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Hamiltonian calculations are performed using a loop-labeled basis where the full set of identities
for the SU(N) gauge models has been incorporated. The loops are classified as clusterlike structures
and the eigenvalue problem leads to a linear set of finite-difference equations easily amenable to nu-

merical treatment. Encouraging results are reported for SU(2) at spatial dimension 2.

I. INTRQDUCTION

The Euclidean path-integral formalism with a lattice
regulator' has been widely used to obtain relevant non-
perturbative information about gauge theories. However,
in spite of considerable efforts, the most important ques-
tions remain unanswered. This is, for instance, the case
when one tries to identify the true weak-coupling behav-
ior predicted by asymptotic freedom. In spite of its
elegance and its nature, easily adaptable to numerical irn-
plementations, this method is probably not the most
economical device to understand the real dynamics of the
system. The highly symmetrical character of the action
produces a host of irrelevant degrees of freedom which
constitute a substantial difficulty for efficient numerical
calculations.

A first natural step toward the identification of the real
degrees of freedom of the problem is to work within the
Hamiltonian formalism of Kogut and Susskind. Howev-
er one must still get; rid of the residual time-independent
gauge symmetry. This may be accomplished by working
in the subspace defined by Gauss's law which plays the
role of the primary constraints of the theory. This is the
main purpose of working within the C representation. In
fact, the introduction of a loop-labeled basis is the easiest
way to parametrize the subspace of solutions of Gauss's
constraints. Although this approach is recently becom-
ing more popular there are still many tech@ical issues to
be explored concerning the correct manipulations of
loop-dependent functionals.

In this paper one presents a general computational
method based on loop techniques. The Hamiltonian for-
malism is formulated in a space of states labeled by ele-
ments of the group of loops. A complete treatment of
Mandelstam s identities is given since it is necessary to
identify correctly the underlying gauge symmetry.

Although, from the numeric point of view, the final re-
sults are expressed by'a finite-diS'erence system with nice

computational properties, the real problem is to identify
nonequivalent loops in the lattice and to compute transi-
tions induced by the Hamiltonian in the loop space. This
requires the use of an efficient list-processing computer
language which should be also well adapted to deal with
standard artificial intelligence problems, such as pattern
matching and shape recognition. In fact, a substantial
part of the whole project has been the development of the
routines that use PROLoa*s powerful unification and
matching inherent resources, as well as its design for full
back-tracking search to find all the solutions to the
several problems associated with loop generation and
recognition.

The use of the C representation as a tool to extract
dynamical information from a finite-difference
Schrodinger equation was first introduced in Ref. 6. The
present method uses these ideas as general references, but
it is widely different in many respects, especially in the
explicit construction of the loop-labeled basis.

Although the method is general in scope we have re-
stricted ourselves in this paper to the SU(2) gauge model.
Moreover the paper has been devoted essentially to the
discussion of the main ideas involved. Therefore one has
only included a few small- or medium-scale calculations
in two spatial dimensions for illustrative purposes.

The relevant role played by linked clusters in the con-
struction of the basis classifies somehow the method as a
strong-coupling series approach with a built-in extrapola-
tion mechanism toward the weak-coupling region. For
this reason, the quoted numeric results should perhaps be
compared with those available from cluster-expansion
calculations. Moreover, since the successive approxi-
rnants to physical quantities are computed by truncating
the basis, the method exhibits some variational features
and it could also be interesting to compare it with the
corresponding standard variational calculations.

The paper is organized as follows. Section II is devot-
ed to the technical aspects of the C representation. Al-
though the present method uses a different basis in the
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loop space, this material is included to provide a self-
contained treatment of Mandelstam's identities which
play an important role in the dynamical implementation
discussed in this paper. The presentation in Ref. 11 is
followed closely and should be consulted for additional
information.

In Sec. III the main aspects of Hamiltonian dynamics
irI[ loop space are developed. Most of this section may be
considered as the lattice version of the continuum dy-
namics given in Ref. 11. The necessary elements to com-
pute the action of the Hamiltonian in the new basis, are
given in this section.

Section IV contains the main ideas of the method in-
cluding the proper identification of the states in the basis
and the explicit calculations to compute physical quanti-
ties by solving the finite-difference Schrodinger system.

In Sec. V one introduces the idea of using collective
variables to improve the general convergence properties
of the method. The rest of the section is devoted to the
discussion of the results obtained, using the whole
method, in the case of SU(2) at spatial dimension 2. The
paper concludes in Sec. VI with some overview and com-
ments.

II. THE C REPRESENTATION

In terms of these objects, the Hamiltonian is given by

H=E, +8, = g E("E( +
~ +Re TrU~,l)0' ' g'U

(2.8)

1cC
(2.9)

Then, by introducing the Wilson loop operator

W(C):—Tr + U(
lec

(2.10)

where U~ is the product of the four UI operators along
an elementary square of the lattice.

The u states are highly redundant due to local gauge
transformations associated here with multiplication of all
matrices coming out of a given vertex by a fixed element
of the gauge group. The C representation is introduced
to work directly with physical degrees of freedom. Thus,
to every closed loop in the lattice, one associates a vector
defined by giving its components in terms of the original
basis

Hamiltonian gauge theories are formulated in a hyper-
cubic lattice of d spatial dimensions. The quantum
description is given in a linear space spanned by the vec-
tors lu ) which are labeled by a choice for every positive
link of a matrix belonging to the gauge group under con-
sideration. These are eigenstates of the link operators,

and a null loop reference state lo) given by

&ulo) =»lu &

it is evident that the C states are given by

(2.11)

U, lu ) =u, lu &, (2.1)
lc&= w(c)lo& . (2.12)

where uI is the matrix associated with the positive link l.
Negative links are not independent since one demands

U I=Ui (2.2)

E(=Eh Xq, (2.3)

which satisfies the commutation relations

The canonical conjugate degrees of freedom are
represented by the electric operator

The important question of whether these states form a
full basis of the linear space may be answered in the
affirmative if the knowledge of (u l C) for all C and fixed
u allows one to uniquely reconstruct the configuration in
lu ). This important theorem was proved by Giles and
was extended in Ref. 11 to incorporate the unitarity and
unimodularity conditions of the SU(N gauge formula-
tion. The main lines in the reconstruction process may
be summarized as follows.

Let W(C) be some loop-valued operator candidate to
be interpreted as the trace of a SU(N) representation of
the group of loops. It must obviously satisfy the relations

[EA EB ]—if'((cg Ec (2.4) 8'(C, C2) = 6'(C2C, ), (2.13)

[E(",U(]= —6((X"U(,

where f" are the structure constants

[~A g8] if'((C~C

which are normalized by

Tr(X "X')=S"

(2.5)

(2.6)

(2.7)

which are known as Mandelstam's identities of the first
kind. Here C, and Cz are loops with some common
point which is used as the origin to perform the product
C, C2 which is basically the concatenation of the two
contours plus a set of reduction rules to guarantee the ex-
istence of a group structure in loop space.

Moreover, let P be a permutation of the symmetric
group of X elements S& and let us consider its decompo-
sition into cycles
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(+ lln12 ~ 1N }(+21~22 n2N } (+Kl+K2 nKN„)

Then one may introduce the operator

X W(C„) . . W(C„), (2.14)

which satisfies the recursive building rule

(P + 1)M~+, ( C 1, C2, . . . , C +, ) = W( C +, )Mp ( C„C2, . . . , C )
—

Mq ( C, C~+ 1, C2, . . . , C~ )

—M (C„C2, . . . , Cpc +, ), M, (C)=W(C} . (2.15)

In terms of these operators the second-kind Mandel-
stam identities are given simply by

MN+ l(C1& 2& ' '
& CN+1) (2.16)

is also satisfied, the representation will be in terms of uni-

modular matrices. This representation will automatically
be unitary if the scalar product among the

~
C & states is

the one induced by the orthonormal standard product in
the u representation corresponding to the SU(X) gauge
group.

A simple realization of these constraints may be pro-
duced by introducing the states

It was proven by Giles' that if W(C) satisfies the
Mandelstam identities then it may be written as the trace
of some N-dimensional representation of the group of
loops. Moreover, it was proven in Ref. 11 that if the sup-
plementary condition

MN(C, C, C2C, . . . , CNC)=MN(C„C2, . . . , CN) Vc

(2.17}

This is a statement concerning transitional invariance
in the loop space and may be incorporated simply by
working with states containing N —1 relative loops.

The Hamiltonian dynamics in the C representation
may easily be derived from the commutation relations be-
tween the electric operator and the M& operators togeth-
er with the invariarice of the null loop state under gauge
rotations:

El" i0& =0 . (2.20)

The resulting dynamical formulation was discussed in
full detail in Ref. 11. In this paper one will work in a
dynamical framework based on the introduction of a
slightly di6'erent representation as discussed in the next
section. Nevertheless, it will become apparent that the
implementation of Mandelstam's identities discussed
above plays an important role in establishing the action
of the Hamiltonian operator in the new basis of loop
states.

l
C 1, C2, . . . , C. &

=MN ( C „C2, —(2.18)
III. HAMILTONIAN DYNAMICS

and defining the action of the Wilson operator as

w(c)~c„c„.. . , c &

= ~c, c,c„.. . , C &+ . + ~c„c„.. . , C„C&,

which obviously implies (2.16). It may thus be proven
that the first kind Mandelstam identities are identically
satisfied if W(C) is realized as a commutative operator. "

At last, the unimodularity condition implies

~ C, C, C2C, . . . , CN C &
=

i C„C2, . . . , CN & . (2.19)

Let us consider in this section a difFerent set. of loop
states defined by

~C„C2, . . . , CM)= W(cl)W(C2) . . W(CM)~0&, (3.1)

which, using (2.15), may easily be expressed as linear
combinations of C representation states. In this basis the
magnetic part of the Hamiltonian acts in a trivial way.
In fact, each 8'term in the sum defining 8, , acts on sim-

ply by appending a plaquette to the list of loops labeling
the state.

To find the action of the electric part one starts from
the commutator

o[E.„w(C)]=g gyes„, W(C~)W(Co) ——W(C) —g' y W, (C),
I, I'E. C lac

(3.2)
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where 0 is the origin of the loop, C~ is the portion of C
from the origin to the double point y implied by the
Kronecker delta

on the loop states introduced in (3.1). This action may be
classified into four well-differentiated effects. The first
one is given by

1 for 1=(y, i) and 1'=(y,i),
5&&.

= —1 for 1 =(y, i) and 1'=(y+i, i—),
0 otherwise,

and W(C) is defined as

W( ( C)—:Tr[ U( C „)E(],

(3.3)

(3.4)

g2~ M

2 L; I C), C2, , C~ ),
i=1

(3 6)

where L; is the number of links of the ith loop.
The action of the second term is also diagonal:

EPIC, , Cz~. . . , CM )

where x is the origin of link l.
This operator satisfies the commutation relations

[ W(C), W((C')]
where

(3.7)

(3.8)

1g 5g W(C„„C'„)——W(C) W(C'), (3.5)
l'e C

where x is the common origin of /, l'.
From (3.2) and (3.5) together with (2.20) it is possible to

deduce the action of the electric part of the Hamiltonian

I e c,.l'e c,.

is a quadratic measure of the overlap between couples of
loops in the list. It will be sometimes referred to as the
quadratic length.

The third term produces fusion effects among colliding
loops in the list. It is given by

(3.9)
hf

EF~C1&C2&' ' ' &CM~ +g gg g X ~ll'~C'& ' ' &Ci —1 C Cj Ci+I ' ' ' Cj —1 Cj+1 ' ' CM~
i,j = 1 l E C,. l' E C.
i &j

where x is the origin of the contact link between the two loops.
The constant a has been introduced to allow for a general normalization of the 8'operators which we write now as

W(C)—:aTr[U(C)] .

At last there is a fission effect which enlarges the list by splitting loops in it containing multiple links:
2 M

X XX &v ~Ci C —i C; Cy C;+i
i =1 l, l'BC,.

(3.10)

(3.1 1)

where x,y denote the double points where the breaking
takes place.

These expressions provide the implementation for the
dynamics of the SU(N) model in the basis (3.1). However
it is important to realize that not all these states are in-
dependent, In fact the constraints (2.17) impose relations
between them. To see this in detail, let us consider the
case TV=2 where these expressions may also be cast in
the more convenient form

W(C, C2 )+ W(Ci C2 ) =—W(C, ) W( C2 ),1
(3.12)

which is easily seen to be equivalent to (2.17). Now let us
consider some loop C containing a double link. Since
loops appear as arguments of the trace operator W(C),
they should be considered invariants under cyclic permu-
tations of their links. Therefore, it will always be possible
to express C as l AlB, where A and 8 must be closed parts
of C. Therefore, one has

W(C) = W(1A1B ) =—W(/A ) W(1B )
—W( AB ), (3.13)

I

which expresses W(C) in terms of traces of loops where 1

appear with lowered multiplicity. Therefore, it is clear
that a list containing a loop with multiple links, may be
expressed as a linear combination of lists where the links
have reduced multiplicity. By inductively repeating this
argument it follows that, in forming the basis, one has
only to consider lists with members with no multiple
links. Notice however that links in the same spatial loca-
tion and opposite orientations are not ruled out by this
discussion.

This characterization of the states in the basis provides
an economic way of implementing (3.12) or (2.17). In
fact, one may consider this construction as an effective
integration of these constraints. This is by far the main
advantage of working with the basis introduced in (3.1).

IV. THE NUMBER REPRESENTATION

Following the discussion in last section, we will consid-
er a basis of states labeled by unordered lists of simple
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loops. In the SU(2) case simple loops are defined as
closed contours without repeated links. A given list may
contain several sublists located wide apart in the lattice.
Therefore it is useful to define a cluster as a list of loops
confined in a finite spatial region. Thus a general list is
formed by a set of clusters separated by formally infinite
inter distances.

One will be interested mainly in the description of the
quantum ground state of the gauge system. Poincare in-
variance of this state means that it cannot depend on the
location and the orientation of clusters. Therefore, it is
useful to think of a cluster as a class of equivalent loops
differing by spatial translations or rigid transformations
of the lattice. Within this view, it is only necessary to
specify the number of occupation of each nonequivalent
cluster. Therefore, by taking an arbitrary numbering of
clusters, a general list will be specified as

(4.1)

where n,- denotes the number of times that cluster i ap-
pears in the list.

The next point is to introduce an ordering among clus-
ters. This may be done in a recursive way. The null loop
is order 0 and a single plaquette is order one. The 1Vth

order is defined to consist of these loops obtained by the
action of the Hamiltonian operator on clusters of order
X—1. This will include these loops obtained by append-
ing single plaquettes to clusters of order N —1, since this
is the definition of the magnetic part of the Hamiltonian.
The electric part will also generate clusters of this order
through the fusion and fission terms (3.9) and (3.11).

Within this classification, clusters grow with the order,
mainly as lists of linked plaquettes. However, loops of
large area will eventually be produced by electric fusion
and disconnected loops will also appear as the result of
the fission term acting on plaquettes sharing links with
opposite directions. In fact, it is not di%cult to convince
oneself that every possible loop will be obtained within
this scheme by combination of the magnetic plaquette
linking process and the electric fusion and fission effects.

It is natural now to propose an approximation pro-
cedure by considering only clusters of order less than or
equal to a given number X. Accordingly the basis is as-
sumed to consist of states

(4.2)

where M is the last cluster of order less than or equal to
the last order retained in the given approximation.

The magnetic part of the Hamiltonian will act on this
basis by appending single plaquettes to the list in all pos-
sible ways. Some of these plaquettes will join the ith clus-
ter and produce the jth one. This will induce the mag-
netic transition

not been considered. Such transitions cannot be pro-
cessed exactly within this approximation. A possible way
to deal with them could be to write down the transition

(4.3)

where i is the cluster hit by the plaquette. This ignores
the creation of the new cluster since it is outside the
range of the considered list. All other palquettes will be
considered to add uncorrelated single-plaquette clusters,
thus producing the transitions

lni, n2, . . . , nM &~lni+l, n~, . . . , n~ &, (4 4)

The diagonal parts of the electric Hamiltonian will
simply multiply the states by the corresponding lengths.
The fusion term will, in principle, produce clusters with
multiple links. However, the reduction mechanism
(3.13), discussed in the last section, will express these
loops as combinations of clusters without repeated links.
This, as well as the action of the fission effects, will in-
duce electric transitions which are treated with the same
conventions as the magnetic ones.

To see all these ideas work together, a simple example
will be worked out in full detail. Let us consider the
SU(2) gauge theory in a lattice of spatial dimension 2.
For convenience we will work with

2
H'= H

2
(4.5)

and introduce

4

2
(4.6)

so one has

H'= —g W~+pE,
0

(4.7)

W(p) W(p)!0), (4.8)

and cluster 3 which is formed with two plaquettes with a
single common link. The basis is then restricted to the
states

where W~ is now normalized as in (3.12) with a= —,
' and

K is the corresponding multiple of E,~
in (3.2).

Let us consider the proposed approximation procedure
with %=2. One must then include cluster 1 which is the
single plaquette, cluster 2 which consists of a list contain-
ing 2 times the same plaquette,

between states recognized within the given approxima-
tion. Some plaquettes will link to clusters of order X pro-
ducing, by definition clusters of order N+1 which have

(4.9)

The action of the magnetic part of the Hamiltonian
produces the count
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—nl ln, —l, n2+1, n3) —4n, ln, —l, n 1, n 3+1)—5n2ln„n2 —l, n3) —Sn3ln„n2, n3 —1)

(P— 5n—, —5n2 —Sn3)ln, +1,nz, n3), (4.10)

(3pn, +4pn2+ —", pn3 )l n „nz, n3 )

The fusion term on cluster 2 will produce

—,
' X4X W(p ) =2[2W(p) W(p) —W(0)]

(4.11)

where P is the total number of plaquettes.
The diagonal parts of the electric operator produce

4@n 2 l
n „n3, n 3 ) —2pn 2 I

n l, n 2
—1,n 3 & . (4.13)

2
n3 in] (4.14)

The fusion term on cluster 3 produces a rectangle
which is order 3 by definition. The corresponding elec-
tric transition is then partially counted as

=4W(p) W(p) —2, (4.12)

where the reduction identity (3.13) has been used. There-
fore one has the term

Now one may consider the Schrodinger equation

(+plH ln„n2, n3 ) =Ep(@pin„nz, n3 &

and obtain the finite-difference equation

(4.15)

n l [5%'p( n l + 1,n 2, n 3 ) Vp(—n l
—1,n 2 + 1,n 3 ) —4%'Q( n 1

—1,n 2, n 3 + 1 ) + 3@ip( n l, n 2, n 3 ) ]

+n2[5%Q(n, + l, n2, n3) —5%'Q(n„n2 —l, n3)+8@i'p(n„n2, n3) —2p%'p(n„n2 —l, n3)]

+1l3 8% ( Qn+ 1,nz, n3 ) 8+p(—n „n2, n3 —1 )+ Vp(n„nz, n3 ) 0 Q(1ll n2 1l3 1 )
2 ' '

2

=P[+p(n, + l, n~, n ) —3ep@p(n„n~, n3)], (4.16)

where we have introduced the vacuum energy density

6p: Ep /P = Ep / y'
2

(4.17)

These equations have solutions of the form

n
l np f23

%Q(1l) 112 1l3) X l X2 X3 (4.18)

E =X0 1

while the terms proportional to n; produce

(5x, +3@)x,—x2 —4x3=0,

(5x, +Sp)xz —2p —5=0,

(4.19)

(4.20)

The term proportional to P must vanish separately and
produces the dispersion relation

I

solutions as in (4.18). The dispersion relation follows im-
mediately from the vanishing of terms proportional to the
total number of plaquettes. Vanishing of the terms pro-
portional to n; give the necessary relations

F;(x&,X2, . . . , XM)=0, i =1,2, . . . , M (4.22)

to determine all the variables. This system contains
M —1 linear equations depending on x&. Using the solu-
tion of this linear system in the first equation produces a
nonlinear equation which determines this variable.

The mass gap and, in principle, the whole glueball
spectrum may be estimated by looking to excited solu-
tions formed by polynomic modulations of the ground-
state wave function. Following this procedure one finds
that the mass gap is obtained as the lowest eigenvalue of
the proper value problem:

1313p
2 ' 2

BF;

BXJ
u =Mu;. (4.23)

from which all three variables may be determined.
Elementary excitations may also easily be dealt with by

looking for solutions of the form
T

a&n&+a2n2+a3n31+
P

7l
l 122 7l3

X] X2 Xg (4.21)

from which the first excited igenstate may be obtained
and the mass gap calculated.

These considerations are readily extended to the gen-
eral case where all clusters up to a given order are recog-
nized. The Schrodinger equation is processed as a finite-
difference system which is integrated with exponential

From a computational point of view, the problem has
three main operational stages. In the first one, one must
identify and store all the relevant clusters up to the con-
sidered order of approximation. In the second one, the
magnetic and electric transitions must be recognized and
the corresponding weights computed. From these, one
must construct the system. Finally, one runs into a nu-
merical problem which involves a linear problem with a
large and sparse matrix and a single nonlinear equation.

For the two first steps it is almost unavoidable to use
some efficient list processing computation language that
is well suited also to deal with pattern-recognition prob-
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lems. All the results described in this paper have been
obtained using a small size compiled version of PROLOG
running on a personal computer.

V. COLLECTIVE VARIABLES

The eigenstates of the electric operator are closely re-
lated to the states in the C representation in the p~ Do

limit. Therefore, calculations in this basis are well suited
for strong-coupling developments. In fact, the approxi-
mation algorithm discussed in the last section, working
up to some given order, determines an estimation of the
energy density which exhibits a number of exact
coefticients in its series in terms of reciprocal powers of p.
Hence one could consider the whole method as a rather
elaborate extrapolation procedure to the weak-coupling
region.

The behavior p =0 may be greatly improved if one uses
collective variables. For such we understand some addi-
tive quantity Q taking values on loops in the lattice. For
a general state (4.1) in the number representation, Q will
take the value

Q=q, n, +q2nz+ . +q;n;+ (5.1)

where q; is the value of Q at cluster i. It is permissible to
exchange some variable, say ni by this linear combina-
tion and consider states of the form

nl n2 ~M

l
—q-

pq
—xEx )

Kner gg

~Q q2n2 ' ' q;n; ' ' ', np, . . . , n;, . . . ), (5.2)

where we have normalized Q such that q, = 1. While this
is a simple rede6nition of the whole basis, it has impor-
tant consequences when one truncates the basis up to a
given order of approximation.

The wave function will be rewritten as

x

x

x x

x

g x

yx

aaaaa
a a

a

a 'a vs as xI xx III xkaa~I
~" L'~«x««xl«~

a t '' i&
a

Order 2

Order 3

Order 4

Order 5

FIG. 2. Approach to weak coupling. Logarithmic derivative
of the mass gap vs the square root of the coupling parameter for
several orders of approximation.

Now a transition to a cluster outside the order will be
counted partially through the term in Q by keeping track
of the value of this quantity for the reached cluster. This
means that transitions in (4.3) will not only be counted by
reducing the number of i clusters but by the introduction
of a corrective power of x, to maintain the correct count
of the collective variable.

Let us now assume that the x; variables behave as

x; =1 a;&p b,—p— (5.4)

in the weak-coupling regime Thus, . according to (5.3)

y;=I —(a; —a, q;)&p+O(p) . (5.5)

Therefore if Q is chosen such that q; =a, /a „the non-
analytic behavior disappears at the lowest order from y, .
Reversing the argument, it follows that the introduction
of the appropriate collective variable will induce a
square-root behavior on quantities that otherwise would
always be analytic in the coupling parameter. In fact,
this is a well-known problem in most strong-coupling cal-

Order 2

Or der 3

Order 4

Order 5

Nass Gap

x, a
x

x~

xf~ a

"tt,, (' '

4a

4ka~q'
' ~, ,

44Lfgg, k '
~ ~

L''hidA44gi ''
WkkaVaaa, .h h 5 h . . h P. .ii

ft
aaa o&~xxxx
i'xx"

aa txX
a ~ i'xx

X
x

tet xx
g& xx

xxX
x

Order 5

FIG. 1. Vacuum energy density vs square root of the cou-
pling parameter for several orders. Ovals represent the strong-
coupling series of Ref. 7 and the solid line is the weak-coupling
estimate taken from Ref. 9.

8
8

FIG. 3. Mass gap vs square root of the coupling constant for
several orders of approximation.



3134 RODOLFO GAMBINI, LORENZO LEAL, AND ANTONI TRIAS 39

culations where the asymptotic series in p must be car-
ried to the weak-coupling region, using analytic extrapo-
lants, and it can never match the exact weak-coupling
square-root law. By explicit examination of the Anite-
difference system produced by the present method using a
collective variable, it is possible to prove that a square-
root behavior will indeed be present if the count is main-
tained on a collective variable that satisfies

(b,Q)=q, =l, (b,Q )Aq, =l, (5.6)

for each cluster. Here (b,Q) means the average of
change of the collective variable over all magnetic and
electric transitions of a given cluster.

It is found that the quadratic length A (3.8) matches
this criterion. In fact any arbitrary linear combination of
A with a trivially additive variable such as, for instance,
the total number of links L, will satisfy (5.6). It is impor-
tant to choose properly the relative weight between these
two variables. Otherwise, the exponents of x, generated
by the collective compensations using the quadratic
length, grow too quickly and suppress any other effect in
the involved transitions.

It should be noticed that the maximum value of A for
clusters of order N is 4N reached at the cluster consist-
ing of X identical plaquettes. To prevent Q from exces-
sive growth we have normalized it by prescribing Q to 1

for such a cluster. This uniquely fixes Q to

N = Nasi t'ap
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FIG. 4. Approach to scaling. Derivative of the mass gap vs

the square root of the coupling parameter. The value at the
maximum is taken as an estimate of K in the scaling relation.

the secondary bump near p = 1, exhibited by these curves,
could be interpreted as a borderline between the strong-
and weak-coupling regimes. The two different nearly
linear types of behavior exhibited by the mass gap in Fig.
3 could also be interpreted along the same lines.

In this superrenormalizable theory' the expected scal-
ing behavior is simply

(%+1)L—A

4N
(5.7) M=K&p, @=0 . (5.8)

which has been our choice to obtain the results discussed
below.

We have only considered the SU(2) gauge model in spa-
tial dimension 2, for order N=2, 3, 4, and 5. The corre-
sponding number of clusters for each order is 3, 8, 23,
and 80.

In Fig. 1 the di6'erent determinations of E'p are
represented against &p. The curves behave linearly near
p=0 thus exhibiting the expected square-root behavior.
As mentioned this would also be the case for any other
choice of the collective variable satisfying (5.6). However
this does not mean that one has a sensible description of
the weak-coupling region. As discussed earlier, this
method is a disguised asymptotic strong-coupling series
with a built-in extrapolation mechanism toward p=O.
Hence, for every finite order of approximation, one
should find a totally incorrect picture for su%ciently
small values of p.

This is clear, for instance, in Fig. 2 where the logarith-
mic derivative of the mass gap versus V p is depicted. In
this dimension it is known that no phase transition
occurs. Nonetheless, our curves exhibit a neat peak that
gets stronger and narrower when the order of approxima-
tion increases. A possible interpretation of these numeri-
cal results would be that our model mimics a smeared-out
phase transition at finite values of p. Fortunately, the
"critical values" go deeper into the weak-coupling region
as the approximation improves. In fact, these sets of
values extrapolate nicely to 0 where the connection with
the continuum physics should lie. Within the same spirit,

K~ =2.28, K3 =2.70,

E4=3.63, K5 =4.03,
(5.9)

which extrapolate to a value in good agreement with the
Monte Carlo calculations done in the Euclidean version
of the model "

+Monte Carlo (5.10)

This result is also in good agreement with the Irving
and Hamer estimate:

&,„=4.4+0.5, (5.11)

which in turn has been more recently confirmed by the
work of Irback and Peterson. '

To determine the value of K, the &p derivative of the
mass gap has been plotted in Fig. 4 against &p. These
curves show a plateau which could be considered as an
approximation to the region where the constant behavior
(5.8) is established. The behavior to the left of this pla-
teau is also to the left of the "transition point" and there-
fore must be considered as a spurious asymptotic noise of
the method.

The values of K, for several orders of approximation,
read from the value of the derivative of the mass gap at
the maximum are
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VI. CONCLUSION

In this paper a computational procedure based on the
geometry of the group of loops has been developed which
allows the determination of physical quantities by solving
a finite-difference version of the Schrodinger equation in
the loop space.

The method heavily relies on the symbolic computer
manipulations that allow the generation of the loop basis
and the recognition of the electric and magnetic transi-
tions.

Since the number of loops grows without measure
when one increases the order of the approximation, it is
important to have good general convergence behavior.

We have shown that the introduction of collective vari-
ables may be very useful in this context as acceleration
devices toward the weak-coupling region for a method
which starts basically with strong-coupling information.

Our experience on this point has been that, in spite of
the fact that the general trend is basically always qualita-
tively similar, the method is very sensitive to the cutoff
procedure used to deal with transitions outside the order
of approximation. This point has been only slightly
touched upon in this paper. Undoubtedly the choice of
the nature and number of the collective variables must be
explored in subsequent work.

In fact, the same is true for many other aspects of this
work which should be considered a first essay on a sub-
ject with many issues.
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