's comparison would be
meaningless. We are particularly interested in the ratio
of the total number of iterations required for convergence
of the preconditioned and unpreconditioned algorithms.
We observe how this depends on the volume V, on the
coupling P, on the valence-quark mass m (note that we
change the value of m on the diagonal of M but keep the
gauge configuration, and hence the dynamical quark
mass, fixed), and on the type of preconditioning used.

(ii) if 8;k is of the form t + Q then

6;k8„,=2I +2 Q .

In case (ii) the result is not a multiple of the unit matrix
so, in accordance with our prescription that L have the
same sparsity pattern as 6, we would have to discard the
off-diagonal elements. However, this would break gauge
invariance so we choose instead to average over the diag-
onal elements: i.e.,

6;k6k;~2I(l+ —,'Re Tr 'Q ) .

Alternatively we could use a global parameter for the pla-
quette term. This introduces a tunable parameter into
the system, which has proven to be of great benefit in pre-
vious calculations of this kind. The above prescription
for the preconditioning matrix is called LDU BAS (for
"basic") throughout our paper.

As an improvement on LDU BAS we have also tried
using a preconditioning matrix which includes some
correction for the next-nearest-neighbor terms. This is
achieved by replacing (3) and (4) above with

IV. RESULTS
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Our most extensive computations were done on 8 X 12
lattices. The results for 6 XS lattices were very similar
and we do not report them. A typical graph which we
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We call this LDU CORR (for "corrected").
FIG. 1. e„vs n for CG, LDU BAS, and LDU CORR at

P=5.725 and m =0.0224.
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TABLE I. Total number of iterations required for conver-
gence by CG and LDU CORR on gauge configurations at vari-
ous P and m =0.0224, and the ratio of total iterations.

TABLE II. Minimum eigenvalue of e for different P with
m =0.0224.

~min

5.000
5.100
5.200
5.300
5.375
5.425
5.475
5.525
5.725

&cG

533
522
502
467
460
446
311
344
148

NL c

189
183
176
162
161
158
110
120

52

Ratio

2.820
2.852
2.852
2.883
2.857
2.823
2.827
2.867
2.846

5.200
5.375
5.475
5.525
5.575
5.725

0.004 12
0.004 44
0.004 62
0.020 6
0.038 6
0.053 4

obtained is shown in Fig. 1. It shows a comparison be-
tween the unpreconditioned conjugate-gradient algo-
rithm, CG, and the preconditioned algorithms,
LDU HAS and LDU CORR, for P=5.725 and
m =0.0224. Clearly, LDU CQRR takes slightly fewer
iterations than LDU BAS and about a factor of 3 times
fewer than CG.

Table I shows the total number of iterations required
for convergence by CG and LDU CORR and the ratio
of these quantities for different p at m =0.0224. Note
how the total number of iterations required by both algo-
rithms decreases steadily as p crosses the finite-
temperature phase transition, which we estimate to occur
around p=5. 5. However, the ratio of iterations remains
remarkably constant above and below the phase transi-
tion.

%'e also investigated the effect of varying the mass with
a fixed gauge configuration at p=5. 30. As expected, the
total number of iterations required decreases as the mass
increases but still the ratio appears to change very little.

The rate of convergence of the conjugate-gradient algo-
rithm is determined by the eigenvalue spectrum of the
matrix one is trying to invert. The whole point of
preconditioning is to try to reduce the condition number
of the matrix (i.e., the ratio of highest to lowest eigenval-
ues) and to make its eigenvalues more clustered. To in-
vestigate the efFect of preconditioning on the condition
number, we have calculated the highest and lowest eigen-
values of e and 8 '8 for gauge configurations at
different p and m using the power method (see, e.g. , Ref.
6).

For e, we found that the highest eigenvalue stayed
constant at around 20.0+0. 1 for all p. Table II shows
our results for the value of the lowest eigenvalue to three
significant figures. Notice how the lowest eigenvalue rap-
idly increases as p crosses the transition point. This
means that the condition number decreases, and hence
the conjugate-gradient algorithm converges in fewer
iterations.

For e -'e, the highest eigenvalue is about 1.0+0.05

in all cases. %'e found that the lowest eigenvalue varied
in such a way that the ratio of condition numbers for e
to e -'e stayed between the bounds of 10.0+0.8. This
corroborates the remarkable constancy of the value of the
ratio of iterations required for convergence by the
unpreconditioned and preconditioned algorithms at
different P and m.

V. CONCLUSION

The most time-consuming part of one conjugate-
gradient iteration is the matrix-vector multiplication.
The multiplication M (Mp„) involves 2X9X3X(V/2)
floating point operations per row. For the precondi-
tioned algorithm, e has 33 nonzeros per row so the cor-
responding figure for 6 r„ is 33X3X(V/2). In addi-
tion, there are two vector-vector multiplications per
iteration. So we can say that the preconditioned algo-
rithm takes slightly less than (33+ 18+2)/(18+2) or
about 2.6 times as long per iteration as the unprecondi-
tioned algorithm. The value of the ratio of iterations re-
quired for convergence by the unpreconditioned and
preconditioned algorithms is about 2.85 for 8 X12 lat-
tice. For the 6 X8 lattices it was closer to 2.6. Hence,
there is some small improvement with increasing lattice
size but still the net gain is negligible.

In conclusion, we have tried several different ways of
preconditioning the Kogut-Susskind function matrix and
all seem to sufFer from the same fundamental problem—
what is gained in a decrease in conjugate-gradient itera-
tions is paid for by the necessity of performing extra
operations per iteration —a defect which we do not be-
lieve can be overcome by more efficient programming.
The effects of varying the coupling, mass, and lattice size
are negligible.
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