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Thermodynamics of (2+ 1)-dimensional four-fermion models
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The thermodynamics of the (2+1)-dimensional Gross-Neveu model is analyzed. The model is
not renormalizable in the weak-coupling expansion but becomes renormalizable in the 1/Xf expan-
sion. We calculate the critical temperature and find the phase structure. The critical exponents u,
a', P, y, y', 5, q, v, and v' are calculated to leading order in 1/Xf, and do not satisfy the "scaling re-
lations. "

I. INTRODUCTION

It was found recently' that a wide class of fermionic
quantum field theories is renormalizable in d =2+1 di-
mensions. (For the simple four-fermion model presented
in this paper the renormalizability was first noted by
Gross and Parisi, and a proof was sketched by Shizu-
ya. ) These theories are nonrenormalizable in a "weak-
coupling expansion, " but become renormalizable in the
1/Nf expansion (or so-called "auxiliary field method").
Moreover, the 1/Nf expansion allows us to study in a
very explicit way many interesting "nonperturbative"
phenomena, such as dynamica1 symmetry breaking and
bound states.

In this paper we study the thermodynamics of the sim-
plest fermionic theory in d=2+1 dimensions: namely,
the scalar-scalar four-fermion model. We are motivated
by its close analogies to a Bardeen-Cooper-Schrieffer-
(BCS-) type theory of superconductivity in two spatial di-
mensions which recently attracted attention due to the
planar character of high-T, superconducting ferromag-
nets. '

The Lagrangian is

which has a discrete chiral symmetry, g~ysg, preclud-
ing a bare fermion mass. This model was introduced into
particle physics by Nambu and Jona-Lasinio' to describe
chiral-symmetry breaking in strong interactions in
d =3+1 dimensions. The model was then generalized to
lower dimensions by. Gross and Neveu, "who discovered
the property of "asymptotic freedom" in d= 1+1.

The thermodynamics of (1) was studied extensively for
d=1+1, where the model is renorrnalized in both the
1/Xf expansion and wepk coupling. At exactly zero tem-
perature the chiral symmetry is dynamically broken, "
generating a mass M for the fermions. At nonzero tem-
peratures a naive application of the 1/Nf expansion then
yields a critical temperature for symmetry restoration,
given in leading order by'

T, =(O. S7)M .

However, this result is wrong, as was illuminated by Ref.
13. In fact for any finite Xf the critica1 temperature is
rigorously zero, and the situation is analogous to the Ising
model in one space dimension. In both cases "kink"
configurations are unsuppressed, so at low temperatures
the system is segmented into regions of alternating signs
of the order parameter. The net average value of the or-
der parameter is then zero. The 1/Nf expansion in
d = 1+1 misses this effect because the energy per kink
goes to infinity as Xf~~. Thus in leading order the sys-
tem really is spatially homogeneous, and the expansion in
1/Nf just measures the effects of small fluctuations about
this state. The contribution from the kinks has the forme, which is nonanalytic in 1/Nf. To sum up, in one
space dimension there is no superconductivity, but this
fact is obscured in the 1/Nf expansion.

The situation changes, however, when we turn to the
case of two space dimensions. A simple energy-entropy
argument now shows that "domains" will be suppressed
at low enough temperatures, so that the critical tempera-
ture will now be finite. This phenomenon was first calcu-
lated in the analogous case of the Ising model by On-
sager. ' Thus we expect a large-Xf calculation in the
four-fermion model to be reliable in d =2+ 1, and our re-
sult for the critical temperature is

M
2 ln2

(This is in agreement with the calculations of Ref. 1S. In
d =3+1 the model is not renormalizable, but leading-
order calculations can be carried out. '

)
In the next section we review the finite-temperature

formalism and compute the Landau free energy function.
This yields the critical temperature (3), and also the
discontinuity in specific-heat capacity across the transi-
tion. We compute the critical exponents a, ct', and /3,
and then from the thermal Green's functions we obtain v
and q. Next, we introduce a chemical potential p to
probe the effects of a finite fermion density.
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II. TEMPERATURE FORMALISM

The Hamiltonian of the model is

H= fd x if —y', +y — f —(ff)2 ~ i ~ 2 ~ g 2

21'
(4)

The quantum statistical partition function is then

Z (P) =Tr exp[ —(PH) ] .

To calculate Z(p) it is simpler to use the equivalent
form"

Z(P)= fDf(x)Df(x)
2

Xexp —f d x f8f+ (ff)
P f

(6)

where the fermion fields [in Eq. (6) the notation is such
that the y matrices are 4X4 and Hermitian] are now an-
tiperiodic functions on R X [O,P]. The 1/NI expansion
of (6) is most easily described using an auxiliary field cr(x)
(Ref. 5). We rewrite (6) as

Z(P)= fDf Df Do
r

Xexp —f d x f8f+o'ff
P 2g

Finally, we subject the system to an external source
coupled to the order parameter ff and derive the ex-
ponents y, y'', and 5. %'e observe that the "scaling rela-
tions" for the exponents are not obeyed, and discuss this
in the conclusion.

where o is periodic on [O,P] since it is bosonic. The
functional integral is now quadratic in the fermion fields
so we integrate to obtain an "effective action" for o.(x):

0S,it= NI—f d x +trln(8+o )&
P 2g

The procedure no% is to find a minimum point of S,~ for
some constant configuration, and then expand in Quctua-
tions. This expansion is regularized using a momentum
cutofF' A, and is guaranteed to be renormalizable for any
finite P by the renormalizability proof for P= ao (Ref. 1).
Note that the "bare coupling" gz must be taken equal to
its P= ~ value.

It is convenient to insert the cutofF' A on the "spatial
momenta, " p=(p„p2) only. At P=ao the stationary
equation (gap equation) reads

O=a
—1 dEd p 1

g~ (2m) E +pA+o.
Provided gz lies in the range

2) 2 4pdEd p 1
o-gA -g.„,= 4f—. (10a)

we can define a finite mass M through

1 dE d~p 1

g (2~) E +p +M
(10b)

S,s =N&P(area)FL, „(o',P), (1 la)

where I'L,„ is the "Landau free energy per unit area, "
and is given by

and the minimum configuration at P= ao occurs at
lo l=M. From the 1/N& Feynman rules (Ref. 1) this
quantity M is the zero-temperature mass of the fermions.

At finite temperature we substitute (10b) into (8), and
for constant configurations we have

F„,„(o,P) =o —
2

—— g f 1

(2n +1) + +o.
(1 lb)

Using a Poisson summation formula and a contour rota-
tion we obtain (see Ref. 13 for details) (~,P) =—~

l
o

I

—M+ —»(1+e @ ~ )
=1 2

Lan

FL,„(o',P)

=4' d 1p
2(2m. )

(12)

(13a)

FL,„(o ~0,/3)=
3 f dx[x —PM+21n(l+e )] .

1

7T

where E =p~+a and similarly for EM. Equation (12)
can be explicitly evaluated, and then integrated to yield
FL,„(o,P) using Fi,„(O,P)=0. The result is finite as
A~ao and we have

(13b)

We see from (13) that the transition from the "super-
conducting phase" ( ( cr )WO) to "normal phase"
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((o ) =0) is second order, since ( o )& is continuous. The
order parameter drops to zero at p=p„where

P,M=2 ln2 (14)

Mf(p)=81n2

Thus in the terminology of Ref. 18 the critical exponent p
1s —.2'

With regard to the free energy, above the critical tem-
perature E vanishes, and below T, we have

and (14) is just the advertised result (3). For temperatures
just below T, the effective mass of the fermion (which is
just ( o )), is very small, and from (13a) we get

D '(e'=O, p, P &P, ) =

+ Nf p f i dx
2rr 0

X 1— 2
e~ +1

At exactly the critical temperature (o )&
vanishes and we

have, for P, V p «1,

where a = 2( o )&/+p and P=
—,'P+p . For tempera-

tures above the critical temperature we get

2' ln2
p p,

F(T&T, )=—4(ln2)
N (T, —T)2T, (16a) D (p', P, )=

Nf p, p
(20)

Thus the specific heat (per unit area) is

8(ln2) 2 (16b)

Thus the critical exponent g is zero. For small p and
P—P, )0 we have

and we observe that at leading order the specific heat is
finite but discontinuous at T= T, . The critical exponents
a and a' are therefore zero.

Nf p, (p'+4(o),')
so the correlation length g is

(21a)

III. THK DYNAMICAL CRITICAL EXPONENTS

We would like to know the thermal average
(o (x)o (y) )& near the critical temperature, to see the na-

ture of the fluctuations. The o. propagator at leading or-
der in 1/Nf is given by functionally differentiating (8)
twice with respect to o (x), and at p= m is'

1g(p)p )=
( )

p3

32 ln2
(21b)

and v'=
—,'. Finally for small p and p —p, & 0 we have

2 = =2~ &k'
D (k~,P= ca )=

Nf (k +4M )arctan(+k /2M)
(17)

D (p, P&P, )=
2+ 161n2

(p

(22a)

Here k =e +p, and we have full three-dimensional Eu-
clidean invariance. As P is reduced (17) modifies in an
important way, and is in particular no longer Euclidean
invariant. It is not true that to get D (k,p) you just re-
place MMf(p). A slightly lengthy calculation reveals,
below the critical temperature,

Nf(p +4cr )
D '(e=O, p, P)P, )=

2' p
X dXI

~~ X a
~

X0 V'1 —x'&a'+x'

so

g(p& p, ) =
1/2

(22b)

IV. FINITE FKRMION DENSITY

and v =
—,'. The correlation length behaves similarly

above and below the critical temperature (as expected)
but the overall magnitude changes.

2X 1—
PM~2+'2+

1

(18)

The eft'ects of a chemical potential p are given by shift-
ing the energy levels in (1 lb) by p (Ref. 13). The identical
manipulations as before now yield, in correspondence to
(13a),

0
(cr,P,p, )=—~cr

~

—M+ —f du
p

1 + 1

e" ~"+ 1 e"+~"+ 1

~cr
~

—M+ —ln(1+2e ~~ ~coshpP+e P~ ~) (23)
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"normal" X =P(8 m—)g+o Pg — o' N—fmBAo,
2gg

(25a)

"supe

where gA is still given by (10b), and the renormalization
constant B„is given by

C

dEd p 1

(2 )3 ~2+p2
(25b)

FIG. 1. Phase diagram of plane superconductor.

PM =ln(2+2 coshpP) . (24)

V. EFFECT OF EXTERNAL SOURCE

For simplicity let us first set P= ao, p=O and consider
an external source coupled to the order parameter gf in
(7). This breaks the chiral symmetry and induces under
renormalization a term linear in the auxiliary field cr(x)
The bare "Lagrangian" at leading order becomes
(without loss of generality we take M and rn to be posi-
tive)

At zero temperature we see that if p&M the absolute
minimum still occurs at ~o ~

=M. If p) M then there is
just a unique minimum at o.=o, so p=M is a critical
value. For higher temperatures the critical value of p
drops and reaches zero at T=T, . Thus we have the
phase diagram of Fig. 1.

We have a line of second-order phase transitions given
analytically by

FL,„1 mM(a', ~ )=—(o' —m)(~cr —m
~

—M)—
8lX 17 7T

(26a)

Comparing to (13a) we see that for P= ~, p=0 the effect
of the source is to shift 0.—+o —m and to add an extra in-
homogeneous term —mM/~. It is easy to see that this
mnemonic remains true even when /3, p are finite, so the
general expression is, cf. (23),

It may appear that there should be three parameters:
namely, the couplings of gg, cr, and o, but one of these
can be removed by a field redefinition cr ~o +c (Ref. 2).

The model (25a) is closed under renormalization, but
there is a generalization which is also allowed: namely,
to add a term

~
cr

~
. Provided ( o. )WO there is no harmful

effect from the nonanalyticity, and the 1/Nf expansion is
well de6ned. However this term radically changes the
nature of the field theory, which in terms of the fermion
6elds alone is no longer a polynomial interaction. We
shall consider this interesting case in a future publica-
tion.

The Landau energy of the model Eq. (25) is now given
by

(O,P,p) = (o ——m ) ~o —m
~

—M +—ln(1+2e I l~ I cos—hpP—+e &Pl~ ~l
)

Bo' 77

(26b)

The effective mass of the fermion Mf(P) ls ((g m))p.
Setting p=o, we And that at the critical temperature Mf
vanishes as the source is removed, and obeys

and so the critical exponents y' and y are equal to 1. To
summarize, the critical exponents have been collected in
Table I.

Mf(p, )= I .8 ln2
(27) VI. DISCUSSION AND CONCLUSIONS

Thus the critical exponent 5 is 3. Defining a "susceptibil-
ity" by BMf(P, m )/drn then as m —+0 there is the behav-
ior

(28a)

(28b)

TABLE I. Critical exponents of the four-fermion theory.

a'

In this paper we have studied the thermodynamics of
the renormalizable Gross-Neveu model in d=2+1. The
model represents a relativistic superconductor in two spa-
tial dimensions, and has a very simple "gap equation"
given by (9). The phase structure for the effects of tem-
perature and chemical potential is given by Eq. (24) and
Fig. 1. The reason why the gap equation is algebraic, as
opposed to the integral equation one usually obtains in
BCS theory (Ref. 9), is that the underlying interaction of
the fermions is just a delta function. The BCS theory in-
volves a nonlocal potential, which has a physical cutofF in
it related to the "Debye screening length. " The major
difference is that, in the language of particle physics, the
BCS model is not renormalizable.
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a=ca =2 vd (29a)

Let us now discuss the values of the critical exponents
given in the table. Ignoring g, v, v' for the moment, the
exponents take on the "mean-field values, " first predicted
by Landau. ' This is essentially because fluctuations are
suppressed by powers of 1/Nf. However, we were able
to look at Auctuations to compute g, v, v', and of course
all these values will be modified in next to leading orders.
This will be computed elsewhere. ' An interesting feature
is that the critical exponents are not those of the Gauss-
ian fixed point, and nor do they obey the "scaling rela-
tions" (Ref. 18).

This is the first explicit example of this phenomenon
know to us. We do not get Gaussian behavior, since after
all the four-point function of the fermions is not zero at
any temperature. [The four-point function is related to
the thermal o. propagator given in Eqs. (18)—(22b), see
Ref. 1.] Moreover the model does not satisfy "scaling"
either. This last is the property that near the critical
temperature there are no length scales in the problem
apart from the correlation length g, which implies that in
fact the critical exponents are not independent. Scaling
relates the exponents by

where 1 is the spatial dimension {in our case d =2.) The
values in Table I do not agree with (29), and nor will their
corrections order by order in 1/Nf. To. illuminate this
we consider the thermal propagator at P=P, . From (18),

D '(O, p, P, )

2

exp( —,'13,+p )+1

(30)
For low momenta this looks like an ordinary massless

boson, but for large momenta we have the noncanonical
behavior D (p ) -1/+p . Thus the critical Green's
functions are not given by power laws (modulo loga-
rithms), and scaling breaks down. This effect is due to the
composite nature of the order parameter, and we expect
similar nonscaling behavior in finite-temperature QCD.

As a final remark it would be very interesting to verify
the method of the 1/Nf expansion for the model on the
lattice. Our calculations of finite temperature can then be
used to simulate "finite-size e6'ects. " Similar calculations
have been done using various methods in the (1+1)-
dimensional case.

p= —,'v(d +2+ii),
y=y'=v(2 —ri),
5=(d +2—ri)/(d —2+ii),

(29b)

(29c)

(29d)

(29e)
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