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Path-integral bosonization for a nonrenormalizable axial four-dimensional fermion model
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We study the bosonization and exact solubility of a nonrenormalizable four-dimensional axial fer-
mion model in the framework of anomalous chiral path integrals.

INTRODUCTION

THE MODEL

Let us start our analysis by considering the (Euclidean)
Lagrangian of the proposed Abelian axial (mathematical)
model

s, (q, y, y)=q}'„( a„,a„yW—+,' '(a„y)'+-v(y),

where li(x) denotes a massless four-dimensional fermion
field, P(x) a pseudoscalar field interacting with the fer-
mion field through a pseudoscalar derivative interaction,
and V(p) is a p self-interaction potential given by

2

v(y) = g, y(a, y)'( —a'y)+ g, ( —a'y)( —a'y) . (2)

The presence of the above P potential is necessary to
afford the exact solubility of the model as we will show
later [Eq. (18)].

The Hermitian y matrices we are using satisfy the (Eu-
clidean) relations

IX„,y j =25& 3's=1'o1'&l'z3'3 .

The Lagrangian', (g, g, P, ) is invariant under the glo-
bal Abelian and chiral Abelian groups

g~e' P, P~e ' g, (a,P)HIE, (4)

with the Noether conserved currents at the classical level:

a„(qq') ~q) =o, (ay }y)= .o

In the framework of path integrals, the generating
functional of the correlation functions of the mathemati-
cal model associated with the Lagrangian X&(g, g, P) is
given by

The study of two-dimensional fermion models in the
framework of chiral anomalous path integrals' has been
shown to be a powerful nonperturbative technique to an-
alyze the two-dimensional bosonization phenomenon. '

It is the purpose of this paper to implement this non-
perturbative technique to solve exactly a nontrivial and
nonrenormalizable four-dimensional axial fermion model
which generalizes for four dimensions the two-dimen-
sional model studied in Ref. 2.

1"""' z[o,o, o)

X D D D

Xexp —f d x[X,(f,g, p)

+JP+riP+fri](x)

(6)

In order to generalize for four dimensions the chiral
anomalous path integral bosonization technique as in
Refs. 2 and 3, we first rewrite the full Dirac operator in
the following suitable form:

y [y]=~}„(a„+igr~a„4)
=exp(ig y &p )(i y „a„)exp(igy 5$) .

Now we proceed as in the two-dimensional case by
decoupling the fermion field from the pseudoscalar field

P(x) in the Lagrangian X,(g, P, P) by making the chiral
change of variables:

g(x) =exp[ig y,g(x)]X(x),

g(x) =X(x)exp[igy~g(x)] .

On the other hand, the fermion measure D[g]D[g],
defined by the eigenvectors of the Dirac operator 8[/], is
not invariant under the chiral change and yields a non-
trivial Jacobian, as we can see from the relationship

D D exp — d x x

=Det(B [P])

=J[4]fD[X]D[X)e"p fd'x—(Xi~„a~)(x)

Here J[p]=Det(B[p])/Det(@[/=0]) is the explicit ex-
pression for this Jacobian.

It is instructive to point out that the model displays
the appearance of the axial anomaly as a consequence
of the nontriviality of J[p], i.e., a„(gy&y5$)(x)= I(~/~0) J[4]1(x).

So, to arrive at a complete bosonization of the model
Eq. (6) we face the problem of evaluating J[P].

Let us, thus, compute the four-dimensional fermion
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determinant det(B[(t ]) exactly .In order to evaluate it,
we introduce a one-parameter family of Dirac opera-
tors ' interpolating the free Dirac operator and the in-
teracting one B' '[P): namely,

(x ~exp( —e(B«[P])'I ~x )

1
2

I+eH, (P)+ —,H, (P)
0+ 16m e

1 2| 2 (13)

&' '[0)=exp('gys(0)('yp~p)exp('gys~~) (10) with the Seeley coeKcients given by (see the Appendix)

with g E [0, 1].
At this point we introduce the Hermitian continuation

of the operators B'«'[P] by making the analytic extension
in the coupling constant g =ig. This procedure has to be
done in order to define the functional determinant by the
proper-time method since only in this way (8«[(t ]) can
be considered as a (positive) Hamiltonian.

The justification for this analytic extension in the mod-
el coupling constant is due to the fact that typical in-
teraction energy densities such as Py g, gy„b, "1/i, which
are real in Minkowski space-time, become complex after
continuation in Euclidean space-time. As a conse-
quence, the above analytic coupling extension must be
done in the proper-time regularization for the Dirac
functional determinant.

By using the property

d
&«[4]=gys0& [Nl+& [0]ysA

we can write the following differential equation for the
functional determinant (see Ref. 4):

ln Detg «[P]

and

H ($)=28 H, ((t )+2(gy (B„P)B„H,(P)+2[H, ($)]

2

Jo[p, e]=exp g, f d x[p( —&')p](x)
4m e

(17)

and J, (p) is the associated Jacobian finite part

J&[p]=exp — f d x( —8 p)( & p)(x)
4m

4
X exp f d x[p(a„y)'( —a'y)](x ) . (Ig)

By substituting Eqs. (13)—(15) into Eq. (12), we obtain
finally the result for the above-mentioned Jacobian:

J[0)=Jo[(t &)Ji [Pl .

Here Jo[g, e) is the ultraviolet cutoff-dependent Jacobian
term

lim f d x Tr(x ~(gysp)exp[ —e(8«[p])'I lx &

g—+Q

(12)

where Tr denotes the trace over Dirac indices.
The diagonal part of exp I e(B«[P])—J has the asymp-

totic expansion

From Eqs. (17) and (1), we can see that the (bare) cou-
pling constant g2 gets an additive (ultraviolet) renormal-
ization. Besides the Jacobian term cancels with the
chosen potential V(P) in Eq. (2).

As a consequence of all these results, we have the fol-
lowing expression for Z[J,q, ri] with the fermions decou-
pled:

Z [J, 9, ri] = fD [p]D [X]D[j]exp —f d x [ ,'x (i y „d„)y—+,'g~ (&„p)—1

1

+ ri exp(ig~ ys(t')y+ jexp(igR ysP)ri+ JO](x )

Xexp[ bF(x& —x2,'m =0)—] . (20)

Here b, (x& —x2', m =0) is the Euclidean Green's function
of the massless free scalar propagator. We notice that

This expression is the main result of our paper and
should be compared with the two-dimensional analogous
generating functional analyzed in Ref. 2. Now we can see
that the quantum model given by Eq. (6) although being
nonrenormalizable by usual power counting and
Feynman-diagrammatic analysis it still has nontrivial and
exactly soluble Green's functions. For instance, the two-
point fermion correlation function is easily evaluated and
produced the result

(g (x, )/is(x2)) =S p(x, —x2;m =0) iy„~„W=~gy„y s(a„y)q,

4=d„(4y„ys4)+
~
5b

(21)

It is very difficult to solve exactly Eq. (21) in a pure

correlation functions involving fermions f(x), g(x) and
the pseudoscalar field P(x) are easily computed too (see
Ref. 2).

As a conclusion of our paper let us comment to what
extent our proposed mathematical Euclidean axial model
describes an operator quantum field theory in Minkowski
space-time.

In the operator framework the fields g(x) and P(x)
satisfy the following wave equations:
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operator framework because the model is axial anoma-
lous [B„(iI'jy„y,g)WO]. However the path-integral study
Eq. (19) shows that the operator solution of Eq. (21) [in
terms of free (normal-ordered) fields] is given by

g(x) =:exp[iy5$(x )]:g(x) (22)

T

S=T exp i f (fy„y58„$$)(x)d x

since it is possible to evaluate exactly the anomalous
divergence of the above-mentioned axial-vector current
and, thus, choose a suitable model potential V(P) which
leads to the above simple solution.

It is instructive to point out that the operator solution
Eq. (22) coincides with the operator solution of the U(1)
vectorial model analyzed by Schroer in Ref. 8 [the only
difference between the model's solutions being the y5 fac-
tor in the phase of Eq. (22)].

Consequently we can follow Schroer's analysis to con-
clude that the Euclidean correlation functions Eq. (20)
define Wightman functions which are distributions over
certain class of analytic test functions. ' But the model
suffers the problem of the nonexistence of time-ordered
Green's functions which means that the proposed axial
model in Minkowski space-time does not satisfy the Ein-
stein causality principle.

Finally we remark that the proposed model is to a cer-
tain extent less trivial than the vectorial model since for
nondynamical P(x) field the associated S matrix is non-
trivial and is given in a regularized form by the result
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APPENDIX

For this study, let us consider the more general
second-order elliptic four-dimensional differential opera-
tor (non-necessarily) Hermitian in relation to the usual
normal in L (R ) (Ref. 7):

X„=—(8 ) +a„(x)(B„)„+V(x) . (A2)

Its evolution kernel K(x,y, g)=(x~e ~ ~y) satisfies
the heat-kernel equation

E(x,y, ;g)= —X K(x,y;g),c1

lim IC(x,y;g)=5' '(x —y) .
$~0+

(A3)

We now briefly calculate the asymptotic term of the
second-order positive differential elliptic operator:

(g [4])'=(—a') —(gy, ga„4)a„—ggy, a'y+(a„y)' .

(Al)

=exp i f —P(x) J,[P] (x)d x (23)

The Green's function IC (x,y, g) has the asymptotic ex-
pansion

with J,[P] expressed by Eq. (16).

Note added

After completion of our research we became aware of a
paper by J. A. Mignaco and M. A. Rego Monteiro [Phys.
Lett. B 175, 77 (1986)] where it is claimed that quantum
chromodynamics with axial-vector coupling is exactly bo-
sonized by evaluating exactly the fermion functional
determinant. Unfortunately the analysis of these authors
is wrong for the following reasons.

First, their arbitrary external gauge field satisfies the
zero-field-strength constraint F„(B)(x)—:0 as a direct
consequence of its chosen form for the gauge B„(x)as a
Wu-Yang phase factor [see, for instance, Itzhak Bars,
Phys. Rev. Lett. 40, 688 (1977), for a correct treatment of
the theory of gauge prepotentials in four dimensions and
Botelho, Centro Brasileiro de Pesquisas Fisicas Report
No. CBFF-NF-084 (unpublished), for the case of two-
dimensional QCD].

Second, even in the case of pure gauge fields their
analysis remains incomplete in the sense that only the
well-known chiral change of the phase of the Dirac func
tional determinant was evaluated, and, thus, missed im-
portant (cutoff-dependent) terms associated with the
chiral change of its modulus [see our Eq. (13) and D.
Ebert and H. Reinhardt, Phys. Lett. B 173, 453 (1986)].

lim IC(x,y;g)-Eo(x, y;g) g g H (x,y)
o+ m=0

(A4)

go(x, y, g) is the evolution kernel for the n

dimensional Laplacian (
—8 ). By substituting Eq. (A4)

into Eq. (A3) and taking the coinciding limit x~y, we
obtain the following recurrence relation for the
coefficients H (x,x ):

oo n

, g"H„+,(x,x)= ——g ( —8 )H„(x,x)
n=o n n=o n.

n

+a„(x) g B„H„(x,x)
o

nt

n

+ V(x) g H„(x,x )
n=o n' (A5)

For D =4, Eq. (A5) yields the Seeley coefficients

Ho(x x) = I4x4

H2(x, x) = —V(x),

H2(x, x)=2[—8 V(x)+a„(x)B„V(x)+V (x)] .

(A6)

Now substituting the value a„(x)=[—ggB~Q(x)]14&&4
and V(x)=[(—ggysB P+B„P) ]14 ~ into Eq. (A6) we
obtain the result Eqs. (14) and (15) quoted in the main
text.
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