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Interpreting four-quark interactions in finite-temperature, SU(2), lattice gauge theory
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Associated with the finite-temperature lattice gauge theory is an e6'ective theory of %'ilson lines.
The strength of the four-line interaction has been measured by Monte Carlo simulation in earlier
work. This paper adds perspective to the numerical work in two ways. First, the physical interpre-
tation of the four-line coupling is given. Second, the relationship with critical behavior in three-
dimensional scalar theories is established. On this basis, a complete postdiction of the numerical re-
sults can be given.

I. INTRODUCTION

This paper discusses properties of the correlation func-
tion of four Wilson lines in finite-temperature, SU(2), lat-
tice gauge theory. It is a continuation of the work in Ref.
1 (I).

The order parameter of the deconfinement-confinement
phase transition in pure gauge theory is the Wilson line.
An effective theory for the lines can be obtained by in-
tegrating out all other degrees of freedom in finite-
temperature gauge theory. The effective line theory is
three dimensional and has a global Z(2) symmetry. It
has an order-disorder phase transition that is associated
with the deconfinement-confinement phase transition.
All indications are that the effective theory has short-
range interactions, that the transition is second order,
and that it has the non-Gaussian critical behavior of the
universality class that includes the three-dimensional Is-
ing model and (P )3 theory. In this way, the critical re-
gion of the gauge theory defines a three-dimensional, in-
teracting field theory of lines.

Thus one expects that the one-particle-irreducible
(1PI), four-line correlation function should be different
from zero and should scale appropriately relative to the
diverging correlation length. In I, this expectation was
confirmed in a Monte Carlo simulation.

The purpose of this paper is to give a more complete
perspective on the numerical results in I. The quantity
measured there was called 64. It is the ratio of the renor-
malized, 1PI, zero-momentum four-line function to the
renormalized mass and is an appropriate dimensionless
measure of the interaction strength. Section II of this pa-
per discusses the physical interpretation of 64. At large
separation, the four-quark free energy is dominated by
contributions arising from the pairwise connection of the
quarks by noninteracting strings. As the separations de-
crease, the interactions of the strings become relatively
more important. The leading corrections are proportion-
al to 64. It is worth noting that the distance scale at
which these interactions become large is T/cr(T). For
T~T„ this scale is much larger than the other natural
scales cr(0) '~ or o(T) '~ . The larger scale T/o(T) is
due to finite-temperature, transverse fluctuations of the

II. FOUR-QUARK FREE ENERGY

In this section we establish the relationship between
the quantity 64 defined in I and the four-quark free ener-

gy in the confined phase.
In the low-temperature phase, the main contributions

to the free energy F(X), of a widely separated quark pair
are the confining part of the potential cr(T) ~X~, a smaller
T In~X~ term in the potential, and self-energies, which
can be expressed as —T lnZ. Thus, the long-distance be-
havior of the correlation function for two Wilson lines is
given by

(L, (0)1,(X) ) =e r(x)zT e m~xlZ
(2.1)

where m is the inverse of the correlation length, and is re-
lated to the finite-temperature string tension cr(T) by
o(T)/T. Z is the wave-function renormalization con-
stant. The quantity 64 defined in I is

string. "
In the context of (A, /4!)P theory in three dimensions,

the analog of G~ is g
—= 1,/m. The lattice version of (P )3

theory and other theories in this universality class have
been studied extensively. Most of the results that we
need can be found in Ref. 6. Section III reviews some im-
portant properties of the behavior of g on the critical sur-
face. These results are reformulated a bit so as to be
more convenient for our purposes.

Section IV reviews the relationship between the finite-
temperature gauge theory and three-dimensional scalar
theories. With this, Sec. V can establish the correspon-
dence of quantities and results in the two arenas. In par-
ticular, the properties of g and its relation to 64 are used
to give a complete explanation of the numerical results
for 64 in I. This includes both the qualitative behavior
and the numerical value as g~ ~.

In summary, this paper adds perspective to the numeri-
cal work in I in two ways: First, by completing the phys-
ical interpretation of 64, and second, by exploiting the
connection to the known critical behavior of g in three di-
mensions.
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I'"(O,O, O, O)
4

f71
(2.2)

(2.3)

where —I ' i(Pi, P2, P3, P4) is the renormalized, 1PI,
four-point function of Wilson lines in momentum space.
I ' ' is related to I 0 ', the unrenormalized, 1PI, four-
point function by

I (4) —Z 2I (4)
0

(L(Xi)L(X2)L(X3)L(X~)) =e (2.4)

We can write the four-Wilson-line correlation function as

In order to study the four-quark free energy I', we
look at the four-Wilson-line correlation function
(L(Xi)L(X2)L(X3)L(X4)). This is related to
F(Xi,Xz, Xi,X4) by

(L(Xi)L(X2)L(X3)L(X~)) = (L(X,)L(X~) ) (L(X3)L(Xq))+ (L(Xi)L(X))) (L(X2)L(Xq) )

+(L(X,)L(X ))(L(X )L(X ))+(L(X,)L(X )L(X )L(X )),
= ( 1234)d, + (L(Xi)L(X2)L(X3)L(X4)), . (2.5)

The first three terms on the right side denoted by (1234)d, are the disconnected pieces arising from pairs of nonin-
teracting strings. The last term is the connected piece. It includes the interactions of the strings and other short-
distance efFects. For separations much larger than 1/m, (1234)d, is expected to dominate. This motivates us to write
the free energy in the form

T F(Xi,X2,X&,X&)=in((1234)d, )+in[1+f (X„X2,X3,X4)],

where

(L(X,)L(X )L(X )L(X )),f (X„X2,X3,X4)=
( dc

(2.6)

(2.7)

f will be very small for large separations. We are interested in its behavior as the quark separation decreases. This
gives the leading corrections to the noninteracting string contribution in the first term of (2.6).

To study f, we begin by writing

(L(X,)L(X2)L(X3)L(X4)),= —f d Y, d Y2d Yid Y4(L(X, )L(Y, ))(L(X2)L(Yz))

X (L(X3)L(Y3)) (L(X4)L(Y4) )I o '(Yi, Y2, Y),Yq) . (2.8)

This is interpreted as the four Wilson lines at Xj, X2, X3, and X4 propagating to Y&, Y2, Y3, and Y4, respectively, and
interacting with strength I 0 '. Because of the L ~ Lsymmetry of —the confined phase, I 0

' is actually the 1PI, un-

reriormalized, coordinate-space, four-point function. Using Eqs. (2.1) and (2.3), we can write Eq. (2.8) in a form that is
approximately correct for large quark separation:

—~lXl —Y(I —~IX2 —Y2I —m lX3 —Y3l

(L(X,)L(X2)L(X,)L(Xg)), = Z'f d'F, d'—Y,d'F, d Y4

—m I X4 Y4l

4 4

As a 5.rst choice, we assume a point-type interaction given by

I ' '(Y„Y,Y„Y )=A, f d Y5 (Y—Y, )5 (Y—Y )5 (Y—Y )5 (Y—Y ) .

(2.9)

(2.10)

This corresponds to an interaction given by k5 (Pi+ Pz+P3+P~) in momentum space. It follows from the definition in
(2.2) that 64=1,/m. Substituting Eq. (2.10) into (2.9), we get

(lX —Yl+ lX —Yl+ lX —Yl+ lX —Yl)
1 2 3

(2.11)

h(Y) = IXi —YI+ IX2 —YI+ IX(—YI+ IX,—YI . (2.12)

For the situation where X&, X2, X3, and X4 are all separated by distances larger than 1/m, the major contribution to
the integral comes from the Y region where h(Y) is a minimum (Laplace's method). We note that the points Y=X„
X2, X~, or X~ cause no problems because the measure

I Yl d
I
Yld 0 cancels the singularity present in the integrand.

The point where h(Y) is a mimmum, Y;„—=Z„ is given by the equation
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Iz-x
I Iz —x, l Iz —x, l Iz —x, l

(2.13)

BY'BYJ v z

Then,

where the superscript i denotes the components of the vector. The above equation has a nice geometric interpretation.
If one draws unit vectors from the point of minimum to the four points, then the sum of the unit vectors is zero. For al-
most all conf][gurations, this point of minimum will lie away from the four points and will be separated by a large dis-
tance from the four points. The special case of Z coinciding with one of the four points is measure zero and will be dis-
cussed later. We assume for the present that Z does not coincide with any of the four points. Let

(Z —Xk )'(Z —Xk )J
(2.14)

Iz —x, l'

h (Y)=h (Z)+ —,'a;J( Y' —Z')( Yj—ZJ) .

1 2 3 4

(L(xi)L(X2)L(X3)L(X4)) — Z A

I I I I I I I I

J d

—m(Ix —zI+ Ix —zI+ Ix —zI+ Ix —zI)
277

—(m/2)a. . ( ~' —Z')( ~j—Z~)
EJ

' 3/2
1 2 3 4= —ZZA,

'
Ix, —zllx, —zllx, —zllx, —zl

1

&deta

We note that a;J has dimensions of [L ']. Applying I.aplace's method to Eq. (2.11) we get
—m {IX —ZI+ IX —ZI+ IX —ZI+ IX —ZI)

(2.15)

(2.16)

1 2 3 4

Ix, —zilx, —zllx, —zllx, —zl
1

&deta

We note that deta has dimensions of [L ]. Combining Eqs. (2.16), (2.7), and (2.1) we can write
—m(IX —ZI+ IX —ZI+ IX —ZI+ IX —ZI)

277

f(X„X~,X3,X4)=
m( Ix) X~I+ IX3 X4I ) m( IX] X3I+ IX2 X4l ) m( lxl X4l+ IX2

Ix, —x, llx, -x,
l Ix, —x, llx, —x, l Ix, —x, llx, —x, l

(2.17)

We now estimate f (X„X2,X3,X4) for the generic case
when all distances are of the order 1/m. Then all ex-
ponentials are of order 1 and deta will be of order m .
We therefore obtain

(Xk ), (Xk ))
(2.19)

1

Ixi, I

For deta to be zero, one or more a, , should be zero. But
4

1 1

~ 3/2 m 3/2

(Xk);(Xi, ); ~0 for all i and k .
Ix„l'

(2.20)

f(X„X2,X3 X4)-
1/(1/m ) Therefore a;; =—0 if

= —6 (2.18)

Therefore, we have shown that this correction to free
string behavior in the free energy of four quarks, changes
from zero for infinitely large separations to a value pro-
portional to 64 when the separations become comparable
to 1/m.

The above argument will break down if deta is singu-
lar. We now investigate this possibility. We proceed
through the following argument.

(i) Given X„xz, X~, and X~ we find Z. Then we
change our coordinates so that Z=O.

(ii) Then we compute the symmetric matrix a. Its ei-
genvalues are real and so are its eigenvectors. Further,
the eigenvectors will also be orthonormal. Therefore a
can be diagonalized by a real orthogonal matrix, i.e., by a
rotation of the coordinate system. We will now perform
this rotation which makes a diagonal.

(iii) In the new coordinate system we can write

(Xi, );(Xi, );
1 —

2
=0 for all k .

In particular if a» =0, we have

[(Xk )~] + [(Xi, )3] =0 for all k,

(2.21)

(2.22)

which implies that (Xk )2=(Xk )3=0 for all k; i.e., all four
points lie on the X axis. Therefore, the matrix a is singu-
lar only if all points lie on a straight line. This is a very
special case. This result can be easily understood by real-
izing that if all four points lie on a line, then Z is not fixed
and can be anywhere on the segment between the two
inner points.

We now remark on the other special case where Z
coincides with one of the four points. With a slight
modification, we can apply Laplace's method to this case
also. The result of the calculation is the same as the gen-
eric case.

Now consider an interaction that is more general than
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=IX,—Y~l+n (Y, —Y,), (2.23)

the point interaction in Eq. (2.10). We assume that
I' '(Y„Y2,Y3,Y4) has a maximum when Y, =Y2=Y3=Y4 and falls off with a scale greater than m with
any increasing 7 separation. This assumption means that
the glueball mass, which is one of the scales setting the
fall of I ' ', is bigger than the scale set by the string ten-
sion [m =cr(T)/T] near T=T, . Let us now look at Eq.
(2.9). Near Y, =Y2=Y3=Y4 we can write

Xz —Y'1
Ix —Y I=lx —Y I+2 2 — 2 1

Xz —F'1
n

Ix,—Y I

(2.24)

is a unit vector. Similar equations can be written for
IX3—Y3I and IX4—Y4I. This means that e—mlX3 —Y3I —mlX4 —Y4I
e ' ', and e ' ' fall or rise at most as fast as
m, near Yz= Y„Y3=Y„and Y4=Y1. Therefore, we
can use Laplace's method to integrate over Yz, Y3, and
Y&. This result is

—~& IX, —Y, I+ IX2 —Y11+IX3—Yll+ IX4 Yil

(L(Xy)L(X2)L(X3)L(X4)) Z fd
1 1 Z 1 3 1 4 1

Xfd Yd Yd YI' '(Y, ,Y,Y,Y ). (2.25)

Now A=k0P =A2P . (3.2)

f d Y2d Y3d Y4I ' '(Y„Y2,Y3,Y4)

will be independent of Y1 due to translational invariance,
and it is precisely the renormalized four-point function at
zero momentum I ' '(0, 0,0,0) =A, . We can conclude
again that if there is no scale smaller than m, then for dis-
tances of order 1/m, f is proportional to G4.

III. A,($4)3 THEORY

We begin by considering scalar theory on a lattice in
three dimensions. The two parameters are the bare mass
mo and the bare coupling A.o. The critical surface inter-
sects the A,o,mo plane giving the critical line indicated in
Fig. 1. The many irrelevant directions are out of the
page. In three dimensions, there are two fixed points,
one trivial and one nontrivial. The phase transition is
second order, and the order parameter is (P). We will
be interested in the approach to the critical surface from
the symmetric phase.

We define a quantity g as.

The n-point Green's function in terms of P,' is given by

5 (Pi+P2+ . +P'„)G„'(P'„.. . , P„')
I

= f

id%')lpga'p

'

=G„(P„.. . , P„)5 (P, +P2+ +P„)

= G„(P„.. . , P„)=g"2 G„'(2P), . . . , 2P„). (3.4)

The renormalized mass is defined by

m

d G2(P)

G, (P) (3.5)

where &' is the Hamiltonian and Z' the normalization
factor after one iteration. Using Eq. (3.2) in Eq. (3.3), it
follows that

g"G„'(2P„.. . , 2P„)53(2P,+2P2+ +2P„)

I "'(o,o, o, o)
m

(3.1)
This implies that under P~P'=2P, m ~m'=2m. The
renormalized mass is also related to Gz by

where I ' '(0, 0, 0,0) is the renormalized, 1PI, four-point
function at zero momentum and m is the renormalized
mass. We notice that g is well defined away from the crit-
ical surface where m does not vanish.

We first show that g is a constant along a renormaliza-
tion Aow line. We proceed along the lines of Wilson and
Kogut. The lattice field theory is formulated in momen-
tum space. The momentum scale is normalized, so that it
ranges from 0 to 1. A renormalization-group iteration is
done as follows. The momentum integration is carried
out from —,

' to 1. This results in a redefinition of the cou-
pling constants and fields. Then the momentum is re-
scaled to range from 0 to 1. This means that
P; ~P,' =2P,. under an iteration. Under such an iteration
Pp ~IPp and is defined by

2
)g N

INE

FIG. 1. The Ao, mo plane for {P )3 theory. The critical line
passes through fixed points at Pl and P2.
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Gz(0) =Zm (3.6)

Combining Eqs. (3.4) and (3.6) we get the transformation
for Z, the wave-function renormalization, as

z=2-'g'z . (3.7}

Gq(0, 0,0,0}

[G2(0)]

Combining Eqs. (3.4), (3.7), and (3.8) we get

r "'(o,o, o,o) =2r "'(o,o, o,o) .

(3.8)

(3.9)

This, along with the result that m ' =2m, implies that the
g defined in Eq. (3.1) is constant along a renormalization
flow line.

Next, we define g at a point on the critical surface as
the limit obtained by approaching that point along any
direction in the parameter space. Since g is expected to
behave smoothly as a function of the parameters, this
limit is valid. Now we show that g defined this way is a
constant along a flow that is on the critical surface. Con-
sider approaching P, along A and Pb along B as shown
in Fig. 1. We first note that both A and 8 cut the same
renormalization flow lines in the same order. Since g is a
constant on each of the flow lines, the sequence of values
of g that both paths 3 and B define are the same and
hence they must approach the same limit. Hence g at P,
is the same as g at Pb. Therefore g is a constant along a
flow on the critical surface. As a side comment, we note
that to obtain different values of g for the continuum field
theory one has to approach the Gaussian fixed point
along different flow lines.

Next, we focus on the value of g on the critical surface.
It can be shown in the context of field theory defined on
the critical surface that g is finite. It is shown in Ref. 6
that g=0 if hyperscaling is violated and that gAO if
hyperscaling is valid. In the latter case, g =24 .

Since g is defined by zero-momentum quantities, it
should be universal. If it is continuous at the nontrivial
fixed point, then it must have the same value on different
flows on the critical surface. This means that it is con-
stant in the region of attraction of the nontrivial fixed
point, i.e., it is universal.

IV. CONNECTION

This section will serve to review the relation between
(3+ 1)-dimensional, finite-temperature, SU(2), gauge
theory and three-dimensional, Euclidean, Z2-symmetric,
scalar field theory.

The Wilson line is the order parameter for the finite-
temperature confinement-deconfinement phase transition.
There is a line operator L(I) on each site of the three-
dimensional spatial lattice. The gauge theory has a glo-
bal Z2 symmetry that acts as L ~—L, on the lines.

An effective theory for the lines is obtained by holding
the values of all of the lines fixed while all of the other

The renormalized, 1PI, four-point function at zero
momentum is given by

r "'(o,o, o, o)=z'r,'"(o,o, o,o)

variables of the gauge theory are integrated out. The
field theory of lines that results will be very complicated.

A few general remarks can be made. Evidently it is a
zero-temperature, three-dimensional, Euclidean, scalar
field theory. The form of the theory will depend on the
gauge coupling and the number of lattice spacings in the
inverse temperature direction 1VT. The line theory will
have a global, Z2 field-reflection symmetry.

The line theory will include complicated interactions
among lines at different sites. There are theoretical argu-
ments and numerical results which suggest that these in-
teractions are short ranged. There is also a large body of
evidence which supports the view that the gauge theory
phase transition is second order. The line theory has an
associated second-order, disorder-order phase transition.

Assuming short-range interactions and a second-order
transition, the lore of the renormalization group and
universality can be evoked. This asserts that all three-
dimensional, Z2-symmetric, scalar theories are in the
same universality class. Each such theory can be thought
of as a point in the infinite-dimensional space of such
theories. Included in this space are the line theory, lat-
tice (P )3 theory, and the three-dimensional Ising model.

The infinite-dimensional space has one relevant direc-
tion and a critical surface of codimension one. There is
an infrared unstable Gaussian fixed point at the origin
and an infrared stable nontrivial fixed point. Except for
the fixed point at the origin, the critical behavior is the
same all over the critical surface and is controlled by the
nontrivial fixed point.

The 1PI, n-point functions have a parametric depen-
dence on position in the theory space. One can think of
the correlation functions of the line theory and of (P )3
theory as being the same function evaluated at different
points in the theory space. Since G4 and g are defined in
the same way in terms of zero-momentum correlation
functions, they are the same quantity evaluated at
different points in the theory space.

When the parameters m 0 and A,o of (P )3 theory and NT
and the gauge coupling of the line theory are adjusted to
criticality, the theories hit the critical surface at two
different points. The crucial assumption is that these two
points are within the region of attraction of the nontrivial
fixed point. The Gaussian fixed point at the origin is the
only point with critical behavior difFerent from that of
the rest of the surface. The line theory is unlikely to hit
the critical surface at that point unless there is some
physics reason. We are not aware of any.

The conclusions are that the line theory and (P )3

theory have the same critical behavior, and that 64 and g
are essentially the same quantity.

V. SUMMARY

The ideas from the last three sections are combined
and applied to the work of I. A complete understanding
of the results in I is obtained.

Section II has explained the relationship between G4
and the physical interaction of heavy quarks at finite tem-
perature. 64 gives a measure of the size of the contribu-
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tions to the four-quark free energy that arise from the in-
teractions of the strings that connect the quarks.

Section IV has shown that 64 of the line theory and g
of (P )3 theory are essentially the same quantity close to
criticality. Thus, each property of g that was noted in
Sec. III can be translated into a physical statement about
G4 and the four-quark free energy.

The statement that g and therefore 64 are less than
infinity is sensible in the context of the gauge theory. It
indicates that the picture of static quarles connected by
interacting strings remain valid as the temperature in-
creases toward the critical temperature.

With hyperscaling, g and 64 have finite, nonzero limits
as the critical surface is approached. This means that the
strings of color-electric Aux interact significantly near the

critical temperature. One certainly expects this to be the
case in a non-Abelian gauge theory.

It was noted that g is a renormalization-group invari-
ant with a constant, universal value on the critical sur-
face. Thus G4 should have the same numerical value as
g. High-temperature series expansions and simulations'
of (P )3 theory give g =24. (The validity of hyperscaling
is assumed. ) The result for I is G4-24. The determina-
tion of 64 in I was quite rough: 30+18. 6& -24 is easily
accommodated.

The sign of 6& indicates that the interactions of the
strings make a repulsive contribution to the four-quark
free energy. At scales that are comparable to or larger
than the scale Titr(T), this four-body repulsion is a
correction to the two-body attractions.
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