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Towards the Einstein-Hilbert action via conformal transformation
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A conformal transformation is used to prove that a general theory with the action
S = 1d x&—g [F(P,R) —(e/2)(VQ) ), where F(P,R) is an arbitrary function of a scalar P and a

scalar curvature R, is equivalent to a system described by the Einstein-Hilbert action plus scalar
6elds. This equivalence is a simple extension of those in R -gravity theory and the theory with non-
minimal coupling. The case of E =L (R), where L (R) is an arbitrary polynomial of R, is discussed
as an example.

General relativity describes gravity very well at least in
the weak-Geld limit and Einstein gravity plus scalar fields
is well studied in various situations. We know the so-
called cosmic no-hair theorem for a Bianchi-type
universe in the Einstein-Hilbert system. We have also
the positive-energy theorem in Einstein theory. Because
of quantum corrections in a strong gravitational field,
however, we may expect some additional terms of the
curvature, e.g., a nonminimal-coupling term gP R or
curvature-squared terms R, to the Einstein-Hilbert ac-
tion. Those additional terms may become important in
the early Universe or near black holes. However, those
"non-Einstein"-type theories are not well studied because
of their complicated structures.

In the theory with a scalar curvature-squared (R )
term and/or with a nonminimal coupled scalar, the
equivalence between such a theory and a system de-
scribed by the Einstein-Hilbert action plus scalar fields
has been proved. We have found rather simple basic
equations, being able to analyze easily the dynamical be-
havior of fields in those models. Because of a simple cou-
pling, the behavior of "scalar" fields can be seen just from
the potential. We can apply the above cosmic no-hair
theorem or the positive-energy theorem in our
Einstein-Hilbert system. From the equivalence, we may
easily find the dynamical behavior in the original "non-
Einstein"-type theories also. Hence the description in the
equivalent Einstein-Hilbert form has a big advantage.
Recently the same equivalence is proved for the theory
with a Lagrangian I.(R) (an arbitrary function of a scalar
curvature R) in four dimensions.

In this Brief Report we consider one of the most gen-
eral models in which the above models are included and
we prove that the same equivalence is also true in such an
extended theory.

The action we consider here is

S= I d x&—g F(P,R) ——(V$)

—[V„PV P —
—,'g„(VP) ]

+ —,'g„F— R
BR

+ V„V„
dF "r)F

aR g~ (2)

where 6„—=R„——,'g„R is the Einstein tensor.
First, using a conformal transformation, we prove that

this model is equivalent to a system described by the
Einstein-Hilbert action plus scalar fields. Let us consider
the conformal transformation

g„(x)=e "g„,(x), (4)

where to(x) is an unknown function, which will be deter-
mined later. From Eqs. (2)—(4), the Einstein tensor and
the equation of the scalar field P in the g„system are
written as

where F(P,R) is an arbitrary function of a scalar field P
and of a scalar curvature R of a spacetime. D is the
dimensionality of the spacetime. e is usually unity (or
zero if their is no scalar field), but we leave it as a free pa-
rameter, because e is negative for the effective four-
dimensional theories obtained from dimensional reduc-
tion in higher-dimensional theories. ' Although the most
general case, of course, may contain the Ricci tensor R„
and Weyl curvature C„,we do not consider such a
complicated system.

The basic equations are given from the action (l) by
taking variations with respect to the metric g„and P as
follows:
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F e , 2 , BF BF[V—„PV P —,'g—„(VQ) ]+—,'g„F— R + V„V,

(D— 2—)(V„V to C—ltog„)+(D 2—)[V„toV co+ ,'(D——3)(Vco) g„],
BFe[ P (D——2)Vto VP]= —e
B

(S)

where variables with a caret denote those with respect to
g„. It is easy to show that the higher-derivative terms
such as V„V,(BF/BR) and V„V to cancel each other if we
set

co = lii 2K
1 2 BF

D —2
+const, (7)

where a =8mG~. By setting (7), it turns out that co
behaves like a scalar field in (S). We consider the follow-
ing two cases separately: Case (A), F is a linear function
of R, i.e., F(P,R) =f (P)R —V(P); Case (B) dF/BR de-
pends on a scalar curvature R.

Case (A). co is a function of P and is not therefore a
new dynamical variable. This is consistent with the fact
that the system has no higher derivative and then there is
no new degree of freedom even if we describe our system
in the Einstein-Hilbert form.

Redefining a new scalar field 4 in order for the kinetic
term to be canonical as

]/2
e(D —2)f (P)+2(D —1)[df(P)/dP]'

2(D —2)f '(P)

(8)

where

U(@)—= (»gn)[2~'Iy(y)~] " "V(y) (10)

As the result, we obtain the equivalent action to (1):

S =(sign) f dDx X,
A&=+—g R (g) —

—,'(VP)'
2K

and (sign)=f(P)/~f(P)~. Here we have assumed that
the integrand of Eq. (8) is real, otherwise the scalar N has
the kinetic term with a wrong sign; hence the system be-
comes unstable.

Case (B). co describes a dynamical freedom in the
Einstein-Hilbert system and behaves like a scalar field.
This "new" freedom appears when we describe our
higher order d-eriuatiue theory in the second-order form,
i.e., in terms of the Einstein-Hilbert action. In order to
make the kinetic term canonica1, we introduce a new
"scalar" field g by

lrp =—&(D —1)(D —2)co
1/2

D —1 BF
In 2a

D —2 BR

we find that the basic equations (S) and (6) are obtained
from the Einstein-Hilbert system with the scalar field 4,
which action is given by

S =(sign) f d x X,

X=+—g R (g ) ——,'(VN) —U(N)
2li

where

——(sign)exp
2

—U(g, P)

]. /2

(V(t )

(12)

U(P, P) =(sign) 2~
BF

—D/(D —2)

R (P, f) —F(P, Q)

= (sign)exp
D (sign)xg ~

2
R (P, g)exp&(D —1)(D —2) 2a.

' 1/2
D —2
D —1

F(P, f) . — (13)

and

BF
(sign) = BF

BR

BF
BR

(P, R) =a given function of P and R

=a known function of g [Eq. (11)]

In Eq (13), R (P, g) denotes R in terms of P and g which
is obtained through the relation

and F (P, g) =F(P,R (P, g) ). As in the scalar curva-
ture-squared theory, the trace of (2) gives the equation for
R. We can easily check that the equation for g obtained
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(ii) The higher-derivative terms, i.e., @=0 (no scalar field)
and

no

F(P,R)=L(R)—= g a„R" .
n=0

(16)

from (12) is just the same as the trace of (2). Therefore,
this system describes Einstein gravity with two scalar
fields f and P of nonlinear o -model type.

We have proved that a most general model described
by (1) is equivalent to the Einstein-Hilbert system with ei-
ther one scalar N [case (A)] or with two scalar fields p, 1(
[case (B)]. There are two interesting theories which are
included in our general model (1): (i) The Einstein action
with quantum correction terms, i.e., @=1and

F(P,R)= R (g) —V(P)+aR2 —
—,'$$2R .1

the spacetime point does cross over the border
(aF/aR =0). When it crosses over the border, the value
of scalar field, 4 or f, in two nearest-neighbor regions
will change from W ~ to +~ [see Eq. (8) or (11)]. In or-
der to discuss such dynamics, we may need to go back to
the original system. , where the value of "scalar" does not
diverge. If the spacetime point can cross over the border
without a singularity, therefore, it may not be a better
way to introduce conformal transformations.

Fortunately, however, if we consider an anisotropic
homogeneous Bianchi-type model, we can show that a
spacetime singularity usually appears on dF/dR =0 as
we shall show it now. " ' This means that the space-
time point cannot cross over the border without appear-
ing singularity. Each region is isolated by a singularity.

Let us consider a Bianchi model which metric is de-
scribed by a diagonal matrix P as

Here we discuss only case (ii) as an example. ' Case (i)
has been discussed in Ref. 6.

From the equivalence theorem, we find that this system
is equivalent to an Einstein system plus a scalar field P
with the potential

ds — dt +8 e co Q).2 2 —2A 2Pi

where

p:(p; )J=d—i ga(p ++&3p,p+ —&3p, —2p+)

(19)

(20)
no

U(g) = 2~ g na„R"
n=0

' —D /(. D —2) np

g (n —l)a„R";

(17)

and

t'ai;

I is the three-dimensional invariant basis. Writ-
ing down the basic equations (2), we find the equations
for P+,P as

(sign) is assumed to be positive. Although full dynamics
should be discussed by using the above potential, we shall
restrict our present consideration into the large-R region
where the n =no term becomes dominant. (See Ref. 10
for the details in four dimensions. ) The asymptotic be-
havior of this potential for g(orR) ~~ is

(,D —2n 0 ) /(, D —2)

(D —2no)~g-exp
(no —1)&(D —1)(D —2)

~ . BU . d dF
P+ —3QP+ + = —P+ ln

+ dt M

P —3QP + = —P ln
BP dt BR

where

U(O P+,P ):——,'e [ V(P+, P ) —1]

(21)

(22)

(23)

It turns out that a fiat plateau appears for /~co if
D =2no. We find exponential infIation in this case. Ap-
plying Wald's cosmic no-hair theorem, ' we can prove
that inflation is a transient attractor for Bianchi models
as in Ref. 5 apd the initial anisotropy is isotropized in one
Hubble expansion time. The power-law inAation in D-
dimensional spacetime is possible for 2&D (D,„with
D,„=4no(no ——1)+2, although R evolves into infinity
for 2(D (2no. The same result was found for the case
of no =2 in Ref

Finally we should mention one important remark.
Since the conforrnal transformation considered here be-
comes singular where dF/dR vanishes, we should restrict
our transformation into one connected region of P and R
where dF/BR is always positive or negative. A region
where BF/BR is positive (or negative) is just a part of the
full region of (P,R). The original space of (P, R) may be
divided into two or more regions, on which borders
"dF/dR vanishes. In both regions of BF/BR &0 and
BF/BR (0, we define conformal transformations. We
have to introduce two or more disconnected conformal
transformations; hence, we may wonder whether or not

d
dt

2

(~
—6Q 2+6 —4QV)

e
—40

dt ()g
V. (24)

For Bianchi type I, we can integrate (24) and find

2 2e6Q
'ar

0 gg (25)

where oo is an integration constant. When BF/BR van-
ishes, o always diverges and then the spacetime evolves
into a singularity. We assume that the three-volume
e does not diverge in a finite time, otherwise the space
time manifold cannot be extended beyond that point.

with V being the potential appeared in the Bianchi model
(see Ref. 14). Those equations lead to the equation for
shear o —=6(P++P ) as
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Then it is not interesting for us to cross over the border
BF/M =0. Any other Bianchi models also behave as
type I (V=O) except near the wall of the potential V
which grows exponentially. %'e expect a singularity ap-
pears as BF/M ~0 unless the spacetime point just hap-
pens to approach the boundary of the potential at the
same time. We shall show it more explicitly as follows.

Suppose that BF/M vanishes at a finite cosmic time to
in the evolution of the Universe. If a singularity appears
at t = to, two spacetimes divided by the border
BF/M =0 are classically disconnected. In such a case,
we can consider two spacetimes separately and then in-
troduce a conformal transformation in each spacetime.
Hence we shall investigate the possibility of BF/M =0
without a singularity.

If a singularity does not appear when toto, P+
remains finite, then V(P+) is also finite as toto. If
(d /dt)(BF/BR ) does not diverge when t —+ to,

2

(e
—60 2+6e —4QV)

M

vanishes [see Eq. (24)]; hence, (BF/BR ) (e o
+6e V) approaches some finite constant. Then we
find that (e o +6e V) diverges. It corresponds to a
singularity because o. or V diverges. Therefore, if a
singularity does not appear when t +to, (d/dt—)(BF/BR)
must diverge.

The condition that (d/dt)(BF/BR)~De as t~to is
not generic. Because the equation for BF/BR with the
metric (19) is given as, from (2),

d BF d BF (D —2)& .z
BR +'"dt BR 2(D —1)

D 1 BF
2(D —1) D —1 M (26)
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Since BF/BR =0 is not a singular point in this equation,
we do not expect that (d/dt)(BF/BR) always diverges
when BF/M ~0.

%'e can conclude that the regions divided by the bor-
der BE/BR =0 in general do not connect each other
smoothly at least for anisotropic Bianchi models, except
for cases with elaborate fine-tuned initial conditions.
Since the realistic Universe may have some anisotropic
perturbations, each region is disconnected by a singu-
larity. Therefore, it may be sufBcient to consider only
the single region which connects to our present Universe,
that is the region of BF/BR )0 because
BF/BR

~ „„,„,„„„,=(2~') -'
& 0.

In summary, we have proved that a general model (1) is
equivalent to an Einstein-Hilbert system with scalar
fields. The conformal technique discussed here gives us a
simple method to analyze a general "non-Einstein" sys-
tem (1). The description in terms of the Einstein-Hilbert
action is useful because the cosmic no-hair theorem or
the positive-energy theorem becomes available.
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